Plug-in syringe stand

Abstract
A stand for use with a syringe having a feature, the stand having a base portion, and a top portion. The top portion has an aperture formed therein, the aperture being structured to engage a feature of the syringe. The top portion is positioned relative to the base portion such that the syringe is maintained in an upright position when the feature of the syringe is engaged within the aperture.
Description
BACKGROUND OF THE INVENTION

Many orthopedic procedures require the use of any one of various types of bone cement compositions. Such compositions aid both in the setting of bone and in securing implants or other devices to bone during orthopedic procedures. Advances in bone cement compositions have led to rapid setting bone cement compositions, which are advantageous because they shorten the time required both for surgery and the time needed for recovery after surgery. Some forms of bone cement compositions are heat-activated. Heat-activated bone cement compositions are caused to set into solid form by exposure to a heat source. Particularly, heat activated bone cement compositions are ideal because they set in response to body heat provided by the host into which they are deposited. Furthermore, some procedures require that such compositions are injected using a syringe.


Certain problems arise when preparing to inject a bone cement composition into a host using a syringe. Particularly, problems arise when attempting to transfer the cement composition from a mixing apparatus into the syringe. Various solutions have been proposed to solve this problem, which may require the use of complicated pumps and tubes to mix or transfer the cement composition. Furthermore, no apparatus has been proposed which allows a user to transfer the cement composition into the syringe without holding the syringe. This presents a problem, in particular, with use of a heat-activated bone cement composition, because the heat from a user's hand will raise the temperature of the syringe and cause the bone cement composition therein to set, becoming a solid mass contained within the syringe that is no longer useable. Therefore, it is ideal to provide an apparatus that aids in the transfer of the bone cement composition into the syringe without requiring the user thereof to physically hold the syringe.


SUMMARY OF THE INVENTION

The present invention relates to a stand for use with a syringe having a feature, the stand having a base portion, and a top portion. The top portion has an aperture formed therein, the aperture being structured to engage a feature of the syringe. The top portion is positioned relative to the base portion such that the syringe is maintained in an upright position when the feature of the syringe is engaged within the aperture. In order to better engage the feature of the syringe, a preferred embodiment of the aperture includes a series of projections and recesses configured to form a pressure-fit with the feature.


A particular embodiment of the present invention includes a stand for use with a syringe having a barrel and a nozzle, the stand having a base portion, and a top portion. The top portion has an aperture formed therein, the aperture being structured to engage the nozzle of the syringe. The top portion is positioned relative to said base portion such that the syringe is maintained in an upright position when the nozzle of the syringe is engaged within said aperture.


An alternative embodiment of the present invention includes a stand for use with a syringe having a plunger with a proximal end, the stand having a base portion, and a top portion. The top portion has an aperture formed therein, the aperture being structured to engage the proximal end of the plunger of the syringe. The top portion is positioned relative to the base portion such that the syringe is maintained in an upright position when the proximal end is engaged within the aperture.


In a further embodiment of the present invention, a stand according to one embodiment of the present invention further includes a package portion affixed to the stand at the base thereof. The package portion includes a compartment, preferably in the form of snap channel, wherein the compartment is adapted to hold the syringe within the package in a substantially horizontal position, particularly during shipping and storage of the syringe within the package. This embodiment can further include additional compartments within package portion for other components that are relevant to bone cement preparation such as containers for bone cement ingredients, mixing devices and attachments for the syringe.


The present invention also includes a method of preparing a syringe to deliver a material, the method including the steps of: providing a syringe, providing a stand having an aperture capable of engaging a feature of the syringe, wherein the stand is capable of maintaining the syringe in an upright position; inserting the feature of the syringe within the aperture such that the syringe is maintained in an upright position; and depositing an amount of a material into the syringe.


