Embodiments relate to techniques for computer operations. More particularly, embodiments relate to a pluggable architecture for performance of pricing operations.
In business operations, the generation of pricing is often a computationally intensive task. Each sales item of a large sales order or other pricing transaction may require a different pricing method, with each method requiring numerous processes.
In providing support for client pricing operations, a central pricing engine architecture can provide efficient and effective pricing operations for multiple clients without requiring the support of an internal pricing structure for each such client, thereby greatly benefiting client operations.
However, establishing or modifying the pricing for a particular client can require significant programming overhead for a pricing engine. A conventional pricing platform incorporates the pricing algorithm utilized to generate pricing within the pricing engine itself. As a result, the pricing platform needs to be programmed with each client's pricing operation, and needs to be modified when a pricing algorithm is added or modified for the client.
Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
In the following description, numerous specific details are set forth. However, embodiments may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
In some embodiments, an apparatus, system, or process is to provide for a pluggable architecture for performance of pricing operations. In contrast with a conventional pricing framework that incorporates a pricing algorithm for a client's pricing operation within the pricing engine (which may also be referred to herein as the host pricing engine or similar term), and thus must be modified when a pricing algorithm is added or modified, a pricing platform is implemented as a pluggable framework that enables incremental development of both internal pricing constructs as well as custom pricing constructs defined by partners, independent software vendors (ISVs), or customers (which may generally be referred to herein as clients). Pricing logic (referred to as a pricing method) is implemented as a plugin to the pricing engine that can be selected by the client.
In some embodiments, a host pricing engine has no knowledge regarding the pricing constructs that define the various pricing algorithms, allowing clients to define their own pricing constructs to suit their specific business needs without requiring modification of the pricing engine.
Further, the pricing framework both includes plugins for common use cases to be supported for multiple or all clients of the pricing engine (e.g., Standard Unit Price, Standard Term Price, or other standard pricing methods), and also allows customization of such standard plugins to enable certain clients, such as large enterprises, industry partners, and customers with special requirements to make modifications to the pricing methods as needed. Each pricing method includes one or more standard and/or custom pricing functions that can be modified or replaced. A custom pricing function may, for example, allow access to external proprietary data or processes. As used herein, “standard” refers to a method or function can be made available to multiple or all clients of a pricing system, while “custom” refers to a method or function that is generated for a particular client, and may, for example, utilize proprietary data or operations.
In some embodiments, a pricing platform includes the pluggable pricing engine supporting a pricing service. In this architecture, a pricing method defines the pricing for a particular sales item, with the pricing method plugging into the pricing platform. Each pricing method includes one or more pricing functions that define each operation that is performed in the pricing method.
Prior to any price calculations for a pricing request, the pricing engine is to validate the input parameters for the request, and has the option of pre-loading (for example, using cache storage) and validating any required pricing related data (which may include Product and PricebookEntry data, discount schedules, and other data.) In the price calculation for each sales item, each sales item is processed by first determining the appropriate pricing method from, such a determination based on the associated Product or PricebookEntry data or other similar data. Further, a context for calculating the sales item price is prepared and the appropriate pricing method (i.e., the pricing method plugin, such as illustrated in
In some embodiments, pricing methods for a pricing engine are implemented as plugins to the pricing engine. As used herein, pricing method is comprised of an ordered set of pricing functions that define the calculation of pricing for a sales item. A pricing function is a cohesive logical pricing operation that defines a single process within a pricing method. Once the sales items in a particular pricing request have been priced according to the respective pricing method for each such sales item, aggregate pricing may then be performed, with aggregate pricing including summarizing totals at a header level, etc., to complete the full pricing operation for the pricing request. The pricing results may then be reported to the appropriate client.
As used herein, “sales transaction” refers to any sales order or inquiry for one or more sales items, with each sales item including a certain quantity; “pricing plan” refers to calculations performed to generate pricing for the one or more sales item in a sales transaction; and “pricing flow” refers to the context for a particular pricing request.
The core platform 100 may include a public application programming interface (API) 110 for connection of multiple different types of clients that may generate operation requests, including requests to the pricing service 120. The pricing requests may include business to business (B2B) requests 140 and configure-price-quote (CPQ) requests 142 provided within the core platform 100, and partner or independent software vendor (ISV) requests 144 received from outside the core platform 100. Other types of pricing requests may also be received.
