Plugged tip delivery tube for marker placement

Information

  • Patent Grant
  • 8784433
  • Patent Number
    8,784,433
  • Date Filed
    Friday, April 27, 2012
    12 years ago
  • Date Issued
    Tuesday, July 22, 2014
    10 years ago
Abstract
An intracorporeal marker delivery device includes a delivery tube which has a distal tip, a discharge orifice and an inner bore extending to the discharge orifice. A plug is releasably secured within the inner bore. The plug may itself serve as a marker, and may be the sole marker. Markers may be positioned proximal to the plug, and may be detectable by ultrasound, X-ray, magnetic resonance imaging, and other imaging devices, and may include bioactive elements.
Description
FIELD OF THE INVENTION

The invention is directed generally to devices and methods for delivering markers to a desired location within a patient's body. In particular, the invention is directed to devices, assemblies, and methods configured to retain a biological marker within a delivery device before delivery of the marker to a desired intracorporeal location.


BACKGROUND OF THE INVENTION

In diagnosing and treating certain medical conditions, it is often desirable to mark a suspicious body site for the subsequent taking of a biopsy, delivery of medicine, radiation, or other treatment, to mark a location from which a biopsy was taken, or at which some other procedure was performed. As is known, obtaining a tissue sample by biopsy and the subsequent examination are typically employed in the diagnosis of cancers and other malignant tumors, or to confirm that a suspected lesion or tumor is not malignant. The information obtained from these diagnostic tests and/or examinations is frequently used to devise a therapeutic plan for the appropriate surgical procedure or other course of treatment.


In many instances, the suspicious tissue to be sampled is located in a subcutaneous site, such as inside a human breast. To minimize surgical intrusion into patient's body, it is often desirable to insert a small instrument, such as a biopsy needle, into the body for extracting the biopsy specimen while imaging the procedure using fluoroscopy, ultrasonic imaging, x-rays, magnetic resonance imaging (MRI) or any other suitable form of imaging technique. Examination of tissue samples taken by biopsy is of particular significance in the diagnosis and treatment of breast cancer. In the ensuing discussion, the biopsy and treatment site described will generally be the human breast, although the invention is suitable for marking biopsy sites in other parts of the human and other mammalian body as well.


Periodic physical examination of the breasts and mammography are important for early detection of potentially cancerous lesions. In mammography, the breast is compressed between two plates while specialized x-ray images are taken. If an abnormal mass in the breast is found by physical examination or mammography, ultrasound may be used to determine whether the mass is a solid tumor or a fluid-filled cyst. Solid masses are usually subjected to some type of tissue biopsy to determine if the mass is cancerous.


If a solid mass or lesion is large enough to be palpable, a tissue specimen can be removed from the mass by a variety of techniques, including but not limited to open surgical biopsy, a technique known as Fine Needle Aspiration Biopsy (FNAB) and instruments characterized as “vacuum assisted large core biopsy devices”.


If a solid mass of the breast is small and non-palpable (e.g., the type typically discovered through mammography), a biopsy procedure known as stereotactic needle biopsy may be used. In performing a stereotactic needle biopsy of a breast, the patient lies on a special biopsy table with her breast compressed between the plates of a mammography apparatus and two separate x-rays or digital video views are taken from two different points of view. A computer calculates the exact position of the lesion as well as depth of the lesion within the breast. Thereafter, a mechanical stereotactic apparatus is programmed with the coordinates and depth information calculated by the computer, and such apparatus is used to precisely advance the biopsy needle into the small lesion. Depending on the type of biopsy needle(s) used, this stereotactic technique may be used to obtain cytologic specimens, e.g., obtained through FNAB or it may be used to obtain histologic specimens e.g., obtained through coring needle biopsy. Usually at least five separate biopsy specimens are obtained from locations around the small lesion as well as one from the center of the lesion.


The available treatment options for cancerous lesions of the breast include various degrees of mastectomy or lumpectomy and radiation therapy, as well as chemotherapy and combinations of these treatments. However, radiographically visible tissue features, originally observed in a mammogram, may be removed, altered or obscured by the biopsy procedure, and may heal or otherwise become altered following the biopsy. In order for the surgeon or radiation oncologist to direct surgical or radiation treatment to the precise location of the breast lesion several days or weeks after the biopsy procedure was performed, it is desirable that a biopsy site marker be placed in or on the patient's body to serve as a landmark for subsequent location of the lesion site. A biopsy site marker may be a permanent marker (e.g., a metal marker visible under X-ray examination), or a temporary marker (e.g., a bioresorbable marker detectable with ultrasound). While current radiographic type markers may persist at the biopsy site, an additional mammography generally must be performed at the time of follow up treatment or surgery in order to locate the site of the previous surgery or biopsy. In addition, once the site of the previous procedure is located using mammography, the site must usually be marked with a location wire which has a hook on the end which is advanced into site of the previous procedure. The hook is meant to fix the tip of the location wire with respect to the site of the previous procedure so that the patient can then be removed from the confinement of the mammography apparatus and the follow-up procedure performed. However, as the patient is removed from the mammography apparatus, or otherwise transported the position of the location wire can change or shift in relation to the site of the previous procedure. This, in turn, can result in follow-up treatments being misdirected to an undesired portion of the patient's tissue.


As an alternative or adjunct to radiographic imaging, ultrasonic imaging and visualization techniques (herein abbreviated as “USI”) can be used to image the tissue of interest at the site of interest during a surgical or biopsy procedure or follow-up procedure. USI is capable of providing precise location and imaging of suspicious tissue, surrounding tissue and biopsy instruments within the patient's body during a procedure. Such imaging facilitates accurate and controllable removal or sampling of the suspicious tissue so as to minimize trauma to surrounding healthy tissue.


For example, during a breast biopsy procedure, the biopsy device is often imaged with USI while the device is being inserted into the patient's breast and activated to remove a sample of suspicious breast tissue. As USI is often used to image tissue during follow-up treatment, it may be desirable to have a marker, similar to the radiographic markers discussed above, which can be placed in a patient's body at the site of a surgical procedure and which are visible using USI. Such a marker enables a follow-up procedure to be performed without the need for traditional radiographic mammography imaging which, as discussed above, can be subject to inaccuracies as a result of shifting of the location wire as well as being tedious and uncomfortable for the patient.


Placement of a marker or multiple markers at a location within a patient's body requires delivery devices capable of holding markers within the device until the device is properly situated within a breast or other body location. Accordingly, devices and methods for retaining markers within a marker delivery device while allowing their expulsion from the devices at desired intracorporeal locations are desired.


SUMMARY OF THE INVENTION

The invention provides devices and systems for delivery of markers to a site within a patient's body. Delivery systems embodying features of the invention include a marker delivery tube with a removable plug. Plugs embodying features of the invention are held within an orifice at the tip of the delivery tube, retaining markers within the delivery tube, until it is desired that the markers be ejected. The plug may then be ejected or removed from the orifice, allowing the delivery of the markers to a desired site within a patient's body. Plugs and delivery tubes embodying features of the invention may have retaining features, such as recesses or protuberances, configured to releasably retain a plug within a delivery tube until ejection of the plug from the delivery tube is desired. The retaining features are typically complementary pairs, such as a plug protuberance configured to fit into a recess in the delivery tube.


Assemblies embodying features of the invention include marker delivery devices having a delivery tube with an orifice at its distal tip, an inner bore leading to an orifice, and at least one marker (preferably more than one) within the bore of the delivery tube. A plug is disposed at least in part within the bore and orifice to prevent markers from prematurely passing through the orifice and to prevent tissue from entering the bore when the delivery tube is advanced through tissue. The plug may itself serve as a marker, and may be the sole marker, although typically the delivery tube contains a plug and at least one other marker. The plug is releasably secured within or adjacent to the orifice in order to retain a marker within the delivery tube bore proximate thereto but to allow passage of the marker out of the orifice when the plug is ejected from the orifice. The plug may partially or completely occlude the orifice, and is configured to retain the marker within the delivery tube before the marker is to be placed at a desired location within a patient's body, and to allow the marker to pass out of the orifice when delivery of the marker is desired. A movable plunger may be slidably disposed within the tube from an initial position accommodating the marker or markers and the plug within the tube, to a delivery position to push a marker against the plug to push the plug out of the orifice and to then eject one or more markers through the orifice.


The plug is preferably configured to be releasably retained within the delivery tube, and may be aligned in a preferred orientation within the delivery tube, to properly orient an inclined face within the orifice. A plug may be configured to fit tightly within a part of the bore of a delivery device so as to be retained by pressure; may have a portion configured to contact a slot, hole, notch, ridge, tab, lip, or other feature of a delivery tube; may be configured to be retained by a tab; may include an internal retention element, such as a coil, a spring, a clip, a loop, an arch, or a resilient core, that is configured to press an outer portion of a plug against a delivery tube wall or to contact a retaining feature such as a tab, slot, notch or hole; may be pressed against at least part of the bore of a delivery tube by an external retention element such as a pin, wedge, clip, spring, coil or other element applied to a plug; or by otherwise engaging a portion of a delivery tube effective to be releasably retained within a delivery tube.


