The invention relates to manifold plumbing systems that are controls for hot and cold water feeds which are cross-linked by a cross-linking high energy electron beam. More particularly, there is provided plumbing manifolds comprising cross-linked polyethylene and cross-linked metallocene polyethylene.
Plumbing manifolds are control centers for hot and cold water that feed supply lines to individual fixtures. Separated manifold chambers or separate manifolds can serve hot and cold water lines. The cold water manifold is fed from the main water supply line and hot water manifold is fed from the water heater. A water line dedicated to each fixture employs a port in the manifold.
Important requirements in hot and cold water domestic plumbing systems are:
“Un-cross-linked” polyethylene (PE) as it is formed receives its basic dimension and wall thickness, is composed of long hydrocarbon string molecules forming a loosely held together array of hydrogen and carbon atoms which can be compared to a beaded curtain swaying in a breeze. This is basically the molecular composition of the PE which is available at hardware stores and is suitable only for non-critical applications. A material in this form is not suitable for heating and plumbing applications. Within a relatively short period of time the material fatigues under the stress of water temperature and pressure as well as temperature cycling and the beaded curtain of molecules splits open without resistance. By cross-linking the molecular “beads” (hydrocarbon string molecules) and forming cross-connections which are referred to as cross-linking bridges, the string molecules form a three dimensional network of hydrocarbon molecules. The “beaded curtain” becomes transformed into a fishing net with strength and stability.
In this way, the previously non-applicable PE is transformed, after cross-linking, into a completely different material with all the desired characteristics demanded for heating or plumbing. After the cross-linking of the PE, its molecular mobility is severely impeded by the cross-linking bridges between the string molecules. The material does not flow or melt and its form becomes stable against heat. The material holds it shape at all temperatures, even exposed to blow torch temperatures until it chars or burns. The thermoplastic has been transformed into a thermoset material by cross-linking, eliminating the melting point or liquid phase of the material.
There are basically two types of PE raw materials in use:
Low to Medium density (LD or MD PE) and High density (HD PE).
Low to Medium density polyethylene “SOFT PE” has a multi-branch string molecule shape which allows a lower to medium density formation of string molecules within the PE material.
High density polyethylene (HD PE) has a linear string molecule shape with only small slumps of branches, which allows for a higher density formation of string molecules within the PE material.
The material density affects the physical properties of the pipe material. HD PE or “HARD PE” has a higher resistance to stress cracking and chemical solvents, high tensile strength, higher resistance to deformation and is less permeable to oxygen.
Chemical cross-linking techniques include: Peroxide cross-linking, Silane cross-linking and AZO cross-linking. Three methods of peroxide cross-linking are the Engel, PAM and DAOPLAST methods. Chemical cross-linking may not be acceptable for use with drinking water.
Cross-linking is primarily used with the resin before extrusion in order to obtain uniformity in the cross-linking in the finished product.
Polyethylene made with a metallocene catalyst has specific properties. Metallocene polyethylene is stronger than low density polyethylene (LD PE) and linear low density polyethylene (LL PE) and has a higher molecular weight than polyethylene made by the Ziegler-Natta process. Preferred metallocene are the Zirconocenes, which are elastomeric thermoplastics which have a zirconium ion. Other metallocene catalysts are ferrocene (iron) and titanocene (titanium).
The invention provides an improvement in plumbing manifolds by molding a manifold by conventional methods utilizing polyethylene or metallocene polyethylene and then subjecting the resultant product to cross-linking by a high energy electron beam to form a three dimensional cross-linking network between the PE molecules.
Advantageously the formed manifold is subject to electron beam radiation of about 2 to 40 m Rads.
It is an object of the invention to provide a plumbing manifold which can be used at high pressures and temperatures.
It is a further object of the invention to provide a manifold which does not have joints that can develop leaks.
It is another object of the invention to provide a monolithic plumbing manifold.
It is another object of the invention to provide a cross-linked polyethylene manifold having greater impact resistance and tensile strength.
It is yet another object to provide a plumbing manifold which can withstand high temperatures and pressures.
It is still another object of the invention to provide a multi-outlet and inlet manifold which can be easily cut into sections.
The objects and advantages of the present invention can be better understood from a reading of the preferred embodiments and in view of the drawings wherein:
According to the present invention there is provided a polyethylene manifold for use in hot water and cold water plumbing systems having improved strength and for use in higher temperatures and pressures. More particularly, there is provided a cross-linked plumbing manifold which is prepared by subjecting a polyethylene manifold which has been molded into a monolithic structure and then subjecting the manifold to cross-linking by irradiation with a high energy electron beam of about 2 to 40 m Rads to produce a cross-linked thermoset structure.
The polyethylene can be low density polyethylene, linear low density polyethylene, high density polyethylene or metallocene polyethylene.
As shown in
An advantage of the manifold (10) is that it can be easily cut in parts by cutting or sawing through the tubular body (11) to employ as many of the tubular portions (12) as required and the ends can then be fitted with a gripper, plug or other fitting as required. The manifold is irradiated by electron beam radiation before cutting.
Zirconocenes generally have a dart drop impact value of >1200, a puncture force of about 10.7 lbs/mil, and a puncture energy of about 40.0 lbs/mil.
While the invention is described herein in connection with a preferred embodiment, it will be understood that it is not intended to limit the invention to that embodiment. It is intended to cover all alternatives, modifications, equivalents and variations of that embodiment and its features as may be made by those skilled in the art within the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3779068 | Forsythe | Dec 1973 | A |
3791679 | Glover | Feb 1974 | A |
4238131 | Cleveland | Dec 1980 | A |
4343864 | Berejka | Aug 1982 | A |
4361212 | Bolang et al. | Nov 1982 | A |
4524807 | Toliusis | Jun 1985 | A |
4954299 | Greig et al. | Sep 1990 | A |
5279319 | Fidelman | Jan 1994 | A |
5852143 | Sishta et al. | Dec 1998 | A |
5868439 | Schmidt | Feb 1999 | A |
6089263 | Dumser | Jul 2000 | A |
6114486 | Rowland et al. | Sep 2000 | A |
6325959 | Ek et al. | Dec 2001 | B1 |
6578605 | Cooper et al. | Jun 2003 | B2 |
6672324 | Jarvenkyla | Jan 2004 | B2 |
6736165 | Bender | May 2004 | B2 |
6907905 | Lumello | Jun 2005 | B2 |
7007716 | Smahl et al. | Mar 2006 | B2 |
20020007861 | Hansen et al. | Jan 2002 | A1 |
20020047265 | Karhu et al. | Apr 2002 | A1 |
20040132854 | Du Plessis et al. | Jul 2004 | A1 |
20060275572 | Bonnet et al. | Dec 2006 | A1 |
20090246433 | Michie et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
WO9828135 | Jul 1998 | WO |
WO 2004072168 | Aug 2004 | WO |