The pricing service 120 in particular includes a getPrice function 130 to determine pricing for one or more sales items in a sales transaction, the sales items being any combination of goods and services. In a basic operation, the getPrice function for a particular request includes initialization of the pricing operation 132, sales price calculation for each sales item of the request 134, and aggregation of the pricing calculations to generate a pricing output 136 to be provided to the client. In some embodiments, the sale item price calculation 134 includes resolving a pricing method for a sales item 150, wherein each sales item may utilize a different pricing method, and selecting and running the appropriate pricing method 154 for the sales item.
In some embodiments, the pricing architecture is a pluggable architecture in which multiple different pricing methods may be plugged for use in one or more sale transactions. The pricing method for a sales item may include a pricing method of one or more standard pricing methods provided by the pricing service, or a particular custom pricing method of one or more custom pricing methods for the client. In a particular example, the pricing methods available at particular point in time for a client utilizing the pricing service 120 are a Standard Unit Price method 160, a Standard Term Price method 162, or a custom pricing method 166. In some embodiments, the standard pricing methods 160 and 162 are available to multiple or all clients of the pricing service, and the custom pricing method 166 is available only to a particular client, wherein the custom pricing method 166 may include confidential and exclusive features established by or for the client. Any number of pricing methods may be available in a particular implementation. In some embodiments, pricing methods are plugged into the pricing service 120 without requiring modification or reprogramming of the pricing service 120, and such pricing methods may be replaced by other or different pricing methods as required for all clients or any particular client or clients.
As illustrated in
As further depicted in
As illustrated in
In the illustrated example, commencing with the list price, there are discount price reduction resulting in an invoice price; payment terms and consignment inventory price reductions resulting in the effective price; freight, expediting, and custom bar coding price reductions resulting in the net price; custom service and other price reductions resulting in the pocket price; and the cost of goods sold (COGS) resulting in the pocket margin. Many other pricing reductions and price points may be present in other examples.
As diagram in
Get List Price—Obtaining the List Price.
Calculate Invoice Price—Subtracting discounts from the List Price to generate the Invoice Price.
Calculate Effective Price—Subtracting payment terms and consignment inventory from the Invoice Price to generate the Effective Price.
Calculate Net Price—Subtracting freight, expediting, and custom barcoding from the Effective Price to generate the Net Price.
Calculate Pocket Price—Subtracting discounts from the List Price to generate the Invoice Price.
In the price waterfall diagram provided in
The process may continue with initialization of the pricing algorithm 616, and sales price calculation for each sales item in the pricing transaction 620. Commencing with a first sales item, a pricing method is resolved for the pricing method 624, wherein the pricing method may either a standard pricing method or a custom pricing method, as illustrated in
When there are no further sales items for processing in the sales transaction, the process may proceed to aggregation of the pricing results 640 and reporting of the aggregated pricing results to the client or other action relating to the aggregated pricing results 644.
The examples illustrating the use of technology disclosed herein should not be taken as limiting or preferred. The examples are intended to sufficiently illustrate the technology disclosed without being overly complicated and are not intended to illustrate all of the technologies disclosed. A person having ordinary skill in the art will appreciate that there are many potential applications for one or more implementations of this disclosure and hence, the implementations disclosed herein are not intended to limit this disclosure in any fashion.
One or more implementations may be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer readable medium such as a computer readable storage medium containing computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
Other implementations may include a non-transitory computer readable storage medium storing instructions executable by a processor to perform a method as described above. Yet another implementation may include a system including memory and one or more processors operable to execute instructions, stored in the memory, to perform a method as described above.
Implementations may include:
In some embodiments, one or more non-transitory computer-readable storage mediums having stored thereon executable computer program instructions that, when executed by one or more processors, cause the one or more processors to perform operations including installing a plurality of pricing methods at a pricing service, the pricing service including a pluggable architecture to accept the plurality of pricing methods, each pricing method of the plurality of pricing method including a set of pricing functions; receiving at the pricing service a pricing request from a first client for a sales transaction including one or more sales items, the pricing request including a pricing context for each of the one or more sales items; and performing a price calculation for the sales transaction, including resolving a pricing method for each sales item of the one or more sales items from the plurality of pricing methods, applying the set of pricing functions for the resolved pricing method for each sales item, wherein the application of the set of pricing functions is based at least in part on the pricing context for the sales item, calculating a price for each sales item based upon an outcome of the set of pricing functions, and aggregating the calculated prices for each of the one or more sales items.