The plug is preferably biocompatible, and may itself be a marker that is detectable within a patient's body visually, tactilely, by imaging (including ultrasound, radiographic, magnetic resonance, or other form of imaging), or is otherwise detectable. A plug may be a bio-resorbable temporary marker made up of bio-resorbable materials, or may be a permanent marker including non-bio-resorbable materials as well. A plug may also include bio-active materials (e.g., hemostatic materials, anesthetic materials, absorbent materials, antibiotic materials, antifungal materials, antiviral materials, chemotherapeutic materials, radioactive materials, and other pharmaceutical materials) as well as biologically inert materials.


Systems and devices embodying features of the invention may have markings or indicators to aid in placement of the delivery tube in a desired location. In addition, methods of using systems and devices embodying features of the invention include guiding the insertion of the delivery tube with the aid of an imaging device, such as an ultrasound imaging device, an x-ray imaging device, and a magnetic resonance imaging device, which may be used to image the plug, a marker retained within the delivery device, a portion of the delivery device, or combinations of these.


The invention provides the advantages of securely retaining markers within a marker delivery device, improving accuracy and avoiding errors in of placement of markers at desired locations within a patient's body, preventing ingress of tissue into the distal tip of the device when it is advanced through tissue, and guiding the device by use of an imaging device. These and other advantages of the invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a partly cut-away perspective view of a marker delivery assembly embodying features of the invention showing several markers within a marker delivery device and a plug embodying features of the invention occluding the tip of the delivery device.



FIG. 1B is a transverse cross-sectional view of the marker delivery assembly of FIG. 1A taken at line 1B-1B.



FIG. 1C is a transverse cross-sectional view of the marker delivery assembly of FIG. 1A taken at line 1C-1C.



FIG. 1D is a transverse cross-sectional view of the marker delivery assembly of FIG. 1A taken at line 1D-1D.



FIGS. 2A-2C and 2E-2H are longitudinal cross-sectional views of a delivery tube distal portion embodying features of the invention configured to retain a plug, containing markers and a plug embodying features of the invention.



FIG. 2D is a transverse cross-sectional view of the delivery tube distal portion and plug shown in FIG. 2C.



FIG. 3A is a longitudinal cross-sectional view of a compressible plug embodying features of the invention disposed outside a distal portion of a delivery tube.



FIG. 3B is a longitudinal cross-sectional view of the compressible plug of FIG. 3A embodying disposed within the distal portion of the delivery tube.



FIG. 3C is a longitudinal cross-sectional view of an alternative embodiment of a compressible plug.



FIG. 3D is a longitudinal cross-section of a plug containing an internal retention element configured to press against the wall of a delivery tube.



FIG. 4A is a longitudinal cross-sectional view of a plug embodying features of the invention disposed outside a distal portion of a delivery tube.



FIG. 4B is a longitudinal cross-sectional view of an external retention element and of a plug embodying features of the invention disposed within a distal portion of a delivery tube.



FIG. 4C is a longitudinal cross-sectional view of the external retention element inserted into the plug of FIG. 4B embodying disposed within the distal portion of the delivery tube.



FIG. 4D is a perspective view of a sharp tip of a delivery tube distal portion embodying features of the invention having slits forming a tab configured to retain and align a plug.



FIG. 4E is a longitudinal cross-section of a delivery tube distal portion embodying features of the invention having a tab configured to retain a plug, and containing a plug configured to be retained and aligned by a tab.



FIG. 4F is a longitudinal cross-section of a delivery tube distal portion embodying features of the invention having a tab configured to retain and align a plug, and containing a plug configured to be retained by a tab.



FIGS. 5A-5H are alternating plan and elevation views of distal portions of delivery tubes of marker delivery devices embodying features of the invention configured to retain a plug by having holes or slots through the tube wall.



FIG. 6 is a partially cut away, perspective view of a human breast having a lesion from which a biopsy specimen has been removed, and showing a guide cannula and a marker delivery assembly embodying features of the invention inserted into the breast, the assembly having markers and a plug configured to retain the markers within a delivery tube of a delivery device.





DETAILED DESCRIPTION OF THE INVENTION

Marker delivery assemblies embodying features of the invention are illustrated in FIGS. 1A-1D. Such assemblies include marker delivery devices, markers, and a plug occluding a distal portion of the delivery device. The assembly 10 shown in FIG. 1A includes a delivery device 12, delivery tube 14 with a bore 16, a distal portion 18, and a proximal portion 20 with a handle 22. Several markers 24, and a plug 26 are shown disposed within the bore 16. A plunger 28 with a plunger handle 30 and a plunger distal end 32 is movable within the tube bore 16, and is configured to push markers 24 and plug 26 out of orifice 34 at the distal tip 36 of delivery tube 14 when the distal end 32 of plunger 28 moves in a distal direction. Plunger handle 30 allows an operator to readily manipulate plunger 28. A device 12 may include a plunger locking mechanism to prevent inadvertent longitudinal movement of plunger 28; for example, a plunger 28 and a handle 22 may be configured so that plunger 28 must be rotated some amount before it is able to be moved in a longitudinal direction (by, e.g., having a lateral tab protruding from a portion of the plunger 28 that prevents longitudinal plunger movement until the tab is moved to a channel configured to accept it).


Plug 26 may substantially fill orifice 34, as shown in FIG. 1A, or may occupy or block only a portion of orifice 34. A plug 26 preferably does not interfere with the sharp edge of orifice 34 or pointed tip 36 of a delivery tube 14. Where distal tip 36 of delivery tube 14 is sharp, as shown in FIG. 1A, the distal surface 38 of plug 26 is preferably configured with an inclined surface to closely follow the conformation of distal tip 36 to provide more effective penetration.


Markers 24 are preferably configured to slide readily within tube bore 16. Plug 26 is configured to be releasably secured within a portion of tube bore 16, such as a distal portion 18 or orifice 34, effective to prevent inadvertent exit or release of markers 24 from delivery tube 14. The engagement of plug 26 with delivery tube 14 is further configured to be readily releasable when desired. For example, plug 26 is configured to release its engagement with delivery tube 14 effective to allow exit of markers 24 upon distal movement of plunger 28. Markers 24 are made with detectable, biocompatible materials, and may include a radiopaque element 40. Plug 26 may be made from the same or similar materials as a marker 24, and may also include a radiopaque element 40.



FIG. 1A shows a marker delivery device 12 having a delivery tube 14 with a distal tip 36 having a notch 42 configured to retain a plug 26. A notch 42 is effective to retain a plug 26, particularly if a portion of the plug 26 is formed to engage with the notch 42, or is pressed or otherwise introduced into at least a portion of the notch 42. The delivery tube 14 also has markings 44 which aid in placement of the device in a desired location within a patient's body. The markings 44 may serve as visual landmarks for guiding an operator in placing the device, and may also be radiopaque, ultrasound-reflective, or otherwise configured to be detectable by imaging devices and imaging methods.


In FIG. 1B, the plug 26 is shown in place within tube bore 16 at the distal portion 18 of delivery tube 14. In FIG. 1C, a marker 24 with radiopaque element 40 is shown within tube bore 16 of delivery tube 14. In FIG. 1D, a portion the plunger 28 is shown in place within tube bore 16 of delivery tube 14.



FIGS. 2A-2H illustrate several alternative embodiments of a plug 26 having features of the invention. The plugs 26 in FIGS. 2A-2C and 2E-2H are shown in longitudinal cross-section within a distal portion 18 of a delivery tube 14 of a marker delivery device 12 embodying features of the invention. FIG. 2A illustrates a plug 26 configured to be retained within a delivery tube 14 and to occlude an orifice 34. Plug 26 of FIG. 2A is configured to provide a surface 38 following a configuration generally perpendicular to wall 46 conforming to the sharp tip 36, effective to aid the penetration of sharp tip 36 into a patient's tissue as well as to retain markers 24 within a delivery device 12. A plug 26 embodying features of the invention may be retained within a delivery tube 14 effective to occlude an orifice 34 and to retain a marker 24 in any one or in more than one way. For example, a plug 26 may be retained by friction, adhesion, tension, pressure, or other mechanisms; may be retained mechanically, as by a notch, hole, slot, tab, ridge, lip or other feature of a tube 14, of the plug 26 itself, or by any combination of such elements; or by any other mechanism or method suitable to releasably retain a plug while allowing its removal at a desired time. Some examples of such features and elements are illustrated in the figures, although the devices, assemblies and elements embodying features of the invention are not limited to these examples. Any feature, element, or means of retaining a plug in a location effective to occlude an orifice 34 and to retain a marker 24 within a delivery tube 14, while allowing its removal at a desired time, is suitable for the practice of the invention.



