The present invention is directed to surge protection and more particularly to surge protective devices used in conjunction with an electrical load center.
Power distribution boxes, also commonly referred to as load centers, are used to provide electrical power to homes and other buildings from incoming electrical power lines. Power lines generally pass from an electric pole through a meter and are then received at the load center. At the load center, power flows through circuit breakers that direct power to individual circuits inside the home. An overcurrent situation is an event in which a particular circuit draws more current than a predetermined limit; in that case, the circuit breaker trips and disconnects the circuit from the power source.
In addition to overcurrent situations, voltage spikes and surges create overvoltage situations that are capable of damaging electrical equipment connected to the load center. Surge protectors are commonly used to protect against these situations. The surge protector responds to the overvoltage, discharging it to ground or neutral. Surge protectors are often used within a given circuit at a particular outlet to protect sensitive equipment such as televisions, computers and other electronics that are plugged into that outlet.
Surge protectors are also sometimes connected directly to the load center. While this arrangement can provide a greater level of protection in some circumstances, currently available surge protectors connected directly to the load center are unsatisfactory for a variety of reasons.
If the overvoltage surge energy exceeds the capacity of a surge protective device, it will be damaged and may need to be replaced. A particularly problematic drawback with current surge protectors connected to the load center is that these devices are consumer unfriendly and not only require a professional electrician for installation, but also to service and replace a spent surge protector.
These and other drawbacks are found in surge protectors that are currently available.
What is needed is a load center surge protection system that is more consumer friendly, so that after professional installation, subsequent replacement can be accomplished directly by the consumer.
According to an exemplary embodiment of the invention, a surge protection system is provided. The surge protection system includes a base that can be connected within a load center in much the same way as a circuit breaker. The system further includes a replaceable cartridge which houses the working components of the surge protector. The cartridge plugs into a receptacle formed in the base such that when the two are connected, unwanted power can flow through the surge protection system and be dissipated through one or more circuits.
In one embodiment, a surge protection system comprises a base configured to attach to a busbar of an electrical load center and be in electrical contact therewith, the base having a receptacle formed therein. The system also includes a cartridge containing a surge protection assembly having a surge protection element. The cartridge is configured to be received in the base receptacle such that the cartridge is in mechanical and electrical contact with the base. The cartridge is in electrical contact with the load center via the base such that a surge current passing through the load center flows through the surge protection element contained within the cartridge. The cartridge is removable from the base while the base remains in electrical contact with the load center.
In one embodiment, a pluggable surge protection cartridge comprises a housing; a surge protection assembly situated within the housing containing a surge protection element; and a plurality of cartridge contacts in electrical contact with the surge protection assembly. The cartridge contacts are configured to engage a base within an electrical load center and carry a surge current from the load center across an electrical path of the surge protection assembly through the surge protection element. The cartridge is configured to be situated within the base such that the cartridge is removable from the base while the base remains in electrical contact with the load center.
In another embodiment, a pluggable surge protection cartridge comprises a housing, a surge protection assembly situated within the housing, a plurality of cartridge contacts in electrical communication with the surge protection assembly, and a dielectric filler within the housing. In an embodiment, the surge protection assembly comprises a printed circuit board, a plurality of metal oxide varistors, a plurality of thermal fuses, and a plurality of wire filament fuses. In one embodiment, the varistors, thermal fuses and wire filament fuses are in electrical contact with the printed circuit board to form an electrical path in which current travels in multiple parallel paths across each of a thermal fuse, varistor and wire filament fuse in series. In some embodiments, the thermal fuses are supported by a thermal fuse carrier mounted on the printed circuit board such that the thermal fuses are retained in a predetermined position with respect to the printed circuit board. In some embodiments, the wire filament fuses each comprise a wire filament configured to consist of two straight leg portions connected by a smooth arc portion.
In certain embodiments, the cartridge contacts have a j-hook at one end to engage a corresponding base within an electrical load center and carry a surge current from the load center across the electrical path of the surge protection assembly. In some embodiments, the cartridge contacts further comprise a lance situate within the housing, the lance configured to resist movement of the cartridge contacts with respect to the housing.
In the event of an overvoltage situation where the voltage exceeds a pre-determined value associated with the surge protection system, a surge protection assembly within the cartridge according to exemplary embodiments of the invention is activated, preventing the overvoltage from reaching the electrical devices attached to the circuit(s) with which the surge protector is associated. A surge protector that has diverted more energy than it was designed for may be damaged and require replacement.
