This application claims priority to co-pending German Patent Application No. DE 10 2010 061 148.4 entitled “Zangenkopf für eine Presszange”, filed Dec. 9, 2010.
The present invention generally relates to a head of crimping pliers used for crimping a work piece as a connector, in particular for the connection of an end of an electrical cable or line with the connector. The present invention covers any embodiment wherein the crimping is done by manual actuation, hydraulic actuation, actuation by an electrical aggregate or any other type of actuation.
Heads of crimping pliers of the present type are used for crimping pliers for crimping a contact or connector (in the following “connector”) with an end of a line, cable or wire with at least partially removed insulation. During the crimping process the connector is plastically deformed and pressed against the cable end which is located within the connector. Due to the removed insolation an electrical contact is established under the plastic deformation. On the other hand, the crimping process provides a durable connection between the connector and the cable end.
It is also known to equip crimping pliers with a locator. Locators are used for positioning the connector relative to a base body of the head of the crimping pliers, in particular for defining the predetermined position of the connector with respect to the cable end and/or for a coaxial alignment of the connector with the cable end. The locator guarantees that at the beginning of the crimping process the connector and the cable end have the desired position with respect to a die of the head of the crimping pliers. It is also possible that the crimping process and during the plastic deformation of the connector the locator during provides or withholds the predetermined relative position and orientation of the connector and of the cable end with respect to the die.
A plurality of constructions of crimping pliers, heads of crimping pliers, locators and configurations for moving degrees of freedom for the locator are known from the prior art:
Crimping pliers known from DE 27 18 165 A1 comprise a head with a C-shaped frame which is laterally open. For another embodiment of DE 27 18 165 A1, crimping jaws and die halves mounted with the crimping jaws move towards each other similar to scissors. For both embodiments, the head of the crimping pliers defines a head plane wherein the tool parts building the die halves and crimping jaws move during the crimping process. The crimping pliers comprise a locator which is pivotable around a pivoting axis between a loading state for inserting the connector and a crimping state. The pivoting axis has an orientation perpendicular to the afore mentioned head plane. Accordingly, it is possible to pivot the locator into the loading state for inserting or assembling the connector, to insert the connector into the nest of the locator and pivot the locator with the connector housed in the nest back to the crimping state, wherein the connector is held with a predetermined relative position and orientation with respect to the tool parts and in a position aligned with the die. Subsequently, the connector is plastically deformed during the crimping process actuated by actuation of the crimping pliers, here by means of two manually pivoted hand levers.
The applicant of the present invention also distributes crimping pliers under the trademark “CS20KS”. These crimping pliers comprise also a C-shaped head which is laterally open. At the head of the crimping pliers a locator is linearly guided along an axis having an orientation parallel to the horizontal leg of the C and located parallel to the head plane. The locator is driven by a pivotable lever supported at the head of the pliers. The pivoting movement of the lever is transferred by a pin guided in an elongated hole into a linear movement along the axis for the linear movement of the locator.
The applicant of the present invention also distributes crimping pliers under the trademark “CS25KS”. Also these crimping pliers have a C-shaped head. Here, a locator is pivoted around a pivoting axis with respect to the main body or frame of the pliers head. For this embodiment the pivoting axis has an orientation perpendicular to the head plane. By means of a manual actuation of a knurled button the locator is pivoted between a crimping state and a loading state.
DE 198 32 884 C1 (see U.S. Pat. No. 6,155,095) discloses crimping pliers with a head built by sandwiched plates. Here, the head is not C-shaped with a transverse opening but O-shaped with a central opening. Upon manual actuation of the hand levers, a movable tool part is displaced along a longitudinal axis relative to a tool part fixed at the head of the crimping pliers. The patent discloses a locator which is pivoted around a pivoting axis. The pivoting axis has an orientation parallel to the head plane as well as transverse to the moving direction of the tool parts of the crimping pliers. In the crimping state the locator has an orientation parallel to the head plane. From this crimping state, the locator is pivoted around the pivoting axis out of the head plane into the loading state.
For the above locators the required movement of the locator between the loading state and the crimping state requires that one hand of the user grips the handles of the crimping pliers whereas the other hand of the user moves the locator between the crimping state and the loading state. In contrast to these embodiments, DE 10 2008 017 366 A1 (see US 2009/0249855A1) discloses a locator with respect to a base body of the pliers head. The locator has an extension extending into the close neighborhood of the hand levers. It is possible to pivot the locator with the thumb of the hand gripping the handles of the crimping pliers. Accordingly, the use of the crimping pliers, in particular a one-hand use of the crimping pliers and the locator, is eased.
