This relates to a plug for a tubing string, and in particular, a plug for a coiled tubing string.
Tubing strings are often used to convey fluids at high pressure in downhole operations. In some cases, it may become necessary to seal the tubing string at a location along its length. To seal the tubing string, tubing plugs may be inserted into the string, lowered to the desired location, and activated from a collapsed state to a sealing state. U.S. Pat. No. 3,412,803 (Stachowiak) entitled “Well tool anchors” describes an example of a tubing plug. U.S. Pat. No. 7,631,693 (Tong et al.) entitled “Retrievable plug system and methods of use” describes an example of a plug system designed for use in coiled tubing.
According to an aspect, there is provided, in combination, a coiled tubing string having an inner surface that comprises a longitudinal seam and a tubing plug for sealing the interior of the coiled tubing string, the tubing plug comprising an inner mandrel having a first end, a second end, and a longitudinal axis that extends between the first end and the second end, the inner mandrel having a setting tool connection at the first end, a first stop slidably mounted to the mandrel toward the first end, and a second stop fixedly mounted to the mandrel toward the second end, a seal ramp section carried by the inner mandrel, the seal ramp section comprising a first seal ramp that slopes inward and toward the first end of the inner mandrel, and a second seal ramp that slopes inward and toward the second end of the inner mandrel, a first elastomeric seal adjacent to the first seal ramp and a second elastomeric seal adjacent to the second seal ramp, the first elastomeric seal and the second elastomeric seal each having a first end facing toward the seal ramp section and a second end facing away from the seal ramp section, a first anchor ramp adjacent to the first elastomeric seal toward the first end of the inner mandrel, and a second anchor ramp adjacent to the second elastomeric seal toward the second end of the inner mandrel, and a first expandable anchor between the first stop and the first anchor ramp, and a second expandable anchor between the second stop and the second anchor ramp, wherein, as the first stop moves toward the second stop along the inner mandrel the first elastomeric seal and the second elastomeric seal move along the first seal ramp and the second seal ramp, respectively, such that the seal ramp section causes the first elastomeric seal and the second elastomeric seal to expand outward into sealing engagement with the inner surface of the coiled tubing string and the longitudinal seam of the inner surface, the first anchor ramp and the second anchor ramp cause the first expandable anchor and the second expandable anchor, respectively, to move out and engage the inner surface of the coiled tubing, and a setting tool for setting the tubing plug, the setting tool being connected to apply a force to move the first stop toward the second stop.
According to other aspects, the second end of each of the first elastomeric seal and the second elastomeric seal may be tapered, and the tubing plug may further comprises a first anti-extrusion assembly adjacent to the tapered end of the first elastomeric seal between the first elastomeric seal and the first anchor ramp, and a second anti-extrusion assembly adjacent to the tapered end of the second elastomeric seal between the second elastomeric seal and the second anchor ramp, the first anti-extrusion assembly and the second anti-extrusion assembly being movable relative to the inner mandrel, as the first stop moves toward the second stop along the inner mandrel, the tapered end of the first elastomeric seal and the tapered end of the second elastomeric seal may cause the first anti-extrusion assembly and the second anti-extrusion assembly, respectively, to expand outward toward the inner surface of the coiled tubing string, the first anti-extrusion assembly and the second anti-extrusion assembly forming a chamber that contains and prevents extrusion of the first elastomeric seal and the second elastomeric seal, the elastomer ramp section may comprise a central apex between the first seal ramp and the second seal ramp, the first anti-extrusion assembly and the second anti-extrusion assembly may each comprise overlapping petalloid extensions, the first anti-extrusion assembly and the second anti-extrusion assembly may each further comprise an elastomeric support positioned between the overlapping petalloid extensions and the first elastomeric seal and the second elastomeric seal, and the elastomeric support may have a hardness greater than the first elastomeric seal and the second elastomeric seal, and an outer surface of the inner mandrel may further comprise a ratcheting surface and the first stop comprises a ratchet engagement profile that permits movement of the first stop toward the second stop and prevents movement of the first stop away from the second stop.
