The present invention relates to a plug-in connector connectable to a coaxial cable having inner and outer conductors and insulation between the conductors in which a first tubular component is inserted between the insulation and the outer conductor on a free end section of the cable and a second tubular component is form-fit with the first tubular component while enclosing the outer conductor.
DE 697 01 065 T2 describes a connector device for electrically connecting the shielded layer of a shielded cable. An inner tubular component is guided under the laid open shielded layer and an outer tubular component. The outer tubular component is appended to the outside of the shielded layer. The tubular components can be connected to one another by sealing or locking means with the shielded layer being fastened between them. The design of the tubular components is relatively elaborate. It is unclear how the connector device as described might be used to fabricate an advantageously designed plug-in connector.
An object of the present invention is a plug-in connector that can be connected to a coaxial cable in a simple and cost-effective manner and which enables effective electrically screening of a plug contact to be carried out simply.
In carrying out the above object and other objects, the present invention provides a cable assembly. The cable assembly includes a coaxial cable and a plug-in connector. The coaxial cable has inner and outer conductors and an insulation layer between the conductors. The plug-in connector has first and second tubular components. The first tubular component is inserted between the insulation layer and the outer conductor at a free end section of the coaxial cable and the second tubular component is connected to the first tubular component and encloses the outer conductor whereby the plug-in connector is connected to the coaxial cable. The second tubular component forms a sleeve that opens toward the free end section of the coaxial cable.
Also, in carrying out the above object and other objects, the present invention provides a plug-in connector (e.g., a plug-and-socket connector) for connecting to a coaxial cable having inner and outer conductors and an insulation layer between the conductors. The connector includes a first tubular component and a second tubular component. The first tubular component is insertable between the insulation layer and the outer conductor at a free end section of the coaxial cable and the second tubular component is connected to the first tubular component while being encloseable over the outer conductor whereby the connector is connectable to the coaxial cable. The second tubular component forms a sleeve. The sleeve opens toward the free end section of the coaxial cable when the connector is connected to the coaxial cable.
Embodiments of the present invention are directed to a plug-in connector (e.g., a plug-and-socket connector) that can be connected to a coaxial cable. The coaxial cable includes an inner conductor, a braided outer conductor, and an insulation layer between the conductors. The coaxial cable further includes an outer protective sheath which encloses the outer conductor. The plug-in connector includes a first tubular component and a second tubular component. At a free end section of the coaxial cable, the first tubular component is inserted between the insulation layer and the outer conductor of the coaxial cable. The second tubular component is connected to the first tubular component in a form-closed manner so as to enclose the outer conductor. As such, the first and second tubular components sandwich the outer conductor where the tubular components are connected together. The second tubular component forms a sleeve that opens toward the free end section of the cable. The tubular components are connected together and sandwich the outer conductor up to the point where the sleeve of the second tubular component begins to form.
In accordance with embodiments of the present invention, the second tubular component forms a sleeve that is open toward the free end section of the coaxial cable. The sleeve extends up to the point over the region on which a plug contact is connected to the inner conductor of the coaxial cable. In an embodiment of the present invention, the sleeve covers the entire length of the plug contact. As the sleeve is electrically connected to the outer conductor of the coaxial cable, and thus lies at the screening potential, the sleeve optimally electrically screens the plug contact from all sides up to the free side remaining for inserting the mating plug.
In an embodiment of the present invention, instead of the sleeve extending over the entire plug contact, a shielding plate matched to the shape of the sleeve is provided. The shielding plate is custom fitted and surrounds the push-on sleeve contact to thereby protect against incoming and outgoing electromagnetic radiation.
In an embodiment of the present invention, an insulating chamber insert surrounds the plug contact. The chamber insert insulates the plug contact electrically from the sleeve. The chamber insert can be formed as a sleeve-shaped plastic unit. The chamber insert can be inserted as a custom fit element into the sleeve or the shielding plate.
In an embodiment of the present invention, the first tubular component has a groove around its circumference and the second tubular component has a bead around its circumference. The bead projects radially inwardly. The bead catches in the groove when the tubular components are brought together whereby the tubular components are rigidly connected to one another. The latching connection formed in this manner is simple and cost effective from a structural point of view.
In an embodiment of the present invention, the sleeve of the second tubular component has a bead. The bead is formed in the sleeve after the tubular components are brought together. The bead penetrates into the groove of the first tubular component such that the tubular components are connected together with a form-fit connection. The outer conductor of the coaxial cable is stretched tightly between the tubular components upon the tubular components being brought together such that a good electrical connection is made to both tubular components.
In an embodiment of the present invention, the first tubular component has a slot formed in the longitudinal direction. The slot enables the first tubular component to be compressed radially inwardly during insertion into the second tubular component. As a result, insertion of the first tubular component into the second tubular component is simplified and the first tubular component is well contained inside the second tubular component as the first tubular component is under spring tension. The elastic latching action concurrently enables a matching of tolerances comparable to the dimensions of the tubular components. It also enables the first tubular component to be pressed together a bit in the radial direction whereby the inner conductor of the coaxial cable is tightly clamped and the first tubular component is securely connected to the coaxial cable. This enables additional mechanical stress relief of the coaxial cable to be eliminated.