FIG. 2B illustrates a plug 26 having a protrusion 48 configured to engage a passage 50 through tube wall 46, aiding in the retention of plug 26 within bore 16 of delivery tube 14. A passage 50 may be a hole, slot, notch, or other void through a tube wall 46. Alternatively, a protrusion 48 of a plug 26 may engage a slot, notch, or crease along a bore 16 that does not completely pass through the wall 46, yet still provides purchase for retaining a plug 26 within a delivery tube 14.



FIG. 2C illustrates a plug 26 embodying features of the invention having a gap 52 allowing compression of plug 26 effective to allow insertion of plug 26 into distal portion 18, where plug 26 occludes orifice 34. Resilience of plug 26 provides outward pressure following such compression, effective to provide lateral pressure against a wall 46 of a delivery tube 14 and so to retain the plug 26 within distal portion 18 of tube 14. The embodiment of a plug 26 illustrated in FIG. 2C also has a lip portion 54 effective to limit the extent of insertion of plug 26 into delivery tube 14. It will be understood that a lip portion 54 is optional, and is not present in some plugs 26, including resilient plugs 26 embodying features of the invention. Preferably, lip portion 54 is configured to leave a sufficient amount of distal tip 36 exposed so as to not substantially interfere with penetration of sharp tip 36 into the tissue of a patient. For example, a lip portion 54 preferably comprises less than a full circumference a plug 26 having a round cross-section, and may comprise one or a few extensions 56 extending radially outwardly form a plug body 58, as illustrated in FIG. 2D in a transverse cross-sectional view of the plug 26 and tube 14 of FIG. 2C. A plug body 58 may surround a gap 52, as in the plug 26 illustrated in FIGS. 2C and 2D, or, in other embodiments, may not have a gap 52, as, e.g., in the plugs 26 illustrated in FIGS. 2A and 2B.


The plug 26 illustrated in FIG. 2E is an irregularly-shaped plug 26 embodying features of the invention, configured to occlude an orifice 34 and to retain markers 24 within a delivery tube 14 until the plug 26 is removed or moved away from its blocking position. An irregularly-shaped plug 26 may be put into place, for example, by the application of a liquid, flexible or pliable material that sets or hardens after placement in or around an orifice 34. Alternatively, a material may be placed in or around an orifice 34 and then treated with heat, solvent, hardener, or other treatment in order to fix the plug 26 in its final form.


As illustrated by the embodiment of a plug 26 shown in FIG. 2F, an orifice 34 need not be completely occluded; partial occlusion of an orifice 34 by a plug 26 is sufficient to retain a marker 24 within a delivery tube 14. Such a plug 26 may be retained within the bore 16 of a delivery tube 14 by adhesion or other bonding to a tube wall 46, or by a feature of a tube 14 embodying features of the invention such as a tab, lip, hole, notch, slot, or other retaining element.


The embodiments of a plug 26 shown in FIGS. 2G and 2H include marker material effective to mark a location within a patient's body, and thus is configured to act as a marker 24 as well as a plug 26. For example, a plug 26 as illustrated in FIGS. 2G and 2H may be a plug 26 having a lip portion 54 and a body portion 58 configured to press against a tube wall 46 so as to retain plug 26 within the delivery tube 14, and including marker material so as to be able to serve as a marker 24 following ejection from orifice 34 and delivery into a desired location within a patient's body. Preferably, a lip portion 54 does not extend so far as to interfere with the cutting action of sharp tip 36. A plug 26 configured to serve as a marker 24 may include bioresorbable marker materials, and be a temporary marker, or may include non-bioresorbable marker materials, and so be a permanent marker. For example, the embodiment of a plug 26 shown in FIG. 2H is also configured to serve as a marker 24, and further includes a radiopaque element 40. Typically, a radiopaque element 40 is a permanent marker element, so that plug 26 shown in FIG. 2H, for example, may be a permanent marker.


A compressible plug 26 as illustrated in FIGS. 2C and 2D may be inserted into a delivery tube 14 through an orifice 34 as shown in FIGS. 3A and 3B. FIG. 3A shows a longitudinal cross-section of a compressible plug 26 disposed distal to an orifice 34 of a delivery tube 14. Compression of body 58 effective to reduce the size of gap 52 also reduces a lateral dimension of the plug 26 enabling a portion of the plug body 58 to be inserted through orifice 34 into tube bore 16 to be disposed in position within delivery tube 14 as shown in FIG. 3B. Resiliency of plug body 58 is effective to create pressure against a tube wall 46 so as to retain plug 26 in position within bore 16 in distal tube portion 18. In the embodiment shown in FIGS. 3A and 3B, gap 52 is disposed so as to face bore 16 of delivery tube 14. Alternatively, as shown in FIG. 3C, a gap 52 may face away from a tube bore 16. In either embodiment, plug body 58 is resiliently compressible and snugly retained within a distal tube portion 18.


In addition, a further embodiment of a plug 26 embodying features of the invention is illustrated in FIG. 3D. A plug 26 may contain an internal retention element 60 configured to press itself or a portion of a plug body 58 against a wall 46 of a delivery tube 14. Such an internal retention element 60 may be radiopaque internal retention element 60, and thus, in that case, the plug 26 will also be configured to be a radiopaque marker 24. An internal retention element 60 may be any element, including a spring, a coil, a clip, a loop, an arch, a resilient core, or other element that is configured to help retain a plug 26 within a delivery tube 14. For example, a resilient core may be a portion of a plug body 58 which includes a resilient material and which provides outward force when a plug 26 is disposed within a bore 16 of a delivery tube 14. A plug 26 as illustrated in FIG. 3D is a further example of a compressible plug 26. It will be understood that a compressible plug 26 need not have a gap 52 in order to be resiliently compressible effective to be inserted into and releasably retained within a delivery tube 14; for example, a plug 26 may be a compressible plug including an internal retention element 60, or where the entire plug body 58 is formed of a resilient material, such as, for example, a foam or spongy material which tends to re-expand after compression, or which tends to resist compression by exerting counteracting force against compression.


A plug 26 may be releasably retained within a bore 16 of a delivery tube 14 upon addition or insertion of an external retention element 62. FIG. 4A illustrates a plug 26 embodying features of the invention disposed distal to a distal portion 18 of a delivery tube 14. FIG. 4B illustrates the plug 26 of FIG. 4A disposed within distal portion 18, in which plug body 58 does not tightly contact a tube wall 46 and plug 26 is not snugly held within delivery tube 14. Also shown in FIG. 4B is an external retention element 62 in the form of a conical pin. FIG. 4C illustrates a plug 26 embodying features of the invention including external retention element 62 mounted in a gap 52. Following insertion of external retention element 62 into plug 26, at least a portion of plug body 58 contacts tube wall 46 effective to releasably retain plug 26 within a distal portion 18 of delivery tube 14 effective to occlude orifice 34 and to retain a marker 24. In other embodiments, an external retention element 62 may be a wedge, a screw, a mandrel, or any other element configured to tend to expand a portion of a plug body 58 effective to exert force against a tube wall 46, such as by tending to expand a plug body 58, or otherwise to aid in retaining a plug 26 within a distal portion 18 of a delivery tube 14.


A delivery tube 14 may be configured to retain and optionally to align a plug 26. For example, a delivery tube 14 may have a retaining feature 64, illustrated in FIGS. 4D, 4E and 4F as a tab, configured to engage a plug 26 and to hold it in place. The retaining feature 64 shown in FIG. 4D is a tab of metal formed by two longitudinal slots in the distal end of the wall 46 of delivery tube 14 that has been deflected inwardly to engage a plug 26 disposed within the bore 16, as shown in FIGS. 4E and 4F (the tab shown in FIG. 4F may be formed by one radial and two longitudinal slots). A retaining feature 64, such as a tab, may also help to align a plug 26 within a delivery tube 14. A plug 26 may optionally also be configured to be retained by a retaining feature 64, such as a tab, as illustrated in FIGS. 4E and 4F, although a retaining feature 64 may be effective to retain a plug 26 without any particular configuration of a plug 26. A plug 26 may also be configured to be aligned by a retaining feature 64, e.g., by having a notch, depression, ridge or other feature configured to engage a retaining feature 64.


Upon expulsion of a plug 26, as may be caused by distal movement of a plunger 28, a retaining feature 64 may become reconfigured to allow passage of a marker 24 out of an orifice 34 for delivery into a patient. For example, where the retaining feature 64 is a tab intruding into a tube bore 16, as shown in FIGS. 4D, 4E and 4F, the expulsion of a plug 26 may be effective to bend the tab outwardly so it more closely approaches tube wall 46 and does not prevent movement of a marker 24 through the bore 16 of a delivery tube 14. Alternatively, a retaining feature 64 may be unaffected by movement of a plug 26 or a marker 24. For example, a retaining feature 64 may be configured to impede movement of a plug 26 or of a marker 24, without preventing such movement, and so act to releasably retain a plug 26 effective to retain a marker 24 within a delivery tube 14 until the delivery of the marker 24 is desired.