According to an aspect, there is provided a method of sealing a coiled tubing string comprising a longitudinal seam, the method comprising the steps of providing a tubing plug for sealing the interior of the coiled tubing string, the tubing plug comprising an inner mandrel having a first end, a second end, and a longitudinal axis that extends between the first end and the second end, the inner mandrel having a setting tool connection at the first end, a first stop slidably mounted to the mandrel toward the first end, and a second stop fixedly mounted to the mandrel toward the second end, a seal ramp section carried by the inner mandrel, the seal ramp section comprising a first seal ramp that slopes inward and toward the first end of the inner mandrel, and a second seal ramp that slopes inward and toward the second end of the inner mandrel, a first elastomeric seal adjacent to the first seal ramp and a second elastomeric seal adjacent to the second seal ramp, the first elastomeric seal and the second elastomeric seal having a first end facing toward the seal ramp section and a second end facing away from the seal ramp section, a first anchor ramp adjacent to the first elastomeric seal toward the first end of the inner mandrel, and a second anchor ramp adjacent to the second elastomeric seal toward the second end of the inner mandrel, and a first expandable anchor between the first stop and the first anchor ramp, and a second expandable anchor between the second stop and the second anchor ramp, positioning the tubing plug at a location to be sealed within the coiled tubing string, and applying a force to move the first stop toward the second stop such that: the first elastomeric seal and the second elastomeric seal move along the first seal ramp and the second seal ramp, respectively, such that the seal ramp section causes the first elastomeric seal and the second elastomeric seal to expand outward into sealing engagement with the inner surface of the coiled tubing string and the longitudinal seam of the inner surface, and the first anchor ramp and the second anchor ramp cause the first expandable anchor and the second expandable anchor, respectively, to move out and engage the inner surface of the coiled tubing.
According to other aspects, the second end of each of the first elastomeric seal and the second elastomeric seal may be tapered, and the tubing plug may further comprise a first anti-extrusion assembly adjacent to the tapered end of the first elastomeric seal between the first elastomeric seal and the first anchor ramp, and a second anti-extrusion assembly adjacent to the tapered end of the second elastomeric seal between the second elastomeric seal and the second anchor ramp, the first anti-extrusion assembly and the second anti-extrusion assembly being movable relative to the inner mandrel, wherein as the first stop moves toward the second stop along the inner mandrel, the tapered end of the first elastomeric seal and the tapered end of the second elastomeric seal may cause the first anti-extrusion assembly and the second anti-extrusion assembly, respectively, to expand outward toward the inner surface of the coiled tubing string, the first anti-extrusion assembly and the second anti-extrusion assembly forming a chamber that contains and prevents extrusion of the first elastomeric seal and the second elastomeric seal, the seal ramp section may comprise a central apex between the first seal ramp and the second seal ramp, the first anti-extrusion assembly and the second anti-extrusion assembly may each comprise overlapping petalloid extensions, the first anti-extrusion assembly and the second anti-extrusion assembly may each further comprise an elastomeric support positioned between the overlapping petalloid extensions and the first elastomeric seal and the second elastomeric seal, and the elastomeric support may have a hardness greater than the first elastomeric seal and the second elastomeric seal, and an outer surface of the inner mandrel may further comprise a ratcheting surface and the first stop comprises a ratchet engagement profile that permits movement of the first stop toward the second stop and prevents movement of the first stop away from the second stop.
In other aspects, the features described above may be combined together in any reasonable combination as will be recognized by those skilled in the art.
These and other features will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to be in any way limiting, wherein:
A tubing plug, generally identified by reference numeral 10, will now be described with reference to
Referring to
As shown, setting tool connection 15 is a threaded, shearable component that allows setting tool 70 to set plug 10 by application of a setting force to first stop 17 relative to inner mandrel 12, and then disconnect from plug 10 upon application of a breakaway force that causes connection 15 to break away from the remainder of inner mandrel 12. Different types of connections may also be used as will be known in the art that allow setting tool 70 to set plug 10, and preferably, to disconnect thereafter for retrieval. This may be done using either longitudinal or rotational forces. The depicted example does not include the details of setting tool 70, as various designs are well known in the art that are capable of applying a differential force between setting tool connection 15 and first stop 17 to activate plug 10 to the sealed state. For example, setting tool 70 may have an outer sleeve that applies a force to first stop 17, while an inner connection point is secured to setting tool connection 15 to hold it in place as first stop 17 moves along longitudinal axis 19 toward second stop 18 to set tubing plug 10. It is common to accomplish this using hydraulics to apply a differential pressure that causes the sleeve to slide downward, however other designs may use other motive forces.