The above features, and other features and advantages of the present invention are readily apparent from the following detailed description thereof when taken in connection with the accompanying drawings.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the present invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to
Coaxial cable 1 includes an inner electrical conductor 2 and an outer electrical conductor 3. Inner and outer conductors 2 and 3 run along the length of coaxial cable 1 and are radially separated from one another. Outer conductor 3 is a braided metal. Coaxial cable 1 further includes an insulation layer 4. Insulation layer 4 runs between conductors 2 and 3 along the length of coaxial cable 1. Coaxial cable 1 further includes an outer protective sheath 5. Protective sheath 5 encloses outer conductor 3, and thereby also encloses inner conductor 2 and insulation layer 4, over the length of coaxial cable 1.
The plug-in connector includes a first tubular component 6 and a second tubular component 7. As shown, for example in
Inner conductor 2 of coaxial cable 1 is configured to be connected with a plug contact. As shown in
Insulation layer 4 encloses inner conductor 2 up to the section of crimped connection 15 between inner conductor 2 and plug contact 9. Protective sheath 5 extends along the length of coaxial cable 1 up to where tubular components 6 and 7 are connected to one another at the free end section of coaxial cable 1. Outer conductor 3 extends further then protective sheath 5 toward the free end section of coaxial cable 1 and past where tubular components 6 and 7 are connected to one another. This extended portion of outer conductor 3 is stretched between tubular components 6 and 7. As the plug-in connector may be used as a high-capacity plug-in connector that can carry high electrical voltages and/or currents, inner conductor 2 has a relatively large cross-sectional area.
First tubular component 6 includes a groove 11. Groove 11 is formed circumferentially along the outer edge of first tubular component 6. Second tubular component 7 includes a corresponding bead 10. Bead 10 is formed around the circumference of second tubular component 7 and projects radially inwardly. Bead 10 catches and engages in groove 11 in a latching manner when tubular components 6 and 7 are brought together. As a result of the engagement between bead 10 and groove 11, tubular components 6 and 7 are rigidly connected to one another.
First tubular component 6 further includes a slot 12. Slot 12 runs longitudinally along the length of first tubular component 6 as shown, for example, in
Assembly steps for connecting the components of the plug-in connector to coaxial cable 1 are shown in
Second tubular component 7 is shoved over first tubular component 6 in the final state of the cable assembly. Tubular components 6 and 7 latch with one another and concurrently produce the electrical connection between second tubular component 7 and outer conductor 3 as second tubular component 7 is shoved over first tubular component 6. A mechanically stable connection between the plug-in connector and coaxial cable 1 and electrical screening up to the connection region of plug contact 9 and inner conductor 2 are thereby achieved.
With reference to
Shielding plate 13 has elastically formed contact sections 16. Contact sections 16 produce a relatively strong electrical and mechanical connection with sleeve 8. An insulating chamber insert (not shown) having a shape similar to screening shield 13 can be inserted into the hollow space inside shielding plate 13 to electrically insulate plug contact 9 from shielding plate 13.
In
Referring now to
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 016 227 | Apr 2009 | DE | national |
This application is a continuation of International Application No. PCT/EP2010/054230, published in German, with an international filing date of Mar. 30, 2010, which claims priority to DE 10 2009 016 227.5, filed Apr. 3, 2009; the disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4131332 | Hogendobler et al. | Dec 1978 | A |
4377320 | Lathrop et al. | Mar 1983 | A |
4412717 | Monroe | Nov 1983 | A |
4619496 | Forney, Jr. et al. | Oct 1986 | A |
4645288 | Stursa | Feb 1987 | A |
4813887 | Capp | Mar 1989 | A |
5098314 | Castagna et al. | Mar 1992 | A |
5454736 | Chou | Oct 1995 | A |
5962812 | Miyazaki | Oct 1999 | A |
5965847 | Tanaka et al. | Oct 1999 | A |
6015315 | Ensign et al. | Jan 2000 | A |
6530789 | Konda | Mar 2003 | B2 |
7500865 | Natter et al. | Mar 2009 | B2 |
7598455 | Gump et al. | Oct 2009 | B2 |
20010053633 | Konda | Dec 2001 | A1 |
20080214049 | Gump et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
69701065 | Sep 2000 | DE |
102004024792 | Dec 2005 | DE |
102006059496 | Jun 2008 | DE |
102007009562 | Sep 2008 | DE |
0841718 | May 1998 | EP |
0993075 | Apr 2000 | EP |
1168506 | Jan 2002 | EP |
1965465 | Sep 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20120077376 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/054230 | Mar 2010 | US |
Child | 13251378 | US |