The invention relates to a plug-type connector according to the features of the preamble of claim 1.
Plug-type connectors having a housing made of plastic, the housing having at least one contact chamber in which a contact partner, in particular a socket contact, is situated that is inserted into the contact chamber and locked at least once, are known for applications in the automotive industry, for example. Such plug-type connectors, in particular multi-row plug-type connectors, are mass-produced in large quantities, which makes it necessary to electrically test the finished plug-type connector. In known plug-type connectors, illustrated for example in
It is also necessary to place the contact test probe in an adapter that is attached to the housing so that the contact test probe is in precise axial alignment with the position of the contact for the plug-type connector.
The object of the invention, therefore, is to provide a plug-type connector that avoids the previously described disadvantages. The primary aim in using such a plug-type connector is that the electrical function test can be performed easily, quickly, and reliably, and that the auxiliary means necessary for this purpose are economically manufacturable and durable.
This object is achieved by the features of claim 1.
According to the invention, the contact chamber in the housing has a test slot that receives a contact test probe, which for purposes of function testing of the plug-type connector may be inserted into the at least one contact chamber. The function testing may be carried out during the electrical testing for this type of plug-type connector as well. This ensures that the subsequent function of the plug-type connector, namely, the transmission of current or signals, occurs in a reliable manner so that, for example, poor electrical connections between the contact and the cable may be detected. In addition, the contact between the contact test probe and the contact is still made at the end face of the contact, and not in the contacting zone, thereby avoiding damage at that location during function testing. However, because of the test slot in the contact chamber in the housing according to the invention, it is no longer necessary for the contact test probe and the contact to be in precise axial alignment with one another (i.e. there is no need for the cross section of the contact in the plug-type connector to be completely covered by the cross section of the contact test probe). According to the invention, it impossible that the cross sections of the contact and the contact test probe only need to partially overlap, thereby allowing small contacting forces to be employed in the function testing during the electrical test. Furthermore, the greater allowable tolerances enable a more economical design for the adapter, since small tolerances are permissible for the adapter that accommodates the contact test probe and that for the function testing must be connected to the housing for the plug-type connector. In addition, the adapter tolerances are prevented from influencing the test results.
In one refinement of the invention, the test slot is situated on only one inner face in the contact chamber, on two inner faces in the contact chamber, and, in this case, preferably on two oppositely confronting inner faces in the contact chamber. This allows the contact test probe to have play inside the contact chamber during electrical function testing, thus enabling larger tolerances to be maintained.
In one refinement of the invention, a contact test probe is associated with a contact, the contact test probe being provided in an adapter that can be brought into working connection with the housing for function testing. This allows rapid function testing in which the adapter is brought into working connection with the housing for the plug-type connector (plugged in), the end face of the contact test probe pressing against the end face of the contact. This assembly may then be connected to an electrical test device to check, for example, whether in this case an electrical circuit is connected.
In one refinement of the invention, the plug-type connector has multiple contacts, in particular arranged in rows, for function testing each contact being brought into a working connection with a respective contact test probe. In other words, a number of contact test probes are present that correspond to the number of contacts in the plug-type connector in a row or in multiple parallel rows. This advantageously allows the electrical function of the particular plug-type connector to be quickly and reliably tested by use of a test adapter having correspondingly positioned contact test probes.
Embodiments of the invention are shown in
The correct position of the contact 4 inserted into the contact chamber 3 may be tested by means of a simple contact test probe 5 that is inserted through the test slot 6, to a limited depth in the axial direction, into the contact chamber 3 of the housing 2. The contact test probe 5 contacts the contact 4 in the testing window when the contact test probe has assumed the correct position within the contact chamber 3. If the contact 4 is not in the correct position within the contact chamber 3, the contact test probe 5 strikes the positioning surface in the test slot 6 and is no longer contacted. For a plug-type connector 1 according to
Although only socket contacts having a planar end face are illustrated as the contact 4 in the figures, plug contacts may also be used in the invention, to which end the contact test probe 5 must then be matched to the correspondingly shaped end face of the plug contact.
Number | Date | Country | Kind |
---|---|---|---|
102006018756.3 | Apr 2006 | DE | national |