Referring to
Referring to
First and second anchor ramps 31 and 33 are provided opposite elastomeric seals 21 and 23 relative to seal ramp section 22. Anchor ramps 31 and 33 may have a first end 34 towards elastomeric seals 21 and 23, and a second end 36 opposite first end 34 towards first or second end 14 or 16 of mandrel 14, respectively, where first end 34 has a smaller diameter than second end 36. Anchor ramps 31 and 33 have a sloped surface 37 positioned between first end 34 and second end 36. Sloped surface 37 preferably has a slope that continuously decreases. Anchor ramps 31 and 33 may also include a flat portion adjacent to sloped surface 37, as shown.
First and second expandable anchors 39 and 41 are positioned adjacent and opposite to anchor ramps 31 and 33 relative to ramp section 22, such that first expandable anchor 39 is between first stop 17 and first anchor ramp 31, and second expandable anchor 41 is between second stop 18 and second anchor ramp 33. When tubing plug 10 is set, expandable anchors 39 and 41 move over top of anchor ramps 31 and 33, respectively, and expand outward to engage inner surface 52 of coil tubing 50. When engaged with inner surface 52, expandable anchors 39 and 41 have an outer profile that resists movement along longitudinal axis 19 such that tubing plug 10 is secured against lateral movement within coil tubing 50. As shown, expandable anchor 39 has an engagement profile that resists movement in the opposite direction of expandable anchor 41.
Referring to
Referring to
Tubing plug 10 is set by setting tool 70, which may be threadably connected to tubing plug 10 at connection 15 of first end 14 of inner mandrel 12. Setting tool 70 may be run on a suitable elongate member that fits within coiled tubing 50, such as a tubing string, and allows an operator to position tubing plug 10 within coiled tubing 50 and set tubing plug 10. Setting tool 70 applies a force to first stop 17 of tubing plug 10 and compresses the slidable sleeves to set tubing plug 10. When setting tool 70 is activated, it will provide a force that compresses the slidable sleeves axially together between stops 17 and 18, such that expandable anchors 39 and 41 expand as they move along anchor ramps 31 and 33 to engage inner surface 52 of coiled tubing string 50. Anchor ramps 31 and 33 may engage anti-extrusion surfaces 30, if provided, and anti-extrusion surfaces 30 may engage seals 21 and 23, such that seals 21 and 23 overlie raised section 24 of elastomer ramp section 22 and sealingly engage inner surface 52. Seals 21 and 23 may also be directly engaged by anchor ramps 31 and 33. Anti-extrusion surfaces 30 may prevent seals 21 and 23 from extruding back toward anchor ramps 31 and 33. In the depicted example, the slidable sleeves are held in the deployed state by stop 18 at second end 16 and first stop 17 and ratchet nut 42 that is locked into place along ratcheting surface 40.
The method for sealing coiled tubing 50 has the following steps: tubing plug 10, described above, is provided and has setting tool 70 connected to its first end 14. Tubing plug 10 is inserted into coiled tubing 50 and positioned at a location within coiled tubing 50 that is to be sealed, and setting tool 70 is activated, causing the plurality of slidable sleeves to be compressed together, as described above and depicted in
In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the elements is present, unless the context clearly requires that there be one and only one of the elements.
The scope of the following claims should not be limited by the preferred embodiments set forth in the examples above and in the drawings, but should be given the broadest interpretation consistent with the description as a whole.
Number | Date | Country | |
---|---|---|---|
62725127 | Aug 2018 | US |