The present invention also includes a kit having therein a syringe, components used in forming an injectable bone cement composition, and a container used in mixing the bone cement components. The kit of the present invention can further include a stand including a base portion and a top portion. The top portion of the stand has an aperture formed therein, the aperture being structured to engage a feature of the syringe. The top portion is positioned relative to the base portion such that the syringe is maintained in an upright position when the feature of the syringe is engaged within the aperture. The stand can further include a package portion for containing the other components for the kit. In a further embodiment, the kit includes a desiccant to prevent aging of the components used in forming the bone cement composition, particularly those which may be in the form of a powder, and more particularly, those powders which may be more susceptible than others to moisture.


The present invention further includes a syringe for use with a stand, the syringe having a barrel, a nozzle, a plunger. The barrel is divided into a proximal portion and a distal portion, the proximal portion and distal portions being separable to provide an opening into the barrel of the syringe.




BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood on reading the following detailed description of nonlimiting embodiments thereof, and on examining the accompanying drawings, in which:



FIG. 1 is a perspective view of the device according to an embodiment of the present invention;



FIG. 2 is a perspective view of the device according to an embodiment of the present invention;



FIG. 3 is a perspective view of the device according to an embodiment of the present invention;



FIG. 4 is a perspective view of the device according to an embodiment of the present invention;



FIG. 5 is a top view of the device according to an embodiment of the present invention;



FIG. 6 is a perspective view of the device according to an embodiment of the present invention.




DETAILED DESCRIPTION

In describing the preferred embodiments of the subject matter illustrated and to be described with respect to the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.


Referring to the drawings, wherein like reference numerals represent like elements, there is shown in FIG. 1, in accordance with one embodiment of the present invention, a syringe stand designated generally by reference numeral 10. In a preferred embodiment, stand 10 includes base portion 12 and top portion 14. Although the shape of base 12 as shown in FIG. 1 is substantially rectangular, base 12 does not require the use of any particular shape; however, base 12 should be structured to allow stand 10 to stably rest on a surface while in use. As shown in FIG. 2, base 12 can include a flat bottom portion 24 that is sufficiently wide enough to stably support syringe 30 during use. Preferably, the flat bottom portion 24 includes a flange 26 formed thereon. In a further preferred embodiment, shown in FIG. 4-6, stand 10 includes a package portion 70 that is preferably attached to base 12. The package portion is useful for transporting and storing with syringe 30, other tools or materials that are used in connection with syringe 30.


Stand 10 is preferably made of plastic or any other suitable polymeric material such as polyethylene, and is preferably transparent. The thickness and composition of the material used to form stand 10 should result in stand 10 being flexible. Preferably, stand 10 is formed by vacuum molding or other similar methods. Preferably, stand 10 is in the form of a blister pack such that it is formed from a thin, unitary piece of material that is molded to form the three-dimensional shape of stand 30. This results in the stand 10 having a generally hollow inside portion (not shown). The material comprising stand 10 should be thin enough to be flexible, but should be thick enough to be rigid such that it securely engages an appropriate feature of syringe 30. Such a feature can include barrel 32, including any section thereof, or handles 50, which are affixed to barrel 32, but will preferably include nozzle 34 or proximal end 46 of plunger 44.


In one embodiment of the invention, top portion 14 of stand 10 is generally planar, except for aperture 16 formed therein. Aperture 16 is structured and dimensioned to receive nozzle 34 of syringe 30 and can take a variety of shapes from circular to more complicated geometric designs. Generally, the dimension of aperture 16 should be such that it forms a pressure fit with nozzle 34. For example, if aperture 16 is substantially circular, aperture 16 can also be circular, having a diameter that is slightly less than that of nozzle 34.


The pressure fit formed between aperture 16 and nozzle 34 should be sufficient to hold syringe 30 in an upright position when inserted in the stand. For purposes of this invention, upright is not limited to a completely vertical position (i.e., orthogonal to the surface on which stand 10 rests), but includes any orientation of syringe 30 wherein opening 40 through which the injectable material 80 is deposited into syringe 30 has an elevation that is vertically greater than that of the portion of syringe 30 which is inserted into the stand.


Syringe 30 can vary in size, depending on the application for which it is designed. Accordingly, aperture 16 will be dimensioned to fit a specific one of these various sizes. Ideally, syringe 30 will be packaged with stand 10 having an aperture 16 of an appropriate size to match that of nozzle 34 of syringe 30. In a preferred embodiment, stand 10 is integrally formed with part of packaging 70 for syringe 30.