DE 10 2008 012 011 B3 (see US 2009/0217791 A1) discloses a pliers head with a plurality of die halves held or built by tool parts wherein the tool parts are moved towards each other during the crimping process. Here, the die halves have a translational degree of freedom transverse to the head of the crimping pliers such that for different work pieces different die halves can be located in a central position of the pliers head. Accordingly, it is possible to use different crimping die halves with optimized force conditions for different work pieces. On the other hand, it is possible to increase the number of different crimping die halves with different contours and geometries built by a die matrix.
It is an object of the invention to provide a pliers head having a locator which is improved with respect to
Before the priority date of the present invention it has been known to provide more than one nest for a connector at one and the same locator. Here, each nest was aligned with an associated die formed by a die matrix one. However, the skilled persons relied upon the prejudice that necessarily any crimping die halve of the die matrix should have a distance from an adjacent die halve that is larger than the width of the connector also in the cross-sectional region which is held by the locator. This prejudice was based upon the finding that when violating this implicit rule adjacent connectors could not be nested in the locator one besides another.
The present invention for the first time overcomes this prejudice which leads to improved option for the design envelope, the option of using larger connectors and/or the use of an increased number of crimping die halves at a crimping die matrix of the pliers head:
The invention suggests equipping the locator with a first nest. The width of the first nest (and optionally also of possible other nests) is at least as large as the distance between a first die and an adjacent second die of the pliers head. The locator comprises (besides the loading state) a first crimping state as well as a second crimping state. In the first crimping state of the locator, the first nest is located in a predetermined position and/or orientation aligned with the first die. Accordingly, in the first crimping state it is possible to crimp a connector with a cable end in the first die. Due to the afore mentioned dimensions of the width of the first nest, it is also possible to crimp a connector which is larger than connectors crimped by the prior art pliers heads without necessarily increased dimensions of the pliers head. It is also possible that for the same connectors the first die might have a distance from an adjacent second die which is reduced to the respective distances known from the prior art. According to the invention it is also possible that (due to the large width of the connector and the related first nest) an outer region of the first nest in the first crimping state extends into an area aligned with the second die. In the second crimping state and for a use of the second die for crimping a different connector an outer region of a second nest might now extend into this area.
For the design and configuration of the second crimping state of the locator according to the present invention, there are in particular two options:
It is possible that in the first crimping state and the second crimping state (as well as any possible additional intermediate state) the position is multi-stable. For one example, an active crimping state is withheld by friction. When applying transfer forces for changing the crimping state, these forces have to overcome the friction, wherein it might be possible to change the crimping state in a stepless manner. For another embodiment of the invention, the locator is latched, rested or locked in the first and/or second operating state.
A latching mechanism is any mechanism or device that keeps the locator in an crimping state for small acting transfer forces, whereas it is possible to move the locator away from the latched crimping state for larger transfer forces. One example for a latching mechanism is built with a spring loaded latching element, in particular a latching sphere. The latching element or sphere engages a latching opening or groove. The geometry of the latching element, the diameter of the latching sphere, the contour of the latching groove and the stiffness of the spring supporting the latching element influence the amount of transfer force which is required for removing the locator from a latched crimping state. Another embodiment of a latching mechanism is built with a magnet, wherein the force of the magnet determines the transfer force required for leaving a latched crimping state. By means of the latching mechanism, it is also possible to give a haptic feedback to the user during the transfer of the locator from or into a crimping state.
In a locking mechanism I is not possible to leave a locked state only under the application of a transfer force. Instead, it is required to remove the locking connection of a locking element, in particular a locking bolt, a locking pawl or any differing locking element with a counterelement. The locking element or counterelement has to be released by a hand of a user or by an additional actuating means for releasing the positive lock.
The locking or latching mechanism guarantees that the locator is in a predetermined position or crimping state which in the end increases the precision of the crimping process. Furthermore, it is possible that the latching or locking mechanism avoids that during the crimping process with large acting crimping forces the locator changes the crimping state.
A movement of the locator between the first and second crimping state (and any additional crimping state) might be any movement, in particular a translational or pivoting movement. The movement might be provided by suitable links with other components of the pliers head, suitable guiding element or bearings. Furthermore, it is possible that an actuating mechanism for the movement between the first and second crimping state is provided, e.g. with levers, transmissions, buttons, knurled wheels and the like.
For a specific embodiment of the invention the locator is moved along a translational degree of freedom between the first and the second crimping state. It is possible that during this translational movement the parts of the locator are guided by a guiding unit, e.g. a guiding rail, a tongue-groove-connection and the like, wherein the guiding unit might also be equipped with the latching or locking mechanism, stop elements or otherwise secured positions.
