Plunger and methods of producing hydrophobic surfaces

Information

  • Patent Grant
  • 9914849
  • Patent Number
    9,914,849
  • Date Filed
    Friday, September 14, 2012
    12 years ago
  • Date Issued
    Tuesday, March 13, 2018
    6 years ago
Abstract
Highly durable hydrophobic and/or oleophobic coatings and methods and compositions for their production are described herein. Also described herein is a plunger having a hydrophobic surface prepared using the coating compositions described herein.
Description
BACKGROUND

A plunger is the most common household article used to clear clogged plumbing fixtures such as drains, toilets, and sinks. As seen in FIG. 1, the plunger generally consists of two parts: (1) a cup and (2) a handle. With a slightly modified cup, which has a skirt (3) protruding from the cup (FIG. 2), the plunger is used for industrial applications such as in hotels. The plunger cup typically consists of rubber or a flexible polyvinyl chloride (PVC) material. PVC is sometimes prepared as a composite with fillers such as thermoplastic rubber (TPR), and up to 35% of the fillers is added to the PVC for optimizing flexibility and hardness of the plunger cup. The handle is typically wood or solid plastic, but other materials such as clear acrylic are used.


Regardless of the materials used to construct a plunger or the exact form of the cup, plungers operate by making a seal with the plumbing fixture's surfaces after which the application of pressure on the flexible cup through the handle creates a pressure that clears clogs. The number of times pressure must be applied to the handle to create a plunging action depends on the severity of the clog.


After use, the plunger (cup and handle) typically are covered in materials originally destined for the sewer, such as toilet water and/or other materials such as fecal matter. That water and other materials tend to drip onto the floor when the plunger is removed from the toilet and contaminate any surface it comes into contact with. Not only is the water dripping on the floor highly undesirable with regard to the cleanliness of the bathroom and damage to the floor's surface but it also creates sites for bacterial growth.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a typical household drain plunger showing the cup (1) with an optional lip (8) and handle (2).i



FIG. 2 shows a typical industrial (heavy duty) plunger showing a handle and a cup with an optional lip (8) and skirt (3) protruding from the lower edge of the cup.



FIG. 3 shows an embodiment of a plunger with a hydrophobic (superhydrophobic) coating applied to the cup and a portion (about one-half of the length) of the handle.



FIG. 4 shows another embodiment of a plunger with a hydrophobic (superhydrophobic) coating applied to the cup.



FIG. 5 shows another embodiment of an industrial plunger with a hydrophobic (superhydrophobic) coating applied to the cup and a portion of the handle.



FIG. 6, shows arithmetical mean roughness (Ra) and ten-point mean roughness (Rz).





DESCRIPTION OF EMBODIMENTS OF THE DISCLOSURE

Embodiments of this disclosure, which are described herein, provide for a plunger coated in whole or in part with a hydrophobic or superhydrophobic coating that can be used to clear plumbing while advantageously resisting becoming wet and fouled with materials intended for disposal via the drain. The plunger resists wetting and fouling even after dozens or even hundreds of uses, which can be measured by individual compressions of the plunger cup via pressure applied to the handle. In some embodiments, less than about 0.2, about 0.5, about 1, about 2, about 3, or about 4 grams of water remain bound by adhesion to the surface of the plunger after immersion in water at about 20° C., even after the plunger cup has been compressed more than about 300 times by applying force to the handle.


Embodiments of the plungers described herein that resist wetting and fouling by materials intended for the sewer can provide one or more of a variety of advantages. For example, they can be removed from plumbing fixtures after use with little or no dripping of materials onto the floor and other nearby objects, thus keeping floors and nearby surfaces dry and clean. Embodiments of the plungers described herein also reduce or eliminate the odor associated with used plungers. In addition, bacterial (microbial) growth is less likely to occur on the hydrophobic coatings described herein, whether applied to plungers or other objects, as there will be a limited amount of accumulated water and/or other materials to support growth. Bacterial (microbial) growth can be further suppressed by incorporating a number of different antibacterial and/or antifungal agents into the coatings described herein including, but not limited to, zinc pyrithione, zinc di(lower alkyl)dithiocarbamate (e.g., zinc dimethyldithiocarbamate) and silver (e.g., colloidal silver or silver nanoparticles typically in the range of 1-50 ppm or 10-30 ppm).