Several examples of alternative embodiments of retaining features 64 are illustrated in FIGS. 5A through 5H, representing some, but not all, suitable types and configurations of retaining features 64 embodying features of the invention. A retaining feature 64 may be disposed at any location on, within, or through a wall 46 of delivery tube 14, although a distal portion 18 of a delivery tube 14 is preferred. A retaining feature may be continuous with an orifice 34 at the distal tip 36 of a delivery tube, or may be disposed proximally of the distal tip 36 of a delivery tube 14. A delivery tube 14 may include more than one retaining feature 64, and may include more than one shape or type of retaining feature 64.



FIG. 5A is a plan view, and FIG. 5B is an elevation view, of a distal portion 18 of a delivery tube 14 of a marker delivery device 12 embodying features of the invention, with a retaining feature 64 that is a rectangular slot 51 through tube wall 46. In FIGS. 5C and 5D, a distal portion 18 of a delivery tube 14 is shown having two retaining features 64: a rectangular slot 51 and a round hole 53 through tube wall 46. The distal portion 18 of delivery tube 14 shown in FIGS. 5E and 5F has retaining features 64 that are a round hole 53 and a rectangular slot 51 connecting to orifice 34. The retaining features 64 illustrated in FIGS. 5G and 5H are all round holes 53 spaced around delivery tube 14. Retaining features 64 may also take other shapes and may be disposed in other positions on a distal portion 18. For example, a retaining feature may be an irregularly-shaped slot, combining in part a round hole and a slot with angled sides, and may connect with orifice 34 at tube distal tip 36.


A marker delivery assembly 10 embodying features of the invention may be used to deliver a marker 24 to a desired location within a patient's body. Such a desired location is typically a lesion site from which a biopsy sample has been, or is to be, taken, or a lesion has been or will be removed. Assemblies, devices, and methods embodying features of the invention find use, for example, in marking a breast biopsy site. By way of illustration, the use of assemblies, devices and methods embodying features of the invention will be discussed below in terms of breast biopsies and similar uses involving marking sites within a breast of a human female. It will be understood that the assemblies, devices and methods embodying features of the invention find use in a variety of locations and in a variety of applications, in addition to the human breast.


An assembly 10 or delivery device 12 can be inserted into a breast 66 through a guide cannula 72, as illustrated in FIG. 6. Alternatively, an assembly 10 or delivery device 12 can be inserted directly into a breast 66, using a distal tip 36 that is sharp and so is configured to pierce or puncture tissue 68, with or without an initial incision through the skin 70 of a patient. In either case, markings 44 along a delivery tube 14 may be used to aid in the proper placement of the orifice 34 of a delivery tube 14, and so to aid in the proper delivery of a marker 24 to a desired location within a breast.


A plug 26 and marker 24 may be introduced into a breast 66 of a patient at a lesion site 74 adjacent or within a biopsy cavity 76, from which a biopsy sample or tissue from a lesion has been taken, as illustrated in FIG. 6. Alternatively, a plug 26 and marker 24 may be introduced into a patient's body in the absence of a biopsy cavity. This could be useful, for example, to mark a location from which to take a biopsy at a later time. A lesion site 74 may be the site of a suspected lesion, or a lesion site 74 may be the site of a known lesion. A biopsy cavity 76 may be an existing cavity, filled, if at all, with gas or fluid, or may be a virtual cavity, substantially filled with tissue that has collapsed into, or grown into, a site from which tissue has been previously removed. A biopsy cavity 76 may adjoin, or be lined with, or be at least in part surrounded by suspicious tissue 78, which may be remaining tissue of a lesion, newly grown tissue at least partially filling a biopsy cavity, tissue injured when the biopsy was taken, or other tissue.


Assemblies, devices and methods embodying features of the invention may be used to deliver a marker to a desired location within a body of a patient, by inserting a delivery device 12 into a patient having markers 24 retained within the bore 16 of the delivery tube 14 by a plug 26, and expelling a marker 24 from the orifice 34 into the desired location. A marker 24 may be expelled, for example, by depressing plunger 28 by moving plunger handle 30. Depression of plunger 28, pushing on a marker 24, is preferably effective to expel plug 26 from the orifice 34, allowing a marker 24 to exit the delivery tube 14 for delivery within a patient.


An operator may grasp a device handle 22 to guide the device 12 during insertion, and to steady the device 12 during depression of the plunger 28. Insertion of a device 12 results in the placement of at least a portion of the device 12 adjacent a desired location. The device 12, in particular the distal tip 36 and orifice 34 of the device 12, may be guided adjacent a desired location such as a lesion site, or a biopsy cavity, or other internal body site where delivery of a marker 24 is desired.


An initial scalpel incision in the skin is typically made in order to introduce a device 12 into the body tissue of a patient, although in many cases the sharp edge 34 or pointed tip 36 tip may be used to gain access to tissue beneath the skin without the use of an incision by a surgical tool. Insertion of the device 12 into a patient, e.g. into a breast 66 of a patient, may be guided by an operator with the aid of an imaging device. A delivery tube 14, and/or markings 44, as well as markers 24 and optionally plug 26, may be detectable by an imaging device, such as an ultrasound imaging device, an X-ray imaging device, a magnetic resonance imaging device, or other imaging device. Alternatively, or additionally, insertion may be visually guided, or may be guided by palpation or by other means.


As illustrated in FIG. 6, insertion of the device 12 into a patient, e.g. into a breast 66 of a patient, may be guided by a guide cannula as well. Such insertion may be performed with or without the aid of an imaging device, such as an ultrasound imaging device, an X-ray imaging device, a magnetic resonance imaging device, or other imaging device. Alternatively, or additionally, insertion may be visually guided, or may be guided by palpation or by other means.


A plug 26 may be made with any suitable material. Typically, a plug 26 is made with the same materials as a marker 24. A plug 26 may serve as a marker after its expulsion from orifice 34 and placement into a patient's body. Preferably, a plug 26 is made with a biocompatible material, and provides sufficient structural strength as to retain a marker 24 within a delivery tube 14 and, where insertion of a delivery device embodying features of the invention is performed without the aid of a guide cannula, a material used in making a plug 26 preferably has sufficient structural strength to withstand the forces encountered during insertion into tissue or through skin. Materials suitable for use in making a plug 26 embodying features of the invention include polymers, plastics, resins, waxes, glasses, ceramics, metals, metal oxides, and composites, combinations and mixtures of these materials. For example, a wax such as bone wax, or other biocompatible material is suitable for use in making a plug 26. In presently preferred embodiments, a plug 26 is made with bioresorbable polymers such as poly-lactic acid and poly-glycolic acid. A plug may be made of more than one material, as illustrated, for example, in FIG. 3D, showing a plug 26, which may be made primarily with a plastic or a polymer, and having an internal retention element 60, which may be, for example, a metal clip or spring.


A marker 24, including a plug 26 when configured to also serve as a marker 24, is preferably readily visible by ultrasonic imaging (USI), or by conventional imaging methods, such as x-ray and magnetic resonance imaging methods, or by more than one imaging technique. Suitable bio-compatible materials which may be used in a marker 24 or a plug 26 include polyethylene, polytetrafluoroethylene, PEBAX (made by Autochem Corp.), and the like.


Thus, biocompatible plugs 26 or markers 24 embodying features of the invention are preferably made using materials including a bioresorbable material. Some particularly suitable bioresorbable materials include bio-resorbable polymers including, but not limited to, polymers of lactic acid, glycolic acid, caprolactones, and other monomers; thus, for example, suitable bio-resorbable polymers may include poly(esters), poly(hydroxy acids), poly(lactones), poly(amides), poly(ester-amides), poly(amino acids), poly(anhydrides), poly(ortho-esters), poly(carbonates), poly(phosphazines), poly(thioesters), poly(urethanes), poly(ester urethanes), polysaccharides, polylactic acid, polyglycolic acid, polycaproic acid, polybutyric acid, polyvaleric acid, and copolymers, polymer alloys, polymer mixtures, and combinations thereof.


A marker 24 typically should remain in place and detectable within a patient for up to at least 2 weeks to have practical clinical value. Thus, a marker 24, including a plug 26 configured to serve as a marker, is detectable at a biopsy site within a patient for a time period of at least 2 weeks, preferably at least about 6 weeks, and may remain detectable for a time period of up to about 20 weeks, more preferably for a time period of up to about 12 weeks. In some embodiments, a marker material for use in markers 24 and plugs 26 embodying features of the invention is preferably not detectable about 6 months after placement at a biopsy site, and is more preferably not detectable with ultrasound about 12 weeks after placement at a biopsy site. Thus, a preferable in-vivo lifetime for a marker material for use in markers 24 and plugs 26 having features of the invention is between about 6 weeks and about 12 weeks.