In a preferred embodiment, aperture 16 has a bottom portion 22 that is positioned below top portion 14 at a distance such that shoulder section 38 of syringe 30 contacts top portion 14 and port 36 of nozzle 34 contacts bottom surface 22 of aperture 16. Such an arrangement will prevent the material that is placed within syringe 30 from leaking out of nozzle 34 while syringe 30 is held upright within stand 10.


As shown in FIG. 5, a preferred embodiment of stand 10 includes an aperture 16 having a shape that forms a series of projections 18 and accompanying recesses 20. Any number of projections 18 and recesses 20 can be used in the shape of aperture 16, but preferably aperture 16 has at least three projections 18 and three recesses 26. In such an arrangement, projections 18 make contact with nozzle 34, while recesses 20 are spaced apart therefrom. Projections 18 are dimensioned to form a pressure fit with nozzle 34. In one embodiment, aperture 16 has one projection 18 and one recess 20, wherein nozzle 34 makes contact with a portion of recess 20 and with projection 18. In a preferred embodiment, aperture 16 is tapered, having a greater diameter toward the top portion 14 than toward the bottom 22 thereof.


Referring now to FIG. 3, in an alternative embodiment of the present invention, aperture 116 is adapted to engage the proximal end 146 of plunger 144. Plunger 144 is of the type normally used in connection with a syringe. Specifically, plunger 144 is cylindrical in shape and is dimensioned to fit within the open end 140 of syringe 130. Plunger 144 typically includes tip 148 which effects a seal between the inside of the barrel 132 of syringe 130. The seal between tip 148 and barrel 132 is preferably impervious to fluid. Furthermore, the seal formed between tip 148 and barrel 132 provides a friction force therebetween, which is sufficient to support the weight of barrel 132 when syringe 130 is secured in stand 110. Such an arrangement eliminates the need present in other embodiments of stand 10 to structure aperture 16 to form a seal over the open end of nozzle 34. Furthermore, the present embodiment facilitates the removal of air pockets or bubbles that may be present in the injectable composition when it is transferred into syringe 130.


Proximal end 146 of plunger 144 varies in shape among differing plunger designs, but will typically form a surface that is larger in area than plunger rod 145. Aperture 116 can be adapted to receive any feature which may be present on the proximal end 146 of plunger 144. Aperture 116 can be of any shape that will provide a pressure-fit sufficient to engage proximal end 146 to maintain the syringe in an upright position. In its most simple form, aperture 116 will have a profile along a horizontal plane therethrough that substantially matches the profile of proximal end 146 when intersected by the same plane. Preferably, aperture 116 is tapered such that it is wider near the top surface 114 than at the bottom 122 of the aperture 116. This arrangement aids in inserting proximal end 146 into the aperture 116.


In a preferred embodiment, aperture 116 includes a series of projections 118 and recesses 120 designed to contact proximal end 146 at a predetermined number of points. Although any number of projections 118 and recesses 120 may be employed in such a design, it is preferable that the aperture has four projections and four recesses. The overall size of aperture 116, as well as the projections 118 and recesses 120 will vary in accordance with the shape of proximal end 146 in a manner that can be determined by those having reasonable skill in the art.


Syringe 130 of the type depicted in FIG. 3 is particularly advantageous for use with a stand of the present embodiment and, perhaps, for other purposes. This variation of syringe 130 has a two-part barrel construction, wherein barrel 132 is divided into proximal and distal portions 132a, 132b. Distal portion 132b of barrel 132 includes nozzle 134, and proximal portion 132a includes open end 140 and handles 150. Proximal and distal portions 132a, 132b of barrel 132 are designed for mutual engagement therebetween and preferably include a mechanism, such as a thread-fit, pressure-fit or snap fit, to secure the engagement between the two portions 132a, 132b. As shown in FIG. 3, this mechanism preferably includes mating threaded sections 133a, 133b, one on each of proximal portion 132a and distal portion 132b. Preferably, the male portion 133a of the threaded section 133 is included on proximal portion 132a of barrel 132, and female threaded portion 133b is included on distal portion 132b.