For one embodiment of the invention, the translational degree of freedom of the locator extends parallel to the connecting straight line between the first die and the adjacent second die. Accordingly, it is possible to transfer a nest of the locator from a crimping state aligned with the first die to a crimping state aligned with the adjacent second die by use of the translational degree of freedom. For a specific embodiment, the locator might solely comprise one single nest which might be used with different dies in the different crimping states.
For an alternative embodiment of the invention, the locator is pivoted between the first and second crimping state. The pivoting degree of freedom of the locator might be provided by any linking or bearing mechanism. In order to name a non-limiting example, the locator might be built by a pivot joint built by a bearing bolt extending through a bearing sleeve or bearing lug.
It is possible that the locator is only pivoted by an angle of less than 360°. Another embodiment of the invention suggests building the locator with a type of revolver or rotating disc (in the following “revolver”). Here, it is also possible that the revolver is not pivoted in forward and backward direction. Instead, it is also possible to pivot the locator in the different crimping states by a pivoting or rotating movement in one single direction with an angle of rotation of more than 360°.
It is also possible that a nest of the revolver is used in cooperation with a plurality of dies in the different crimping states. However, for another embodiment of the invention in the first crimping state of the revolver a first nest is located aligned with a first die. In the second crimping state of the revolver a second nest is located aligned with the second die.
Other features and advantages of the present invention will become apparent to one with skill in the art upon examination of the following drawings and the detailed description. It is intended that all such additional features and advantages be included herein within the scope of the present invention, as defined by the claims.
The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. In the drawings, like reference numerals designate corresponding parts throughout the several views.
The connectors 1 each comprise a connector region 4, which is located in a nest 5 of a locator 6 (see
With an increase of the width 7 of the connectors and the nests, the wall thickness of the link or bridging material 8 reduces. In case that a minimum wall thickness of the bridging material or link 8 is required, a further increase of the width 7 requires an increase of the overall width of the locator 6 according to
For an explanation of the object of the invention,
In the crimping states 14-17 a longitudinal axis 28 of nest 5 is located coaxially and aligned with the respective die 37a-d. For a movement of the locator 6 into another crimping state, the longitudinal axis 28 of the nest 5 is moved into another position, namely to another die 37a-d. In particular, the distances 29 between adjacent crimping states 14-17 are smaller than the width of the connector 1 in the connector regions 4 or are smaller than the width of the nest 5.
The locator 6 might be an optional additional part that due to the requirements might be optionally used together with the pliers head 18. For alternative embodiments, the locator 6 might additionally to the translational degree of freedom 12 have a pivoting degree of freedom for pivoting the locator between a loading state and the crimping states, see in particular DE 10 2008 017 366 A1 and the prior art summarized in this patent application.
For the embodiment shown in
For the crimping state effective in
For the embodiment shown in
For the embodiment shown in
Many variations and modifications may be made to the preferred embodiments of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of the present invention, as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 061 148 | Dec 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3457764 | McKee | Jul 1969 | A |
3673848 | Filia | Jul 1972 | A |
3710611 | Filia | Jan 1973 | A |
4754636 | Kautz et al. | Jul 1988 | A |
4982594 | Wiebe | Jan 1991 | A |
5212978 | Liu | May 1993 | A |
5236331 | Liu | Aug 1993 | A |
5924322 | Caveney | Jul 1999 | A |
6155095 | Beetz | Dec 2000 | A |
8161789 | Battenfeld et al. | Apr 2012 | B2 |
20090217791 | Battenfeld et al. | Sep 2009 | A1 |
20090249855 | Battenfeld et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
27 18 165 | Oct 1978 | DE |
94 00 937 | Apr 1994 | DE |
29 812 631 | Jan 1999 | DE |
198 32 884 | Dec 1999 | DE |
20 2006 012 869 | Jan 2008 | DE |
10 2008 017 366 | Oct 2009 | DE |
10 2008 012 011 | Dec 2009 | DE |
20 2010 008 988 | Apr 2012 | DE |
2 182 595 | May 2010 | EP |
51-133778 | Apr 1975 | JP |
2010-009 768 | Jun 2008 | JP |
2012062 538 | May 2012 | WO |
Entry |
---|
German Office Action in co-pending, related Application No. DE 10 2010 061 148.4, mailed Jul. 29, 2013. |
Number | Date | Country | |
---|---|---|---|
20120144893 A1 | Jun 2012 | US |