In embodiments of the invention, a marker 24, and a plug 26 configured to serve as a marker 24 following expulsion from a delivery tube 14, may be detectable by ultrasound. Ultrasound-detectable markers 24 and plugs 26 may be formed with ultrasound detectable materials, such as stainless steel, titanium, platinum and the like, other bio-compatible metals, ceramics, metal oxides or polymers, or composites or mixtures of these materials. Typically, any material which reflects ultrasound energy may be suitable for use in an ultrasound-detectable marker. For example, materials having bubbles, internal voids, or gas-filled spaces, are detectable by ultrasound. A marker 24 or a plug 26 may be formed so as to include voids, such as cavities, to enhance their detectability by ultrasound. For example, a cavity size of between about 10 microns and about 500 microns, preferably between about 50 microns to about 200 microns, may be suitable to enhance the ultrasound-detectability of a marker 24 or plug 26.


Plugs 26 and markers 24 are configured to fit within a bore 16 of a delivery tube 14. A delivery tube 14 maybe configured to fit within a guide cannula 72, such as a guide cannula sized to accept a Mammotome®, Tru-Cut®, or SenoCor® biopsy device. Typically, a plug 26 or marker 24 will have a diameter determined by the size of a bore 16, typically between about 0.02″ (0.5 mm) and about 0.5″ (12 mm), preferably between about 0.04″ (1 mm) and about 0.3″ (8 mm). In addition, a plug 26 or marker 24 may have a length of between about 0.04″ (1 mm) and about 0.8″ (20 mm), preferably between about 0.1″ (2.5 mm) and about 0.6″ (15 mm).


A radiopaque element 40 may be made with any suitable radiopaque material, including stainless steel, platinum, gold, iridium, tantalum, tungsten, silver, rhodium, nickel, bismuth, other radiopaque metals, alloys and oxides of these metals, barium salts, iodine salts, iodinated materials, and combinations of these. Radiopaque materials and markers may be permanent, or may be temporary and not detectable after a period of time subsequent to their placement within a patient. MRI contrast agents such as gadolinium and gadolinium compounds, for example, are also suitable for use with plugs 26 and/or markers 24 embodying features of the invention. Colorants, such as dyes (e.g., methylene blue and carbon black) and pigments (e.g., barium sulfate), may also be included in markers 24 and/or plugs 26 embodying features of the invention.


Markers 24, and plugs 26 configured to serve as markers, may also include other materials besides marker materials, including anesthetic agents, hemostatic agents, pigments, dyes, materials detectable by magnetic resonance imaging (MRI), inert materials, and other compounds.


In any of the above-described embodiments of the invention, a plug 26 may include an adhesive component to aid the plug 26 to adhere to a delivery tube 14. In addition, an adhesive component may be useful to aid a marker 24 (and a plug 26 after expulsion from a delivery tube 14) to adhere to adjacent tissue within the body of a patient, such as at a biopsy site. The adhesive component may comprise a biocompatible adhesive, such as a polyurethane, polyacrylic compound, polyhydroxymethacrylate, fibrin glue (e.g., Tisseal™), collagen adhesive, or mixtures thereof.


While particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention be defined by the scope of the appended claims as broadly as the prior art will permit, and in view of the specification if need be. All patents and patent applications referred to above are hereby incorporated by reference in their entirety.

Claims
  • 1. An intracorporeal marker delivery device, comprising: a delivery tube which has a distal tip, a discharge orifice and an inner bore extending to the discharge orifice;at least one marker which is slidably disposed within the inner bore; anda plug releasably secured within the inner bore distal to the at least one marker, the plug having a pair of diametrically opposed cantilever arms that defines an internal gap adjacent an end portion of the plug configured to reduce a lateral dimension of the plug when the plug is inserted into the inner bore,wherein the end portion of the plug is a proximally diverging plug portion, and the gap extends from a proximal end of the plug into the proximally diverging plug portion, the proximally diverging plug portion being configured to resiliently engage the delivery tube within the inner bore, andwherein the gap extends from the proximal end of the plug to a terminal expanded opening within the plug.
  • 2. An intracorporeal marker delivery device, comprising: a delivery tube which has a distal tip, a discharge orifice and an inner bore extending to the discharge orifice;at least one marker which is slidably disposed within the inner bore;a plug releasably secured within the inner bore distal to the at least one marker, the plug having an internal gap adjacent an end portion of the plug configured to reduce a lateral dimension of the plug when the plug is inserted into the inner bore, wherein the end portion of the plug is a distally diverging plug portion, and the gap extends from a distal end of the plug into the distally diverging plug portion, the distally diverging plug portion being configured to resiliently engage the delivery tube at the inner bore; andan external retention element positioned in the gap at the distally diverging plug portion.
  • 3. The intracorporeal marker delivery device of claim 2, wherein the external retention element is a conical pin, with a tip end of the conical pin being inserted into the gap to expand apart the distally diverging plug portion.
  • 4. The intracorporeal marker delivery device of claim 2, wherein the external retention element is a wedge-shaped pin, with a tip end of the wedge-shaped pin being inserted into the gap to expand apart the distally diverging plug portion.
  • 5. An intracorporeal marker delivery device, comprising: a delivery tube which has a distal tip, a discharge orifice and an inner bore extending to the discharge orifice;at least one marker which is slidably disposed within the inner bore;a plug releasably secured within the inner bore distal to the at least one marker, the plug having a pair of diametrically opposed cantilever arms that defines an internal gap adjacent an end portion of the plug configured to reduce a lateral dimension of the plug when the plug is inserted into the inner bore; anda radiographic marker element positioned within the plug, and with portions of the radiographic marker element being respectively positioned on opposing sides of the gap within the plug.
  • 6. An intracorporeal marker delivery device, comprising: a delivery tube which has a distal tip, a discharge orifice and an inner bore extending to the discharge orifice;at least one marker which is slidably disposed within the inner bore; anda plug releasably secured within the inner bore distal to the at least one marker, the plug having a pair of diametrically opposed cantilever arms that defines an internal gap adjacent an end portion of the plug configured to reduce a lateral dimension of the plug when the plug is inserted into the inner bore,wherein the plug includes a lip portion at a distal end of the plug, the lip portion being configured to limit the extent of insertion of the plug into the inner bore through the discharge orifice.
  • 7. The intracorporeal marker delivery device of claim 6, wherein the lip portion is configured to engage an exterior circumferential surface of the distal tip of the delivery tube at the discharge orifice.
  • 8. The intracorporeal marker delivery device of claim 6, wherein the distal tip is beveled to form a beveled distal tip, and the lip portion has a beveled proximal surface configured to engage the beveled distal tip.
  • 9. An intracorporeal marker delivery device comprising: a delivery tube which has a distal tip, a discharge orifice, a side wall and an inner bore extending to the discharge orifice, the delivery tube having at least one retention aperture extending into the side wall from the inner bore;at least one marker body which is slidably disposed within the inner bore; anda plug made of a resilient material that is positioned in the inner bore distal to the at least one marker body, the plug having a protrusion configured to engage and extend into the at least one retention aperture to releasably secure the plug to the side wall of the delivery tube.
  • 10. The intracorporeal marker delivery device of claim 9, wherein the at least one retention aperture is a plurality of retention apertures, the plug configured to engage the plurality of retention apertures to releasably secure the plug to the side wall of the delivery tube.
  • 11. The intracorporeal marker delivery device of claim 9, wherein the at least one retention aperture is in the form of a slot extending proximally from the distal tip into the side wall of the delivery tube.
  • 12. The intracorporeal marker delivery device of claim 9, wherein the at least one retention aperture is a plurality of retention apertures that includes a slot extending proximally from the distal tip into the side wall of the delivery tube.
  • 13. The intracorporeal marker delivery device of claim 9, wherein the at least one retention aperture includes a hole extending though the side wall of the delivery tube.
  • 14. The intracorporeal marker delivery device of claim 9, wherein the plug includes a tab configured to engage a respective retention aperture.
  • 15. The intracorporeal marker delivery device of claim 9, wherein the plug has a pair of spaced cantilever arms that are configured to form the internal gap adjacent the end portion of the plug, the pair of spaced cantilever arms configured to reduce the lateral dimension of the plug when the plug is inserted into the inner bore of the delivery lumen and configured to exert a lateral pressure on the inner bore of the delivery lumen after insertion into the inner bore.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 12/592,020, filed Nov. 18, 2009, now U.S. Pat. No. 8,177,792, which is a continuation of application Ser. No. 10/174,401, filed Jun. 17, 2002, now U.S. Pat. No. 7,651,505, each of which is incorporated by reference herein in its entirety and from which priority is claimed.