This variation of syringe 130 operates with stand 110 by providing a sufficiently wide opening 152 to deposit the injectable substance 88 into barrel 132. In operation, proximal end 146 of plunger 144 is inserted into aperture 116 of stand 110, the distal portion 132b of barrel 132 having been removed from the proximal portion 132a. Tip 148 of plunger 144 is positioned sufficiently near the opening end 140 to allow syringe 130 to contain the desired amount of injectable substance 88. The position of tip 148 within barrel 132 is maintained by the friction between tip 148 and the interior of barrel 132. The injectable substance 88 is then prepared and deposited into the syringe through opening 152. Then, distal portion 132b of barrel 132 is re-assembled onto proximal portion 132a of barrel 132 and syringe 130 is used in a typical fashion.


It is preferable that proximal portion 132a of barrel 132 represents a greater portion of the entire barrel 132 than does distal portion 132b; but the barrel may be divided anywhere, depending on the purpose for which it is divided. For filling the proximal portion 132a, the distal portion 132b need only be large enough as necessary to support nozzle 134. This arrangement allows the interior of barrel 132 to be filled with as much of injectable substance 88 as possible before distal portion 132b is re-assembled onto proximal portion 132b. This arrangement is also advantageous for a kit having several choices of different nozzle assemblies that can be fit onto the proximal portion 132a. Preferably, such different nozzles could be differently sized for different applications and a surgeon could choose a nozzle intraoperatively. Most preferably, when connecting the portions 132a and 132b opening 152 abuts the inside surface of shoulder section 138 of distal portion 132b when distal portion 132b is engaged onto proximal portion 132a.


In an alternative form of the invention, a recess can be provided in the package which is larger than the feature of the syringe to be held therein (whether it be the nozzle or the proximal plunger portion), as well as deeper so that the syringe can be placed in such large and deep recess and so held in an upright position.


Referring now to FIGS. 4-6, in a preferred embodiment of the present invention stand 10 is formed as part of package 70. Preferably package 70 is designed to carry syringe 30. More preferably, package 70 is one for a bone cement preparation kit. A kit according to this embodiment of the present invention is generally in the form of a blister pack in which stand 10 is connected to package 70 at base 12 of stand 10. Stand 10 can be located anywhere in package 70 but, for purposes of stability, is preferably located near the center of package 70. Package 70 has various compartments for the elements contained therein. Such elements include syringe 30 which is held within a snap channel 72 specifically designed to securely hold syringe 30 in a horizontal position within package 70. Preferably, package 70 also contains a compartment 74 designed to hold wet ingredient container 60, which is usually in the form of a second syringe. An additional compartment 76 is also preferably formed within package 70 and is dimensioned to securely hold a mixing spatula 62 therein. A fourth compartment 78 is preferably formed within package 70 such that it can hold a cannula 64 that is specifically adapted for attachment to nozzle 34 of syringe 30.


Additionally, mixing bowl 86 is preferably supplied with package 70. Mixing bowl 86 contains a dry ingredient which is part of a bone cement composition. Preferably, the wet ingredient is added to the dry ingredient in mixing bowl 86, and the two ingredients are mixed together using spatula 62 to form a bone cement composition.


As shown in FIG. 6, in a preferred embodiment of the current invention, package 70 is placed into an outer tray 82, which further helps to maintain the sterility of package 70 and the components held therein. A lid is then affixed to flange 84 of outer tray 82 to seal the components therein. Preferably, the lid is made from Tyvek™, or another material which serves the purpose of sealing the contents of package 70 so as to preserve the sterility and integrity of the ingredients. Although it is possible to supply mixing bowl 86 within package 70, having a corresponding compartment (not shown) formed therein, it is preferred that mixing bowl 86 is not included within package 70, but is otherwise supplied with package 70. Such an arrangement is shown in FIG. 6, wherein mixing bowl 86, having lid 87 affixed thereto, rests or is otherwise secured within a compartment formed in inner blister 71. Inner blister 71 is then placed in outer blister 83 and an outer lid.85 is affixed thereto. The assembled outer blister 83 and outer tray 82 are each sealed in their own outer pouch (not shown), which is preferably made of foil. Outer tray 82 and outer blister 83 are then inserted into a carton (not shown), which is typically made from cardboard or other similar material.


