The disclosure relates to a fiber optic connector with a positive locking mechanism.
Optical fiber connectors typically exhibit superior operation when there is a stable connection that minimizes the mismatch of corresponding ends of optical fibers. Therefore, it is beneficial to maintain a high degree of concentricity of the optical fibers.
Optical connections with matching 8° angles at the mating face prevent the signal from reflecting up the fiber. This is critical in applications involving sensors or sensitive transmitters. Matching the angles between the mating connectors significantly affects optical performance. Proper positioning of the termini relative to the angled face requires the termini to be keyed to the connector, and the connectors to be keyed to each other. Due to manufacturing tolerances, minimizing the number of keyed interfaces reduces positional variation and improves optical performance.
Single channel connectors are typically used in controlled environments; therefore, they are not typically designed for harsh environments. High-vibration/shock environments require a coupling method that will not loosen over time. While multiple solutions exist, they typically require a secondary action to actuate the locking mechanism (i.e. a secondary jam nut, clamping screws, or tie-wire holes). During installation, locking mechanisms requiring secondary action are often forgotten or skipped. Ratcheting coupling systems are often used to eliminate the secondary action, but they rely on friction and are prone to loosening in more extreme shock and vibration applications.
As such, there is a need for a high-performance, angle polish connector that ensures proper matching of the mating fibers while also positively locking the connection together without the need for a secondary action.
Accordingly, the present disclosure may provide a connector comprised of two components: a plug connector and a mating receptacle connector. The plug connector is comprised of a plug body, a coupling lock indicator, an inner coupling nut, an outer coupling nut, a back shell, and a ferrule. The mating receptacle connector comprised of a rear cap, a receptacle body, a mating indicator, and a second ferrule. When the plug connector is fully mated to the mating receptacle connector, the coupling lock indicator on the plug connector and the mating indicator on the mating receptacle connector are not visible, signaling that the two connectors are fully mated, but not locked in place. When the plug connector and the mating receptacle connector are locked in place, the coupling lock indicator is visible and the mating indicator is not visible, signaling positive locking.
In certain embodiments, the inner coupling nut and the rear cap are attached to one another to mate the plug connector and the mating receptacle connector.
In yet other embodiments, the plug connector includes ball bearings, which are held in place in radial indentations by the outer coupling nut, and those ball bearings are used in the locking or release of plug connector to the mating receptacle connector, which is performed by pushing the outer coupling nut forward.
In yet other embodiments, the plug connector includes an external key that fits into a groove in the receptacle body of the mating receptacle connector, resulting in coarse alignment between the plug connector and the mating receptacle connector.
This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter. It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide an overview or framework to understand the nature and character of the disclosure.
The accompanying drawings are incorporated in and constitute a part of this specification. It is to be understood that the drawings illustrate only some examples of the disclosure and other examples or combinations of various examples that are not specifically illustrated in the figures may still fall within the scope of this disclosure. Examples will now be described with additional detail through the use of the drawings, in which:
In describing the illustrative, non-limiting embodiments illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several embodiments are described for illustrative purposes, it being understood that the description and claims are not limited to the illustrated embodiments and other embodiments not specifically shown in the drawings may also be within the scope of this disclosure.
The plug body 102 is cylindrical in shape and elongated to form a tube and is configured to fit into and mate with the inner coupling nut 130. The plug body 102 has a forward end, a rearward end, a ridge formed where the forward end meets the rearward end, and an outer surface. The rearward end has a smooth section extending rearward from the ridge, and a threaded portion extending rearward from the smooth section. As shown in
The inner coupling nut 130 is cylindrical in shape and has an inner bore. The inner bore of the inner coupling nut 130 is larger than the plug body 102, so that the plug body 102 can be received in the inner bore of the inner coupling nut 130. The inner coupling nut 130 has an outer surface, a forward end 132, a rearward end 134, a first forward step 135, a second rearward step 136, and a ledge 138 between the first and second steps 135, 136. The steps 135, 136 and ledge 138 are at an intermediate portion of the inner coupling nut 130 between the forward end 132 and the rearward end 134. The outer diameter of the forward end 132 is larger than the outer diameter of the rearward end 134, forming the steps 135, 136 therebetween. A spring 112 is received on the ledge 138 and presses against the vertical face of the forward step 135.
The coupling lock indicator 137 is located on the outer surface of the inner coupling nut 130 at the forward end 132 of the inner coupling nut 130 and close to the forwardmost end of the coupling nut 130. The coupling lock indicator 137 indicates a coupling lock with the mating receptacle connector 200.