US Referenced Citations (530)
Number Name Date Kind
2481408 Fuller Sep 1949 A
2899362 Sieger, Jr. et al. Aug 1959 A
2907327 White Oct 1959 A
3005457 Millman Oct 1961 A
3341417 Sinaiko Sep 1967 A
3402712 Eisenhand Sep 1968 A
3516412 Ackerman Jun 1970 A
3593343 Viggers Jul 1971 A
3757781 Smart Sep 1973 A
3818894 Wichterle et al. Jun 1974 A
3823212 Chvapil Jul 1974 A
3921632 Bardani Nov 1975 A
4005699 Bucalo Feb 1977 A
4007732 Kvavle et al. Feb 1977 A
4041931 Elliott et al. Aug 1977 A
4103690 Harris Aug 1978 A
4105030 Kercso Aug 1978 A
4172449 LeRoy et al. Oct 1979 A
4197846 Bucalo Apr 1980 A
4217889 Radovan et al. Aug 1980 A
4276885 Tickner et al. Jul 1981 A
4294241 Miyata Oct 1981 A
4298998 Naficy Nov 1981 A
4331654 Morris May 1982 A
4390018 Zukowski Jun 1983 A
4400170 McNaughton et al. Aug 1983 A
4401124 Guess et al. Aug 1983 A
4405314 Cope Sep 1983 A
4428082 Naficy Jan 1984 A
4438253 Casey et al. Mar 1984 A
4442843 Rasor et al. Apr 1984 A
4470160 Cavon Sep 1984 A
4487209 Mehl Dec 1984 A
4545367 Tucci Oct 1985 A
4549560 Andis Oct 1985 A
4582061 Fry Apr 1986 A
4582640 Smestad et al. Apr 1986 A
4588395 Lemelson May 1986 A
4597753 Turley Jul 1986 A
4647480 Ahmed Mar 1987 A
4655226 Lee Apr 1987 A
4661103 Harman Apr 1987 A
4682606 DeCaprio Jul 1987 A
4693237 Hoffman et al. Sep 1987 A
4740208 Cavon Apr 1988 A
4762128 Rosenbluth Aug 1988 A
4813062 Gilpatrick Mar 1989 A
4820267 Harman Apr 1989 A
4832680 Haber et al. May 1989 A
4832686 Anderson May 1989 A
4847049 Yamamoto Jul 1989 A
4863470 Carter Sep 1989 A
4870966 Dellon et al. Oct 1989 A
4874376 Hawkins, Jr. Oct 1989 A
4889707 Day et al. Dec 1989 A
4909250 Smith Mar 1990 A
4938763 Dunn et al. Jul 1990 A
4950234 Fujioka et al. Aug 1990 A
4950665 Floyd Aug 1990 A
4963150 Brauman Oct 1990 A
4970298 Silver et al. Nov 1990 A
4989608 Ratner Feb 1991 A
4994013 Suthanthiran et al. Feb 1991 A
4994028 Leonard et al. Feb 1991 A
5012818 Joishy May 1991 A
5018530 Rank et al. May 1991 A
5035891 Runkel et al. Jul 1991 A
5059197 Urie et al. Oct 1991 A
5081997 Bosley, Jr. et al. Jan 1992 A
5120802 Mares et al. Jun 1992 A
5125413 Baran Jun 1992 A
5137928 Erbel et al. Aug 1992 A
5141748 Rizzo Aug 1992 A
5147307 Gluck Sep 1992 A
5147631 Glajch et al. Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5163896 Suthanthiran et al. Nov 1992 A
5195540 Shiber Mar 1993 A
5197482 Rank et al. Mar 1993 A
5197846 Uno et al. Mar 1993 A
5199441 Hogle Apr 1993 A
5219339 Saito Jun 1993 A
5221269 Miller et al. Jun 1993 A
5231615 Endoh Jul 1993 A
5234426 Rank et al. Aug 1993 A
5236410 Granov et al. Aug 1993 A
5242759 Hall Sep 1993 A
5250026 Ehrlich et al. Oct 1993 A
5271961 Mathiowitz et al. Dec 1993 A
5273532 Niezink et al. Dec 1993 A
5280788 Janes et al. Jan 1994 A
5281197 Arias et al. Jan 1994 A
5281408 Unger Jan 1994 A
5282781 Liprie Feb 1994 A
5284479 de Jong Feb 1994 A
5289831 Bosley Mar 1994 A
5320100 Herweck et al. Jun 1994 A
5320613 Houge et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334381 Unger Aug 1994 A
5344640 Deutsch et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5354623 Hall Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5366756 Chesterfield et al. Nov 1994 A
5368030 Zinreich et al. Nov 1994 A
5388588 Nabai et al. Feb 1995 A
5394875 Lewis et al. Mar 1995 A
5395319 Hirsch et al. Mar 1995 A
5409004 Sloan Apr 1995 A
5417708 Hall et al. May 1995 A
5422730 Barlow et al. Jun 1995 A
5425366 Reinhardt et al. Jun 1995 A
5431639 Shaw Jul 1995 A
5433204 Olson Jul 1995 A
5449560 Antheunis et al. Sep 1995 A
5451406 Lawin et al. Sep 1995 A
5458643 Oka et al. Oct 1995 A
5460182 Goodman et al. Oct 1995 A
5469847 Zinreich et al. Nov 1995 A
5475052 Rhee et al. Dec 1995 A
5490521 Davis et al. Feb 1996 A
5494030 Swartz et al. Feb 1996 A
5499989 LaBash Mar 1996 A
5507807 Shippert Apr 1996 A
5508021 Grinstaff et al. Apr 1996 A
5514085 Yoon May 1996 A
5522896 Prescott Jun 1996 A
5538726 Order Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5545180 Le et al. Aug 1996 A
5549560 Van de Wijdeven Aug 1996 A
RE35391 Brauman Dec 1996 E
5580568 Greff et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5611352 Kobren et al. Mar 1997 A
5626611 Liu et al. May 1997 A
5628781 Williams et al. May 1997 A
5629008 Lee May 1997 A
5636255 Ellis Jun 1997 A
5643246 Leeb et al. Jul 1997 A
5646146 Faarup et al. Jul 1997 A
5657366 Nakayama Aug 1997 A
5665092 Mangiardi et al. Sep 1997 A
5667767 Greff et al. Sep 1997 A
5669882 Pyles Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5676146 Scarborough Oct 1997 A
5676925 Klaveness et al. Oct 1997 A
5688490 Tournier et al. Nov 1997 A
5690120 Jacobsen et al. Nov 1997 A
5695480 Evans et al. Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702716 Dunn et al. Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5747060 Sackler et al. May 1998 A
5762903 Park et al. Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5776496 Violante et al. Jul 1998 A
5779647 Chau et al. Jul 1998 A
5782764 Werne Jul 1998 A
5782771 Hussman Jul 1998 A
5782775 Milliman et al. Jul 1998 A
5795308 Russin Aug 1998 A
5799099 Wang et al. Aug 1998 A
5800362 Kobren et al. Sep 1998 A
5800389 Burney et al. Sep 1998 A
5800445 Ratcliff et al. Sep 1998 A
5800541 Rhee et al. Sep 1998 A
5817022 Vesely Oct 1998 A
5820918 Ronan et al. Oct 1998 A
5821184 Haines et al. Oct 1998 A
5823198 Jones et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824081 Knapp et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5842999 Pruitt et al. Dec 1998 A
5845646 Lemelson Dec 1998 A
5846220 Elsberry Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5865806 Howell Feb 1999 A
5869080 McGregor et al. Feb 1999 A
5871501 Leschinsky et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5879357 Heaton et al. Mar 1999 A
5891558 Bell et al. Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5902310 Foerster et al. May 1999 A
5911705 Howell Jun 1999 A
5916164 Fitzpatrick et al. Jun 1999 A
5921933 Sarkis et al. Jul 1999 A
5922024 Janzen et al. Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5928773 Andersen Jul 1999 A
5941439 Kammerer et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5948425 Janzen et al. Sep 1999 A
5954670 Baker Sep 1999 A
5972817 Haines et al. Oct 1999 A
5980564 Stinson Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
6015541 Greff et al. Jan 2000 A
6030333 Sioshansi et al. Feb 2000 A
6053925 Barnhart Apr 2000 A
6056700 Burney et al. May 2000 A
6066122 Fisher May 2000 A
6066325 Wallace et al. May 2000 A
6071301 Cragg et al. Jun 2000 A
6071310 Picha et al. Jun 2000 A
6071496 Stein et al. Jun 2000 A
6090996 Li Jul 2000 A
6096065 Crowley Aug 2000 A
6096070 Ragheb et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6135993 Hussman Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6159445 Klaveness et al. Dec 2000 A
6161034 Burbank et al. Dec 2000 A
6162192 Cragg et al. Dec 2000 A
6166079 Follen et al. Dec 2000 A
6173715 Sinanan et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177062 Stein et al. Jan 2001 B1
6181960 Jensen et al. Jan 2001 B1
6183497 Sing et al. Feb 2001 B1
6190350 Davis et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200258 Slater et al. Mar 2001 B1