A desiccant is preferably included with mixing bowl 86, or any other container used to hold a dry ingredient of a bone cement composition used in connection with stand 10. The inclusion of a desiccant ensures that the storage environment of the powder is kept dry in order to prevent “aging” of the powder in the presence of free moisture, which would render the powder unusable. In the particular embodiment of the invention described with reference to FIG. 6, desiccant is included with mixing bowl 86 by placing a desiccant pack in outer blister 83 between outer blister 83 and inner blister 71. Preferably, a desiccant pack containing about 10 grams of color indicating silica gel is supplied, however other available desiccants include those made of clay and calcium chloride. The appropriate amount of desiccant varies with the particular application, the determination of which is generally understood in the art.


In certain applications of stand 10 including a package portion 70, it may be desired to provide package 70 without outer package 82. In such a case, package 70 includes an outer flange.80 to which a lid (not shown) is affixed.


A further aspect of the present invention includes a method for using stand as discussed above. In one such embodiment, stand 10 according to FIG. 2 is provided as well as a syringe 30. Stand 10 is placed on a surface and syringe 30 is inserted into the stand. Stand 10 has an aperture 16 that secures syringe 10 at nozzle 34. Stand 10 is designed to maintain syringe 30 in an upright position. The injectable substance 88 is then deposited into the barrel 32 of syringe 30. This material can be anything that is intended to be injected using syringe 30 but is preferably an injectable bone cement composition. Plunger 44 is then inserted into barrel 32 of syringe 30. Syringe 30 is then removed from stand 10.


In a further embodiment of the present invention, a stand as discussed with reference to FIG. 4 is provided. Stand 10 includes a package portion 70 that includes compartment 72 for holding syringe 30 in a horizontal position therein during shipment or storage of stand 10. Preferably, package 70 contains additional compartments used to store other devices or containers used in connection with stand 10. Preferably, outer tray 82 has a lid (not shown) affixed thereto at flange 84 thereof. Lid is first removed from flange 84 and syringe 30 is removed from snap channel 72, where it is contained. Plunger 44 is then removed from barrel 32 of syringe 30 by pulling plunger 44 out of said barrel 32. Plunger 44 is then set aside and syringe 30 is inserted into stand 10 in an upright position. According to one preferred embodiment discussed above, nozzle 34 of syringe 30 is inserted into aperture 16 of stand 10. In an alternative embodiment, proximal end 146 of plunger 144 is inserted into aperture 116, which is appropriately formed therein.


In a preferred embodiment of the present invention, spatula 62 is included in compartment 76, which is preferably in the form of a snap-channel, within package 70, and a container 60 for a liquid ingredient is held compartment 74 within package 70. Both spatula 62 and container 60 are removed from package 70 and set aside. Preferably, mixing bowl 86, which contains a dry ingredient for a bone cement composition, is provided. Mixing bowl 86 contains lid 87 affixed thereto, which is removed and discarded. The liquid ingredient in container 60 is then deposited into mixing bowl 86, and spatula 62 is used to thoroughly mix the wet ingredient with the dry ingredient to form a bone cement composition. Once a homogeneous mixture is achieved from mixing of the wet and dry ingredients, mixing bowl 86 is placed near an appropriate opening of syringe 30, which will vary by application. If the nozzle 34 of syringe is inserted into aperture 16, this opening will be open end 40. Alternatively, if proximal end 142 of plunger 144 is inserted into aperture 116, then the mixing bowl will be placed near opening 152. Mixing bowl 86 is then tilted such that injectable substance 88 flows into barrel 32 of syringe 30. If necessary, spatula 62 is used to aid in this process.