In some embodiments, a system includes one or more processors for processing of data; an application programming interface (API) to receive pricing requests from one or more clients; and a pricing service, the pricing service including a pluggable architecture for installation of a plurality of pricing methods at a pricing service, each pricing method of the plurality of pricing method including a set of pricing functions, wherein, in response to receiving a pricing requests for a sales transaction from a first client, the sales transaction including one or more sales items and including a pricing context for each of the one or more sales items, the system is to perform a price calculation for each of the one or more sales items, including the system to resolve a pricing method for each sales item from the plurality of pricing methods, apply the set of pricing functions for the resolved pricing function for each sales item, wherein the application of the set of pricing functions is based at least in part on the pricing context for the sales item, calculate a price for each sales item based upon an outcome of the set of pricing functions, and aggregate the calculated prices for each of the one or more sales items.
In some embodiments, a method includes installing a plurality of pricing methods at a pricing service, the pricing service including a pluggable architecture to accept the plurality of pricing methods, each pricing method of the plurality of pricing method including a set of pricing functions; receiving at the pricing service a pricing request from a first client for a sales transaction including one or more sales items, the pricing request including a pricing context for each of the one or more sales items; resolving a pricing method for each sales item of the one or more sales items from the plurality of pricing methods; applying the set of pricing functions for the resolved pricing method for each sales item of the one or more sales items, wherein the application of the set of pricing functions is based at least in part on the pricing context for the sales item; calculating a price for each sales item based upon an outcome of the set of pricing functions for the resolved pricing method; and aggregating the calculated prices for each of the one or more sales items.
Environment 710 is an environment in which an on-demand database service exists. User system 712 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 712 can be a handheld computing device, a smart phone, a laptop or tablet computer, a work station, and/or a network of computing devices. As illustrated in herein
An on-demand database service, such as system 716, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 716” and “system 716” may be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 718 may be a framework that allows the applications of system 716 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 716 may include an application platform 718 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 712, or third-party application developers accessing the on-demand database service via user systems 712.
The users of user systems 712 may differ in their respective capacities, and the capacity of a particular user system 712 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 712 to interact with system 716, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 716, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 714 is any network or combination of networks of devices that communicate with one another. For example, network 714 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that one or more implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 712 might communicate with system 716 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 712 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 716. Such an HTTP server might be implemented as the sole network interface between system 716 and network 714, but other techniques might be used as well or instead. In some implementations, the interface between system 716 and network 714 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In one embodiment, system 716, shown in
One arrangement for elements of system 716 is shown in
Several elements in the system shown in
According to one embodiment, each user system 712 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Core series processor or the like. Similarly, system 716 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 717, which may include an Intel Core series processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 716 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk or solid state drive (SSD), but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™ JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 716 is configured to provide webpages, forms, applications, data and media content to user (client) systems 712 to support the access by user systems 712 as tenants of system 716. As such, system 716 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 712, network 714, system 716, tenant data storage 722, and system data storage 724 were discussed above in
Application platform 718 includes an application setup mechanism 838 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 722 by save routines 836 for execution by subscribers as one or more tenant process spaces 804 managed by tenant management process 810 for example. Invocations to such applications may be coded using PL/SOQL 834 that provides a programming language style interface extension to API 832. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned U.S. Pat. No. 7,730,478 entitled, “Method and System for Allowing Access to Developed Applicants via a Multi-Tenant Database On-Demand Database Service”, issued Jun. 1, 2010 to Craig Weissman, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 816 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 800 may be communicably coupled to database systems, e.g., having access to system data 725 and tenant data 723, via a different network connection. For example, one application server 8001 might be coupled via the network 714 (e.g., the Internet), another application server 800N-1 might be coupled via a direct network link, and another application server 800N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 800 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 800 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 800. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 BIG-IP load balancer) is communicably coupled between the application servers 800 and the user systems 712 to distribute requests to the application servers 800. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 800. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 800, and three requests from different users could hit the same application server 800. In this manner, system 716 is multi-tenant, wherein system 716 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 716 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 722). In an example of an MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 716 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 716 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 712 (which may be client systems) communicate with application servers 800 to request and update system-level and tenant-level data from system 716 that may require sending one or more queries to tenant data storage 722 and/or system data storage 724. System 716 (e.g., an application server 800 in system 716) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 724 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, with U.S. Pat. No. 7,779,039, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
Embodiments may be provided, for example, as a computer program product which may include one or more machine-readable media (including a non-transitory machine-readable or computer-readable storage medium) having stored thereon machine-executable instructions that, when executed by one or more machines such as a computer, network of computers, or other electronic devices, may result in the one or more machines carrying out operations in accordance with embodiments described herein. A machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs (Compact Disc-Read Only Memories), and magneto-optical disks, ROMs, RAMs, EPROMs (Erasable Programmable Read Only Memories), EEPROMs (Electrically Erasable Programmable Read Only Memories), magnetic tape, magnetic or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing machine-executable instructions.