One or more retainer members 114 are positioned at the rearward end 134 of the inner coupling nut 130, defining recessed regions 115 therebetween. The retainer members 114 project outward from the outer surface of the rearward end 134 and can have transverse locking slots formed close to the rearmost distal end of the inner coupling nut 130. In addition, one or more circular openings 139 (three in the embodiment shown) are located about midway along the rearward end 134. The openings 139 extend completely through the rearward end 134 and are configured to retain a locking ball bearing 314. A shown in
In certain embodiments, the inner coupling nut 130 is made out of a structurally acceptable metal. The outer coupling nut 120 has an inner bore that is larger than the inner coupling nut 130 to receive the inner coupling nut 130. The outer coupling nut 120 has one or more (three in the embodiment shown) lock guides 122 that project inwardly from an inner surface of the outer coupling nut 120 into the inner bore at the rearward end of the outer coupling nut 120. Each of the lock guides 122 aligns with a respective recessed region 115 at the rearward end 134 of the inner coupling nut 130. Accordingly, the lock guides 122 are slidably received in the respective recessed region 115. The lock guides 112 and retainer members 114 prevent the outer coupling nut 120 from rotating radially (i.e., transversely) with respect to the inner coupling nut 130, but allow the outer coupling nut 120 to slide forward and rearward with respect to the inner coupling nut 130.
As best shown in
The plug body 102 preferably has up to thirty radial indentations 110 that contain up to three ball bearings 314 that are substantially equally spaced, though any suitable number of indentations and ball bearings can be provided. As best shown in
The spring 112 is positioned between the first step 135 of the inner coupling nut 130, and the forward face of the locking guide 122. The spring 112 is biased outward. In the default locked position, shown in
To unlock the inner coupling nut 130 from the plug body 102, the user pushes the outer coupling nut 120 forward against the bias of the spring 112. The outer coupling nut 120 can move forward until the forward face of the locking guide 122 contacts the second step 136 of the inner coupling nut 130. When the outer coupling nut 120 moves forward with respect to the inner coupling nut 130, the unlocking portion 125 of the locking guide 122 is aligned with the ball bearing 314, as shown in
Thus, the outer coupling nut 120 slides forward and rearward on the inner coupling nut 130 between a locked position and an unlocked position. In some embodiments, in the locked position, the plug body 102 is locked to the inner coupling nut 130 and the plug body 102 cannot be removed from the plug connector assembly 100. In that position, the outer coupling nut 120 is rearward with respect to the inner coupling nut 130, and the locking portion 124 forces the ball bearing 314 into one of the indents 110. In the unlocked position, the plug body 102 is unlocked from the plug connector assembly 100 and the plug body 102 can be inserted or removed from the plug connector assembly 100. In that position, the outer coupling nut 120 is forward with respect to the inner coupling nut 130, and the unlocking portion is aligned with the ball bearing 314 to allow the ball bearing 314 to escape the indents 110.
At this point, the outer coupling nut 120 is moved forward and the inner coupling nut 130 is unlocked. The user can then rotate the outer coupling nut 120. That, in turn, causes the inner coupling nut 130 to rotate because the lock guide 122 engages the retainer projections 114. The distal end of the inner coupling nut 130 is internally threaded. Thus, the inner and outer coupling nuts 120, 130 rotate together with respect to the plug body 102, such that the inner coupling nut 130 turns to threadably engage and disengage the threaded proximal outer surface of the receptacle body 210. Once the inner coupling nut 130 engages the receptacle body, the user releases the outer coupling nut 130. The spring 112 returns the outer coupling nut 130 to the locked position, thereby locking the outer coupling nut 130 to the inner coupling nut 120, and preventing further rotation of the inner coupling nut 120 with respect to the plug body 102 and receptacle body 210.
As further shown in
A retaining ring 315 is received in the ring receiving portion 123 of the outer coupling nut 120. Referring to
A wave spring 318 is located below the o-ring 316, just above the back shell washer 320. The o-ring 316 is located at a leading end of the back shell 108 and provides an environmental seal between the back shell 108 and the plug body 102 to protect against the environment, including to prevent dust and moisture from entering the plug connector 100 (including the back shell 108 and plug body 102). The o-ring 316 is preferably fabricated from silicone, but one of ordinary skill in the art will recognize that any acceptable material may be used. The back shell 108 mates to the threaded rearward end of the plug body 102, such that the back shell washer 320 and wave spring 318 ensure a secure fit between the back shell 108 and the plug body 102. The alignment sleeve 304 is used to provide alignment for the mating ferrules The back shell 108 is further secured by the threading 322 by which the back shell can be screwed onto the plug body 102.