Unlike currently available surge protection devices installed at or near the load center, surge protection capability in accordance with exemplary embodiments can be restored by removing the spent cartridge from the base and replacing it with a new cartridge and can further be accomplished directly by the consumer without the need for an electrician.
Other features and advantages will be apparent from the following more detailed description of exemplary embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
a and 9b schematically and diagrammatically illustrate the electrical path of a surge protection assembly in accordance with an exemplary embodiment.
a and 16b illustrate a cartridge and base for use with a three phase surge protection system.
a and 22b illustrate a cartridge having a flip-up handle for use as an extraction feature in accordance with yet another exemplary embodiment.
Exemplary embodiments are directed to a pluggable surge protection system that can be connected to or within a load center, but which enables an individual without professional training, such as a consumer, to readily replace spent cartridges without the need to hire an electrician.
Turning to
The base 200 is sized and shaped to fit within one or more extra openings (depending on whether the pluggable surge protection system 50 is one phase, two phase, or three phase) within the load center 10. When the dead panel of the load center 10 is removed, the base 200 can be installed within the same footprint as a circuit breaker 20 and thus can be added to expansion slots alongside the circuit breakers 20 in a standard load center 10. From a consumer standpoint, the base 200 is essentially permanent upon installation by an electrician, residing behind the dead panel and hard wired to the load center 10. However, a receptacle 205 (
It will be appreciated that exemplary embodiments are shown and discussed herein with respect to American-style load centers constructed according to NEMA standards, although the principles of the invention are also applicable to other style load centers according to other types of standards and/or other equipment practices, including those employing a DIN rail.
As also shown in
Turning to
The base contacts 220 may be designed to employ a spring clip on the power side that engages a busbar stab (not shown) on the load center in a conventional manner as currently used with circuit breakers. The base contacts 220 on the neutral side can be connected to the drain wire 240; the drain wire 240 in turn can be attached to a second busbar (not shown) within the load center. Accordingly, when the cartridge 100 is inserted within the base 200, there is a closed circuit from the power busbar in the load center 10 through the surge protection system 50 to the second busbar.
The base contacts 220 may also be designed to engage cartridge contacts 120 protruding from the cartridge 100 that electrically and mechanically connect the cartridge 100 to the load center 10, as subsequently discussed in greater detail. In certain embodiments, as illustrated, this may include apertures 230 (
It will be appreciated that in some embodiments, the base may be provided as a stand-alone unit external to the electrical load center 10 and connected to it via phase and neutral wires without a direct connection of the base to the power busbar. It will further be appreciated that while exemplary embodiments are primarily used in load centers that operate on alternating current, surge protection systems 50 may also be employed in circumstances that employ direct current such as inverters, including those sometimes used with alternative energy sources such as solar and wind generation.
The base 200 may be sized to fit any pitch within a particular load center 10. Typically the base is a 0.75 inch pitch or a 1 inch pitch, which correspond to the two current standard pitch sizes for circuit breakers according to NEMA standards. The base 200 may be constructed to have the same size receptacle 205 for each pitch, such that the cartridge size is independent of the pitch used in a particular load center. As a result, a single replacement cartridge can be used in conjunction with multiple base sizes. This may help alleviate the possibility of consumer confusion, since a replacement cartridge would be suitable regardless of the pitch used by the load center or the consumer's understanding or knowledge of that fact.
Other keying features, such as complementary guide ribs and associated channels formed in the base 200 and cartridge 100 respectively (or vice versa), for example, may also be used. These keying features may be useful for embodiments in which it is desired to achieve a predetermined orientation of the cartridge 100 in the base 200 by providing ribs at a single end of the cartridge 100 to be received by corresponding channels at a single end of the base 200. This may be useful to prevent tilting, twisting, or leaning of an incorrect cartridge in an incorrect base that can prevent the base and cartridge contacts from touching, as well as to help prevent binding or jamming when a cartridge is inserted into an incorrect corresponding base.