Once the desired amount of the injectable substance 88 is transferred into syringe 30, plunger 44 is reinserted into barrel 32. In the embodiment of the present invention discussed with reference to FIG. 1, plunger 44 is advanced into the barrel 32 until tip 48 of the plunger 44 contacts the upper surface of the injectable substance 88 contained within syringe 30. To aid in this process, plunger 44 may include an air-release port (not shown) that begins at a small orifice in tip 48 of plunger 44 and continues to proximal end 46 of the plunger 44. This arrangement allows for any air in the syringe 30 above the surface of the injectable substance 88 to escape from inside syringe 30 without forcing the injectable substance 88 from syringe 30 through nozzle 34.


In a preferred embodiment of the present invention, package 70 further contains a cannula 64 held compartment 78. In this embodiment, cannula 64 is removed from compartment 78 and then syringe 30 is removed from stand 10. Cannula 64 is then assembled onto nozzle 34 of syringe 30. Incorporation of male and female thread portions aids in such assembly. This method allows for fast, efficient loading of a syringe 30 with an injectable substance 88, that is preferably a rapid-setting bone cement composition. It also allows for more accurate filling of syringe 30 by a single user.


A stand according to the present invention is preferable regardless of whether or not the bone cement composition is heat-activated, because any fast setting bone cement composition must be quickly mixed and deposited into syringe 30 for injecting into a host before the bone cement composition sets. Furthermore, because bone cements and other additional materials are loaded from the top of the syringe, difficulty may be experienced by a single person attempting to fill syringe 30.