A ferrule 116 attached to a terminus 118 passes through substantially the center bore of the outer coupling nut 120. The terminus 118 of the ferrule 116 is oriented to pass into the and mate with the back shell 108 of the connector. In certain embodiments, the terminus 118 is polished with an 8° angle (other angles are sometimes used provided both connectors 100, 200 have matching angles) on the ferrule's 116 distal end face to reduce back-reflection of the optical signal which is detrimental in certain applications. Matching the position of the 8° angles between mating termini is useful to improve performance of the plug 100 and receptacle 200 connection (see FIG. 7B). A seal 127 can be located in a radial groove and provide a seal between the terminus 118 and the inner plug body 102.
In certain embodiments, the connector 100 has an external key 140 the projects outwardly from the outer surface of the leading portion of the plug body 102 in the longitudinal direction. The leading portion of the plug body 102 is slidably received into a corresponding inner bore of the receptacle body 200 (
The terminus 118 body also has an external key 141 that extends along the longitudinal axis of the terminus body 118. And the receptacle terminus 206 has a body portion with a key 222 that projects outward from the outer surface of the body portion and extends along a longitudinal axis. In addition, the plug body 102 has an internal bore with a mating internal groove 103 (
The plug connector 100 herein is shown with a back shell and the mating receptacle connector 200 is shown with only the rear cap 202. The connectors 100, 200 are designed such that both the plug 100 and receptacle 200 are available with either configuration. The rear cap 202 version provides a shorter connection length and reduced mass, but at the expense of an environmental seal from the back of the connector. The back shell 108 configuration is fully sealed (by the o-rings 316, 324 at the leading and trailing ends of the back shell 108, as well as by the o-ring 328 at the rear cap 328) to prevent dust and/or moisture from entering the connector 100. A fiber 500 (
The cushion seal 308 is situated on the plug body 102 between the plug body 102 and the inner coupling nut 130. The seal 308 is located in a groove between the key 140 and the forward-facing lip of the plug body 102. In certain embodiments, the inner coupling nut 130 has ⅜-40 thread to engage a matching thread on the receptacle 200. If thirty indentations 110 are present, in combination with the ⅜-40 thread, the connector 100 permits only 0.0008 inches of linear travel between the connectors 100, 200 before locking in the next position, or approximately to lock every 12 degrees of rotation. The front distal end of the receptacle body 210 contacts the cushion seal 308 when the receptacle body 210 is threadably connected to the inner nut 130 (
The opposite side of the back shell 108 is comprised of another o-ring 324. The o-ring 324 is preferably fabricated from silicone, but one of ordinary skill in the art will recognize that any acceptable material may be used. The o-ring 324 is used along with the threading 326 to provide an environmental seal for the rear cap 202 of the mating receptacle connector 200 (also shown in
Referring to
It will be apparent to those skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings that modifications, combinations, sub-combinations, and variations can be made without departing from the spirit or scope of this disclosure. Likewise, the various examples described may be used individually or in combination with other examples. For example, the use of an alignment mechanism (i.e., the common groove 103 used to align the two terminus bodies 118, 206) is shown used in combination with a locking mechanism (e.g., the ball bearings 314 being locked in the indentations 110 by the outer coupling nut 120). However, the alignment mechanism can be utilized by itself, e.g., without a locking mechanism or with any suitable locking mechanism other than the one shown in the example embodiments. In addition, the locking mechanism can be utilized by itself, e.g., without an alignment mechanism or with any suitable alignment mechanism other than the one shown in the example embodiments. Those skilled in the art will appreciate various combinations of examples not specifically described or illustrated herein that are still within the scope of this disclosure. In this respect, it is to be understood that the disclosure is not limited to the specific examples set forth and the examples of the disclosure are intended to be illustrative, not limiting.
As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “comprising,” “including,” “having” and similar terms are intended to be inclusive such that there may be additional elements other than the listed elements.
It is noted that the description and claims may use geometric or relational terms, such as rearward, forward, leading, trailing, distal, proximal, right, left, above, below, spherical, semi-spherical, curved, bottom, linear, radially, elongated, parallel, transverse, etc. These terms are not intended to limit the disclosure and, in general, are used for convenience to facilitate the description based on the examples shown in the figures. In addition, the geometric or relational terms may not be exact, for example, due to roughness of surfaces, tolerances allowed in manufacturing, etc.
This application is a divisional application of U.S. patent application Ser. No. 17/085430, filed Oct. 30, 2020, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
Parent | 17085430 | Oct 2020 | US |
Child | 17975845 | US |