6203524 Burney et al. Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6214045 Corbitt, Jr. et al. Apr 2001 B1
6214315 Greff et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6228049 Schroeder et al. May 2001 B1
6228055 Foerster et al. May 2001 B1
6231615 Preissman May 2001 B1
6234177 Barsch May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6241734 Scribner et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6261243 Burney et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6264917 Klaveness et al. Jul 2001 B1
6270464 Fulton, III et al. Aug 2001 B1
6270472 Antaki et al. Aug 2001 B1
6287278 Woehr et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6289229 Crowley Sep 2001 B1
6306154 Hudson et al. Oct 2001 B1
6312429 Burbank et al. Nov 2001 B1
6316522 Loomis et al. Nov 2001 B1
6335029 Kamath et al. Jan 2002 B1
6336904 Nikolchev Jan 2002 B1
6340367 Stinson et al. Jan 2002 B1
6343227 Crowley Jan 2002 B1
6347240 Foley et al. Feb 2002 B1
6347241 Burbank et al. Feb 2002 B2
6350244 Fisher Feb 2002 B1
6350274 Li Feb 2002 B1
6354989 Nudeshima Mar 2002 B1
6356112 Tran et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6358217 Bourassa Mar 2002 B1
6363940 Krag Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6394965 Klein May 2002 B1
6403758 Loomis Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6419621 Sioshansi et al. Jul 2002 B1
6424857 Henrichs et al. Jul 2002 B1
6425903 Voegele Jul 2002 B1
6427081 Burbank et al. Jul 2002 B1
6436030 Rehil Aug 2002 B2
6447524 Knodel et al. Sep 2002 B1
6447527 Thompson et al. Sep 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6450938 Miller Sep 2002 B1
6471700 Burbank et al. Oct 2002 B1
6478790 Bardani Nov 2002 B2
6506156 Jones et al. Jan 2003 B1
6511468 Cragg et al. Jan 2003 B1
6537193 Lennox Mar 2003 B1
6540981 Klaveness et al. Apr 2003 B2
6544185 Montegrande Apr 2003 B2
6544231 Palmer et al. Apr 2003 B1
6551253 Worm et al. Apr 2003 B2
6554760 Lamoureux et al. Apr 2003 B2
6562317 Greff et al. May 2003 B2
6564806 Fogarty et al. May 2003 B1
6565551 Jones et al. May 2003 B1
6567689 Burbank et al. May 2003 B2
6575888 Zamora et al. Jun 2003 B2
6575991 Chesbrough et al. Jun 2003 B1
6585773 Xie Jul 2003 B1
6605047 Zarins et al. Aug 2003 B2
6610026 Cragg et al. Aug 2003 B2
6613002 Clark et al. Sep 2003 B1
6616630 Woehr et al. Sep 2003 B1
6626850 Chau et al. Sep 2003 B1
6626899 Houser et al. Sep 2003 B2
6628982 Thomas et al. Sep 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638234 Burbank et al. Oct 2003 B2
6638308 Corbitt, Jr. et al. Oct 2003 B2
6652442 Gatto Nov 2003 B2
6656192 Espositio et al. Dec 2003 B2
6659933 Asano Dec 2003 B2
6662041 Burbank et al. Dec 2003 B2
6699205 Fulton, III et al. Mar 2004 B2
6712774 Voegele et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6725083 De Santis et al. Apr 2004 B1
6730042 Fulton et al. May 2004 B2
6730044 Stephens et al. May 2004 B2
6746661 Kaplan Jun 2004 B2
6746773 Llanos et al. Jun 2004 B2
6752154 Fogarty et al. Jun 2004 B2
6766186 Hoyns et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6780179 Lee et al. Aug 2004 B2
6824507 Miller Nov 2004 B2
6824527 Gollobin Nov 2004 B2
6846320 Ashby et al. Jan 2005 B2
6862470 Burbank et al. Mar 2005 B2
6863685 Davila et al. Mar 2005 B2
6881226 Corbitt, Jr. et al. Apr 2005 B2
6899731 Li et al. May 2005 B2
6918927 Bates et al. Jul 2005 B2
6936014 Vetter et al. Aug 2005 B2
6939318 Stenzel Sep 2005 B2
6945973 Bray Sep 2005 B2
6951564 Espositio et al. Oct 2005 B2
6958044 Burbank et al. Oct 2005 B2
6992233 Drake et al. Jan 2006 B2
6994712 Fisher et al. Feb 2006 B1
7001341 Gellman et al. Feb 2006 B2
7008382 Adams et al. Mar 2006 B2
7014610 Koulik Mar 2006 B2
7025765 Balbierz et al. Apr 2006 B2
7041047 Gellman et al. May 2006 B2
7044957 Foerster et al. May 2006 B2
7083576 Zarins et al. Aug 2006 B2
7125397 Woehr et al. Oct 2006 B2
7135978 Gisselberg et al. Nov 2006 B2
7172549 Slater et al. Feb 2007 B2
7214211 Woehr et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7264613 Woehr et al. Sep 2007 B2
7294118 Saulenas et al. Nov 2007 B2
7297725 Winterton et al. Nov 2007 B2
7329402 Unger et al. Feb 2008 B2
7329414 Fisher et al. Feb 2008 B2
7407054 Seiler et al. Aug 2008 B2
7416533 Gellman et al. Aug 2008 B2
7424320 Chesbrough et al. Sep 2008 B2
7449000 Adams et al. Nov 2008 B2
7527610 Erickson May 2009 B2
7569065 Chesbrough et al. Aug 2009 B2
7577473 Davis et al. Aug 2009 B2
7637948 Corbitt, Jr. Dec 2009 B2
7651505 Lubock et al. Jan 2010 B2
7668582 Sirimanne et al. Feb 2010 B2
7670350 Selis Mar 2010 B2
7783336 Macfarlane et al. Aug 2010 B2
7819820 Field et al. Oct 2010 B2
7914553 Ferree Mar 2011 B2
7978825 Ngo Jul 2011 B2
8011508 Seiler et al. Sep 2011 B2
8128641 Wardle Mar 2012 B2
8306602 Sirimanne et al. Nov 2012 B2
8320993 Sirimanne et al. Nov 2012 B2
8320995 Schwamb, Jr. Nov 2012 B2
8334424 Szypka Dec 2012 B2
8414602 Selis Apr 2013 B2
8442623 Nicoson et al. May 2013 B2
8454629 Selis Jun 2013 B2
20010003791 Burbank et al. Jun 2001 A1
20010006616 Leavitt et al. Jul 2001 A1
20010033867 Ahern et al. Oct 2001 A1
20010049481 Fulton, III et al. Dec 2001 A1
20020004060 Heublein et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020026201 Foerster et al. Feb 2002 A1
20020035324 Sirimanne et al. Mar 2002 A1
20020038087 Burbank et al. Mar 2002 A1
20020045842 Van Bladel et al. Apr 2002 A1
20020049411 Lamoureux et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020055731 Atala et al. May 2002 A1
20020058868 Hoshino et al. May 2002 A1
20020058882 Fulton, III et al. May 2002 A1
20020077687 Ahn Jun 2002 A1
20020082517 Klein Jun 2002 A1
20020082519 Miller et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020082683 Stinson et al. Jun 2002 A1
20020095204 Thompson et al. Jul 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020107437 Sirimanne et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020143359 Fulton, III et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020177776 Crawford Kellar et al. Nov 2002 A1
20020188196 Burbank et al. Dec 2002 A1
20020193815 Foerster et al. Dec 2002 A1
20020193867 Gladdish, Jr. et al. Dec 2002 A1
20030032969 Gannoe et al. Feb 2003 A1
20030036803 McGhan Feb 2003 A1
20030051735 Pavcnik et al. Mar 2003 A1
20030116806 Kato Jun 2003 A1
20030165478 Sokoll Sep 2003 A1
20030191355 Ferguson Oct 2003 A1
20030199887 Ferrera et al. Oct 2003 A1
20030225420 Wardle Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20030236573 Evans et al. Dec 2003 A1
20040001841 Nagavarapu et al. Jan 2004 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040016195 Archuleta Jan 2004 A1
20040024304 Foerster et al. Feb 2004 A1
20040059341 Gellman et al. Mar 2004 A1
20040073107 Sioshansi et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040097981 Selis May 2004 A1
20040101479 Burbank et al. May 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040116802 Jessop et al. Jun 2004 A1
20040116806 Burbank et al. Jun 2004 A1
20040124105 Seiler et al. Jul 2004 A1
20040127765 Seiler et al. Jul 2004 A1
20040162574 Viola Aug 2004 A1
20040167619 Case et al. Aug 2004 A1
20040193044 Burbank et al. Sep 2004 A1
20040204660 Fulton et al. Oct 2004 A1
