This application claims priority to U.S. application Ser. No. 17/166,269 filed Feb. 3, 2021, which is incorporated in its entirety herein.
The present invention relates generally to well drilling operations, and more specifically to an apparatus and method of use for surface cementing operations where conventional surface launch cementing plugs are used.
Wellbore systems are well known in the art and are effective means to collect resources for energy use.
Illustrative embodiments of the present disclosure are described in detail below with reference to the attached drawing figures.
The drawing figures do not limit the invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
The following detailed description references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the invention is defined only by the appended claims, along with the full scope of the equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the technology can include a variety of combinations and/or integrations of the embodiments described herein.
Referring now to the drawings wherein like reference characters identify corresponding or similar elements throughout the several views,
In the contemplated embodiment, apparatus 101 includes three primary components, namely a body and plungers 103, a manifold system 105, and a tubular connection 107. It should be appreciated that the three primary components are broken up and explained herein, however, these components provide for novelty and improvement over the prior art.
Specifically, the body and plunger portion are where cementing plugs are installed and located during the circulation operations of a well drilling operation. The cementing plugs remain in this portion of the head until the plungers are retracted, and the fluid is diverted into the manifold to launch the plug into the casing.
The manifold is a system is in fluid communication with the interior of the body and is a configuration of flow paths that can be manipulated to direct fluid flow to a location on the body that is desired by the operator. Specifically, the fluid flow is initially directed below the lower plunger assembly. Wherein a second step involves retracting the lower plunger assembly, and the flow is directed to below the upper plunger assembly and above the lower cementing plug. It should be understood that the change in fluid flow serves to launch the lower cementing plug from the cement head. In a third step, this process is repeated to divert the flow to below the cap and above the upper cementing plug after retracting the upper plunger assembly. This serves to launch the upper cementing plug into the casing of the wellbore operation. It should be appreciated that the steps above are completed with the manifold system, wherein the manifold system opens and closes valves as commanded to create the needed fluid flow.
The tubular connection is used to adjoin the plug container body to the casing mechanically with a hydraulic seal with said casing to enable pressure pumping operations to be performed.
It should be appreciated that one of the unique features believed characteristic of the present application is the combination of the above three primary features.
In
Referring back to
The body 301 further includes a plug container cap 305 positioned at the top end of the body and a hoist ring 307 positioned above the container cap. The manifold includes a manifold body 309 bolted onto the main body 301 with upper and lower manifold valve assemblies 311a-b with a handle for actuating the valve assemblies. As shown, the valves are configured to direct fluid flow into the interior of the body at two different positions. The manifold further including a 2-inch 1502 thread 312 for flow iron bolted onto the body. Further included is a cementing plug launch indicator 313 bolted onto the main body and a coupler clamp assembly 315 threaded onto the main body.
Another unique feature believed characteristic of the present invention is the manifold assembly 105. The manifold assembly is fabricated from steel that is machined to create flow paths that are managed with valves that divert the fluid flow to a desired path. This manifold assembly provides for a simple and efficient operation when compared to the prior art. Further, using a monoblock assembly reduces the number of leak paths common to manifolds that are assembled from numerous individual pieces assembled together to make a manifold assembly.
The manifold assembly and components therefore are shown and described in
In
In
In
In
The apparatus of the present invention provides for benefits over the prior art, namely, the manifold block enables the use of fewer connections, thus reduces the number of leak paths common to a conventional manifold system; the manifold block allows 90° rotation of a single valve to divert fluid flow from one path to a second path; the manifold block allows the center of gravity to me moved closer to the plug container body, thus eliminate the need for lift chains or a leveling bar; the manifold block creates a less costly and more easily maintainable manifold system compared to a conventional valve manifold system; the non-welded coupling clamps improve the fabrication of and the long-term maintenance of the clamps by using the dual pin hinge to eliminate welds.
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the spirit and scope of the present disclosure. Embodiments of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3777819 | Delano | Dec 1973 | A |
4574882 | Szarka | Mar 1986 | A |
4995457 | Baldridge | Feb 1991 | A |
5095988 | Bode | Mar 1992 | A |
5443122 | Brisco | Aug 1995 | A |
8651174 | Barbee | Feb 2014 | B2 |
8997850 | Barbee et al. | Apr 2015 | B2 |
9109415 | Coles | Aug 2015 | B2 |
9341040 | Barbee et al. | May 2016 | B2 |
10539007 | Dirksen | Jan 2020 | B2 |
20030024701 | Simson | Feb 2003 | A1 |
20200157909 | Fernandes et al. | May 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 17166269 | Feb 2021 | US |
Child | 18517134 | US |