The syringe 30 referred to throughout can be of any type related to any field of use. In a preferred embodiment, syringe 30 relates to medical devices, and more particularly, to devices used in orthopedics, specifically delivery of rapid setting bone cement compositions. However, it is contemplated that variations of syringe 30, within other fields can be used in conjunction with the present invention.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims
  • 1. A stand for use with a syringe having a feature, comprising: a. a base portion; and b. a top portion; wherein the top portion has an aperture formed therein, the aperture being structured to engage a feature of the syringe, and wherein said top portion is positioned relative to said base portion such that the syringe is maintained in an upright position when the feature of the syringe is engaged within said aperture.
  • 2. The stand of claim 1, wherein the stand is made of a flexible material.
  • 3. The stand of claim 2, wherein the flexible material is plastic.
  • 4. The stand of claim 1, wherein the syringe includes a nozzle, and wherein the feature engaged within said aperture is the nozzle.
  • 5. The stand of claim 4, wherein said aperture is substantially circular along a horizontal cross section.
  • 6. The stand of claim 5, wherein said aperture is dimensioned such that it has a diameter that is smaller than a diameter of the nozzle, thereby forming a pressure fit therebetween.
  • 7. The stand of claim 6, wherein said aperture has a top portion and a bottom portion, the diameter of said aperture being greater at said top portion than at said bottom portion.
  • 8. The stand of claim 4, wherein the nozzle of the syringe has an open end portion, and wherein said aperture has a bottom that substantially covers the open end of the nozzle when the nozzle is engaged within said aperture.
  • 9. The stand of claim 4, wherein said aperture includes first, second, and third projections, each of the first, second, and third projections making at least one point of contact with the nozzle when the nozzle is disposed within said aperture.
  • 10. The stand of claim 9, wherein said aperture further includes first, second and third recess portions, the recess portion being spaced apart from the nozzle when the nozzle is disposed within said aperture.
  • 11. The stand of claim 1, wherein the syringe has a plunger having a proximal end, wherein the feature engaged within said aperture is the proximal end of the plunger.
  • 12. The stand of claim 11, wherein said aperture has a side wall having a profile along a horizontal plane, and wherein said profile substantially matches a profile of the proximal end of the plunger.
  • 13. The stand of claim 11, wherein said aperture further includes first and second projections, each of said first and second projections making at least one point of contact with the proximal portion when the proximal portion is disposed within said aperture.
  • 14. The stand of claim 1, wherein said base portion is structured for stable resting on a surface.
  • 15. The stand of claim 1 further comprising a package portion affixed to the stand at the base thereof; wherein the package portion includes a first compartment adapted for securing the syringe in a substantially horizontal position therein.
  • 16. The stand of claim 15, wherein the package portion further includes a second compartment for receiving a component therein.
  • 17. A stand for use with a syringe having a plunger with a proximal end, comprising: a. a base portion; and b. a top portion; wherein said top portion has an aperture formed therein, said aperture being structured to engage the proximal end of the plunger of the syringe, and wherein said top portion is positioned relative to said base portion such that the syringe is maintained in an upright position when the proximal end is engaged within said aperture.
  • 18. A method of preparing a syringe to deliver a material, comprising the steps of: a. providing a syringe; b. providing a stand having an aperture capable of engaging a feature of the syringe, wherein the stand is capable of maintaining the syringe in an upright position; c. inserting the feature of the syringe within the aperture such that the syringe is maintained in an upright position; and d. depositing an amount of a material into the syringe.
  • 19. The method of claim 18, wherein said feature of the syringe is a nozzle and wherein said step of inserting a portion of the syringe within the aperture includes inserting the nozzle of the syringe within said aperture.
  • 20. The method of claim 18, wherein the syringe includes a plunger having a proximal end and a distal end, said distal end being capable of insertion into a barrel of the syringe, and wherein said feature of the syringe is the proximal end of the plunger and wherein said step of inserting a feature of the syringe within the aperture includes inserting the proximal end of the plunger of the syringe within said aperture.
  • 21. The method of claim 20, wherein the barrel of the syringe has a proximal portion and a distal portion, said proximal and distal portions being removably affixed to each other, and wherein said method further includes the steps of removing the proximal portion of the syringe from the distal portion of the syringe and setting the proximal portion of the syringe aside, and wherein said steps are carried out prior to said step of depositing an amount of material into the syringe.
  • 22. The method of claim 18 wherein the material is a bone cement.
  • 23. The method of claim 22, wherein the bone cement is comprised of a first ingredient and a second ingredient, and wherein the method further comprises the step of mixing the first and second ingredients prior to depositing an amount of the bone cement into the syringe.
  • 24. The method of claim 18, wherein the stand further includes a package portion; wherein the package portion includes a first compartment adapted for securing the syringe therein in a horizontal position, and wherein the method further comprises the step of removing the syringe from the first compartment prior to inserting the nozzle within the aperture.
  • 25. The method of claim 24, wherein the package portion further comprises a second compartment adapted for securing a container therein, the container having a material therein, and wherein the method further comprises the step of removing the container from the second compartment prior to depositing the material into the syringe.
  • 26. The method of claim 25, wherein the material is a first ingredient, and wherein the method further includes the step of providing a container having a second ingredient enclosed therein.
  • 27. The method of claim 26, wherein the method further comprises the step of mixing the first ingredient with the second ingredient to form an injectable bone cement.
  • 28. The method of claim 27, wherein the second container is a mixing bowl and the method further comprises the step of depositing a portion of the first ingredient into the mixing bowl.
  • 29. The method of claim 28, wherein the mixing bowl further comprises a lid, and wherein the method further includes the step of removing the lid from the mixing bowl prior to depositing the first ingredient into the mixing bowl.
  • 30. The method of claim 27, wherein the package portion further includes a third compartment adapted for receiving a spatula therein, and wherein the step of mixing includes using the spatula.
  • 31. The method of claim 24, wherein the package portion has a second compartment adapted for receiving a cannula therein, the cannula and nozzle being adapted for mutual engagement therebetween; and wherein the method further includes removing the syringe from the aperture and assembling the cannula onto the nozzle.
  • 32. A kit comprising: a. a syringe; b. first and second components for use in forming an injectable bone cement composition; and c. a container used in mixing said first and second components.
  • 33. A syringe, comprising: a. a barrel; b. a nozzle; and c. a plunger; wherein said barrel is divided into a proximal portion and a distal portion, said proximal portion and distal portion being separable to provide an opening into the barrel of the syringe.