The cartridge 100 contains the electrical components that provide the surge protection functionality to the surge protection system 50. Turning to the exploded view of
Turning to
Any type of surge protection element 320 may be used that adequately provides for a desired level of surge protection to be achieved and the type selected may depend on the particular surge rating a cartridge 100 is designed to achieve. In one embodiment, the surge protection element is a varistor, typically a metal oxide varistor (MOV), which are well known for use in surge protection applications. Other surge protection elements that may be used include gas discharge tubes, silicon avalanche diodes, and spark gaps, all by way of example. The surge protection assembly 300 may also include one or more fuse elements attached to the PCB 310, and in some embodiments, the surge protection assembly 300 includes a combination of wire fuses 330 and thermal fuses 340 as fuse elements. The various elements of the surge protection assembly 300 may be attached to the PCB 310 by soldering, for example, such as by wave soldering or by other suitable methods.
a and 9b schematically and diagrammatically (respectively) illustrate the electrical path of a surge protection assembly 300 in accordance with one exemplary embodiment having four MOVs 320, four wire fuses 330 and two thermal fuses 340 in electrical contact with the PCB 310. It will be appreciated that the size of the tracings 350 on the PCB 310 in the schematic of
Still referring to
a and 9b further illustrate the manner in which a resistor 360 (“Res.” in
The type, number and size of particular elements incorporated into the surge protection assembly 300 may depend on the system operating voltage and the overall surge protection rating desired to be achieved for the surge protection system 50. The exemplary embodiment illustrated in
Although the components are shown in a particular topographical configuration in
It has been determined that the use of wire filament fuses 330 that do not have right angles or other sharp bends can better handle a surge current. Without wishing to be bound by theory, it is believed that wire filament fuses undergo strain hardening at tight bends and further that the magnetic moment of a surge current passing through such bends can cause premature failure of those fuses and diminished surge performance. The forces exerted on a wire filament fuse can be a function of both the magnitude of the surge current and the tightness of the bend.
In some embodiments a dielectric stop 335, such as a strip of polyimide tape (e.g. KAPTON tape), may be provided. The dielectric stop 335 can serve the dual purpose of defining and retaining the smooth curvature of the filament fuse 330, as well as establishing the depth to which the wire filament fuse 330 extends into the PCB 310 so that all of the wire filament fuses 330 are of an identical length.
As shown in
As previously discussed, cartridges 100 in accordance with exemplary embodiments may contain multiple surge protection assemblies 300. The elements of the surge protection assembly 300 may be arranged so that two assemblies 300 can be nested, as seen in
Turning to
It will be appreciated that two and three phase surge protection systems 50 can also be constructed by ganging together multiple single phase bases. For example, a two phase surge protection system may be provided by two single phase cartridges 100 each inserted into two ganged single phase bases 200. The bases 200 can be joined, again by way of example, by a rivet 115 extending between them as shown in the exemplary embodiment illustrated in
Regardless of whether the cartridge 100 contains one or multiple surge protection assemblies 300, extra space remaining within the volume of the cartridge housing 110 after placement of the surge protection assembly (or assemblies) may be filled with a dielectric filler to displace air such as, for example, electrical grade silica. This reduces the volume of oxygen contained within the cartridge and reduces the likelihood of combustion during a significant overvoltage condition. The silica also acts to smother arcs and flame events as they occur, adds thermal mass to the cartridge 100, and acts as a heat sink during thermal events. An epoxy potting material or other dielectric filler may also be used alone or in combination with the silica to fill and/or seal the cartridge housing. The potting material may, for example, be used to secure the base cap 130 to the housing 110.
In some embodiments, as seen in
In addition to the remote monitoring device 55,
As shown in
According to yet another embodiment, shown in
a and 22b illustrate a variation of the flip-up handle 185 in which a cam 187 is attached to, and actuated by, the handle 185. The cam 187 presses on the base 200 as the handle 185 pivots to the extended position. This results in a slight movement of the cartridge 100 away from the base 200 which is sufficient to partially or fully disengage the cartridge contacts from the base contacts. This lessens the resistance force during pulling, further easing extraction of the cartridge 100 from the base 200. Alternatively, a latch may be provided so that when the cartridge 100 is inserted into the base 200, the handle 185 activates a latch that closes to retain the cartridge 100 in position as the handle 185 is rotated to its lowered (i.e., flat) position. When the handle 185 is rotated back to its operative (i.e., extended) position, the latch is released and the cartridge 100 can be withdrawn.
While the foregoing specification illustrates and describes exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims priority to U.S. Provisional Application No. 61/441,438, filed Feb. 10, 2011, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61441438 | Feb 2011 | US |