20040210208 Paul et al. Oct 2004 A1
20040213756 Michal et al. Oct 2004 A1
20040236211 Burbank et al. Nov 2004 A1
20040236212 Jones et al. Nov 2004 A1
20040236213 Jones et al. Nov 2004 A1
20040253185 Herweck et al. Dec 2004 A1
20050020916 MacFarlane et al. Jan 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050033195 Fulton et al. Feb 2005 A1
20050036946 Pathak et al. Feb 2005 A1
20050045192 Fulton et al. Mar 2005 A1
20050059887 Mostafavi et al. Mar 2005 A1
20050059888 Sirimanne et al. Mar 2005 A1
20050063908 Burbank et al. Mar 2005 A1
20050065354 Roberts Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050080337 Sirimanne et al. Apr 2005 A1
20050080339 Sirimanne et al. Apr 2005 A1
20050085724 Sirimanne et al. Apr 2005 A1
20050100580 Osborne et al. May 2005 A1
20050113659 Pothier et al. May 2005 A1
20050119562 Jones et al. Jun 2005 A1
20050143650 Winkel Jun 2005 A1
20050143656 Burbank et al. Jun 2005 A1
20050165305 Foerster et al. Jul 2005 A1
20050175657 Hunter et al. Aug 2005 A1
20050181007 Hunter et al. Aug 2005 A1
20050234336 Beckman et al. Oct 2005 A1
20050268922 Conrad et al. Dec 2005 A1
20050273002 Goosen et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20060004440 Stinson Jan 2006 A1
20060009800 Christianson et al. Jan 2006 A1
20060025795 Chesbrough et al. Feb 2006 A1
20060036158 Field et al. Feb 2006 A1
20060036159 Sirimanne et al. Feb 2006 A1
20060036165 Burbank et al. Feb 2006 A1
20060074443 Foerster et al. Apr 2006 A1
20060079770 Sirimanne et al. Apr 2006 A1
20060079805 Miller et al. Apr 2006 A1
20060079829 Fulton et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060155190 Burbank et al. Jul 2006 A1
20060173280 Goosen et al. Aug 2006 A1
20060173296 Miller et al. Aug 2006 A1
20060177379 Asgari Aug 2006 A1
20060217635 McCombs et al. Sep 2006 A1
20060235298 Kotmel et al. Oct 2006 A1
20060241385 Dietz Oct 2006 A1
20060241411 Field et al. Oct 2006 A1
20070021642 Lamoureux et al. Jan 2007 A1
20070038145 Field Feb 2007 A1
20070057794 Gisselberg et al. Mar 2007 A1
20070083132 Sharrow Apr 2007 A1
20070087026 Field Apr 2007 A1
20070135711 Chernomorsky et al. Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167749 Yarnall et al. Jul 2007 A1
20070239118 Ono et al. Oct 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080091120 Fisher Apr 2008 A1
20080097199 Mullen Apr 2008 A1
20080188768 Zarins et al. Aug 2008 A1
20080269638 Cooke et al. Oct 2008 A1
20090000629 Hornscheidt et al. Jan 2009 A1
20090024225 Stubbs Jan 2009 A1
20090069713 Adams et al. Mar 2009 A1
20090076484 Fukaya Mar 2009 A1
20090093714 Chesbrough et al. Apr 2009 A1
20090131825 Burbank et al. May 2009 A1
20100010341 Talpade et al. Jan 2010 A1
20100030072 Casanova et al. Feb 2010 A1
20100030149 Carr, Jr. Feb 2010 A1
20100121445 Corbitt, Jr. May 2010 A1
20110028836 Ranpura et al. Feb 2011 A1
20110184280 Jones et al. Jul 2011 A1
20120078086 Hoffa Mar 2012 A1
20120078087 Curry Mar 2012 A1
20120078092 Jones et al. Mar 2012 A1
20120116215 Jones et al. May 2012 A1
Foreign Referenced Citations (53)
Number Date Country
1029528 May 1958 DE
0146699 Jul 1985 EP
0255123 Feb 1988 EP
0292936 Nov 1988 EP
0386936 Sep 1990 EP
0458745 Nov 1991 EP
0475077 Mar 1992 EP
0481685 Apr 1992 EP
0552924 Jul 1993 EP
0769281 Apr 1997 EP
1114618 Jul 2001 EP
1163888 Dec 2001 EP
1216721 Jun 2002 EP
1281416 Jun 2002 EP
1364628 Nov 2003 EP
1493451 Jan 2005 EP
1767167 Mar 2007 EP
2646674 Nov 1990 FR
708148 Apr 1954 GB
2131757 May 1990 JP
8906978 Aug 1989 WO
9112823 Sep 1991 WO
9314712 Aug 1993 WO
9317671 Sep 1993 WO
9317718 Sep 1993 WO
9416647 Aug 1994 WO
9507057 Mar 1995 WO
9608208 Mar 1996 WO
9806346 Feb 1998 WO
9908607 Feb 1999 WO
9930764 Jun 1999 WO
9935966 Jul 1999 WO
9951143 Oct 1999 WO
0023124 Apr 2000 WO
0024332 May 2000 WO
0028554 May 2000 WO
0038579 Jul 2000 WO
0054689 Sep 2000 WO
0108578 Feb 2001 WO
0170114 Sep 2001 WO
0207786 Jan 2002 WO
0241786 May 2002 WO
03000308 Jan 2003 WO
2004045444 Jun 2004 WO
2004105626 Dec 2004 WO
2005013832 Feb 2005 WO
2005039446 May 2005 WO
2005089664 Sep 2005 WO
2006056739 Jun 2006 WO
2006097331 Sep 2006 WO
2006105353 Oct 2006 WO
2007069105 Jun 2007 WO
2008077081 Jun 2008 WO
Non-Patent Literature Citations (17)
Entry
Fajardo, Laurie, et al., “Placement of Endovascular Embolization Microcoils to Localize the Site of Breast Lesions Removed at Stereotactic Core Biopsy”, Radiology, Jan. 1998, pp. 275-278, vol. 206—No. 1.
H. J. Gent, M.D., et al., Stereotaxic Needle Localization and Cytological Diagnosis of Occult Breast Lesions, Annals of Surgery, Nov. 1986, pp. 580-584, vol. 204—No. 5.
Press release for Biopsys Ethicon Endo-Surgery (Europe) GmbH; The Mammotome Vacuum Biopsy System. From: http://www.medicine-news.com/articles/devices/mammotome.html. 3 pages, Jun. 6, 2000.
Johnson & Johnson: Breast Biopsy (minimally invasive): Surgical Technique: Steps in the Mamotome Surgical Procedure. From http://www.jnjgateway.com. 3 pages, Jun. 6, 2000.
Johnson & Johnson: New Minimally Invasive Breast Biopsy Device Receives Marketing Clearance in Canada; Aug. 6, 1999. From http://www.jnjgateway.com. 4 pages, Jun. 6, 2000.
Johnson & Johnson: Mammotome Hand Held Receives FDA Marketing Clearance for Minimally Invasive Breast Biopises; Sep. 1, 1999. From From http://www.jnjgateway.com. 5 pages.
Johnson & Johnson: the Mammotome Breast Biopsy System. From: http://www.breastcareinfo.com/aboutm.htm. 6 pagaes, Jun. 6, 2000.
Cook Incorporated: Emoblization and Occlusion. From: www.cookgroup.com 6 pages, 1997.
Liberman, Laura, et al. Percutaneous Removal of Malignant Mammographic Lesions at Stereotactic Vacuum-assisted Biopsy. From: The Departments of Radiology, Pathology, and Surgery. Memorial Sloan-Kettering Cancer Center. From the 1997 RSNA scientific assembly. vol. 206, No. 3. pp. 711-715.
Armstong, J.S., et al., “Differential marking of Excision Planes in Screened Breast lesions by Organically Coloured Gelatins”, Journal of Clinical Pathology, Jul. 1990, No. 43 (7) pp. 604-607, XP000971447 abstract; tables 1,2.
Fucci, V., et al., “Large Bowel Transit Times Using Radioopaque Markers in Normal Cats”, J. of Am. Animal Hospital Assn., Nov.-Dec. 1995 31 (6) 473-477.
Schindlbeck, N.E., et al., “Measurement of Colon Transit Time”, J. of Gastroenterology, No. 28, pp. 399-404, 1990.
Shiga, et al., Preparation of Poly(D, L-lactide) and Copoly(lactide-glycolide) Microspheres of Uniform Size, J. Pharm. Pharmacol. 1996 48:891-895.
Eiselt, P. et al, “Development of Technologies Aiding Large—Tissue Engineering”, Biotechnol. Prog., vol. 14, No. 1, pp. 134-140, 1998.
Jong-Won Rhie, et al. “Implantation of Cultured Preadipocyte Using Chitosan/Alginate Sponge”, Key Engineering Materials, Jul. 1, 2007, pp. 346-352, XP008159356, ISSN: 0252-1059, DOI: 10.4028/www.scientific.net/KEM.342-343.349, Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul Korea.
Collagen—Definitions from Dictionary. com.
Fibrous—Definitions from Dictionary.com.
Related Publications (1)
Number Date Country
20120215230 A1 Aug 2012 US
Continuations (2)
Number Date Country
Parent 12592020 Nov 2009 US
Child 13458206 US
Parent 10174401 Jun 2002 US
Child 12592020 US