Moreover, embodiments may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of one or more data signals embodied in and/or modulated by a carrier wave or other propagation medium via a communication link (e.g., a modem and/or network connection).
It is to be noted that terms like “node”, “computing node”, “server”, “server device”, “cloud computer”, “cloud server”, “cloud server computer”, “machine”, “host machine”, “device”, “computing device”, “computer”, “computing system”, and the like, may be used interchangeably throughout this document. It is to be further noted that terms like “application”, “software application”, “program”, “software program”, “package”, “software package”, and the like, may be used interchangeably throughout this document. Also, terms like “job”, “input”, “request”, “message”, and the like, may be used interchangeably throughout this document.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
While concepts been described in terms of several embodiments, those skilled in the art will recognize that embodiments not limited to the embodiments described but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6078854 | Breed | Jun 2000 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7584155 | Carter, III et al. | Sep 2009 | B1 |
7620655 | Larsson et al. | Nov 2009 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020152102 | Brodersen et al. | Oct 2002 | A1 |
20020161734 | Stauber et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachadran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030088545 | Subramaniam et al. | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030191743 | Brodersen et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040267674 | Feng | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050066058 | An | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20080255973 | Wade et al. | Oct 2008 | A1 |
20080275758 | Clayton | Nov 2008 | A1 |
20080312994 | Clayton | Dec 2008 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090248429 | Doenig | Oct 2009 | A1 |
20100223104 | Patel et al. | Sep 2010 | A1 |
20120078815 | Rossi | Mar 2012 | A1 |
20130304571 | Swinson | Nov 2013 | A1 |
20140067479 | Stacklin | Mar 2014 | A1 |
20140108093 | Yu | Apr 2014 | A1 |
20150012467 | Greystoke | Jan 2015 | A1 |
20180330324 | McCandless | Nov 2018 | A1 |
20190080394 | Wang | Mar 2019 | A1 |
20190122270 | Sustik | Apr 2019 | A1 |
20190266626 | Khosla | Aug 2019 | A1 |
20200089515 | Hari | Mar 2020 | A1 |
20200160242 | Johnson | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2285190 | Oct 1998 | CA |
WO-0135293 | May 2001 | WO |
2008115989 | Sep 2008 | WO |
2021149075 | Jul 2021 | WO |
Entry |
---|
“Plug-in Architectures”; Dec. 16, 2013; developer.apple.com; 6 pages. (Year: 2013). |
Obermiller et al. ,“Customized Pricing: Win Win or End Run?” Apr. 2012; Drake Management Review, vol. 1, Issue 2, 17 pages (Year: 2012). |
U.S. Appl. No. 16/779,340, filed Jan. 31, 2020. |
U.S. Appl. No. 16/779,378, filed Jan. 31, 2020. |
U.S. Appl. No. 16/779,381, filed Jan. 31, 2020. |
U.S. Appl. No. 16/779,383, filed Jan. 31, 2020. |
U.S. Appl. No. 16/910,436, filed Jun. 24, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/779,378 dated Jul. 9, 2021, 26 pages. |
Office Action (Non-Final Rejection) dated Feb. 24, 2022 for U.S. Appl. No. 16/779,383 (pp. 1-27). |
Office Action (Non-Final Rejection) dated May 25, 2022 for U.S. Appl. No. 16/779,340 (pp. 1-12). |
Office Action (Final Rejection) dated Dec. 16, 2022 for U.S. Appl. No. 16/779,340 (pp. 1-12). |
API, wikipedia, archives org webpages, Jun. 24, 2020 https://web.archive.org/web/20200624204020/https://en.wikipedia.org/wiki/Application_programming_interface (Year: 2020). |
Dewan et al, Adoption of Internet-Based Product Customization and Pricing Strategies. Journal of Management Information Systems. Aug. 30, 2000 17-2 9-28 https://dl.acm.org/doi/abs/10.5555/1289629.1289632 (Year: 2000). |
Non-Final Office Action for U.S. Appl. No. 16/910,436 dated Sep. 8, 2021, 31 pages. |
Number | Date | Country | |
---|---|---|---|
20210241329 A1 | Aug 2021 | US |