In some embodiments, the coatings applied to all or a part of the plungers described herein will not only be hydrophobic, but also oleophobic. Plungers that are oleophobic in addition to being hydrophobic will further resist wetting and contamination by materials, including fecal matter, that are intended for the sewer. Such plungers will further limit the growth of bacteria by limiting the amount of material present to support its growth.


Embodiments of the plungers described herein are thus suitable for use in clearing plumbing including clogged toilets, sinks and drain pipes connected to toilets and sinks, including embodiments that are adapted for industrial use. The shape of the cup (oval, circular etc.) may be made in a variety of widths adapted to clearing specific types of plumbing fixtures. In addition, the use of one or more rubbers to prepare cups having suitable stiffness and resilience can permit embodiments of the plungers described herein to adapt their contours to the surface of plumbing fixtures.


1.0 DEFINITIONS

For the purposes of this disclosure a hydrophobic coating is one that results in a water droplet forming a surface contact angle exceeding about 90° and less than about 150° at room temperature (about 18 to about 23° C.). Similarly, for the purposes of this disclosure a superhydrophobic coating is one that results in a water droplet forming a surface contact angle exceeding about 150° but less than the theoretical maximum contact angle of about 180° at room temperature. The term hydrophobic includes superhydrophobic, and may be limited to superhydrophobic, unless stated otherwise.


For the purposes of this disclosure an oleophobic material or surface is one that results in a droplet of light mineral oil forming a surface contact angle exceeding about 25° and less than the theoretical maximum contact angle of about 180° at room temperature.


Durability, unless stated otherwise, refers to the resistance to loss of hydrophobic properties due to mechanical abrasion or flexing.


Moiety or moieties, for the purpose of this disclosure, refers to a chemical group (e.g., alkyl group, fluoroalkyl group, haloalkyl group) bound directly or indirectly (e.g., covalently) to another part of a molecule or another substance or material (e.g., a first or second particle). A moiety also includes chemical components of materials that are associated with a material (e.g., components of first or second particles) that are not covalently bound to the particles (e.g., siloxanes or silazanes associated with first or second particles).


Alkyl as used herein denotes a linear or branched alkyl radical. Alkyl groups may be independently selected from C1 to C20 alkyl, C2 to C20 alkyl, C4 to C20 alkyl, C6 to C18 alkyl, C6 to C16 alkyl, or C6 to C20 alkyl. Unless otherwise indicated, alkyl does not include cycloalkyl. Cycloalkyl groups may be independently selected from: C4 to C20 alkyl comprising one or two C4 to C8 cycloalkyl functionalities; C4 to C20 alkyl comprising one or two C4 to C8 cycloalkyl functionalities; C6 to C20 alkyl comprising one or two C4 to C8 cycloalkyl functionalities; C6 to C18 alkyl comprising one or two C4 to C8 cycloalkyl functionalities; and C6 to C16 alkyl comprising one or two C4 to C8 cycloalkyl functionalities. One or more hydrogen atoms of the alkyl groups may be replaced by fluorine atoms to form fluoroalkyl groups.


Lower alkyl as used herein denotes a C1 to C6 alkyl group.


Haloalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by halogen atoms. Halogen atoms may be limited to chlorine or fluorine atoms in haloalkyl groups.


Fluoroalkyl as used herein denotes an alkyl group in which some or all of the hydrogen atoms present in an alkyl group have been replaced by fluorine atoms.


Perfluoroalkyl as used herein denotes an alkyl group in which fluorine atoms have been substituted for each hydrogen atom present in the alkyl group.


For the purpose of this disclosure, when content is indicated as being present on a “weight basis” the content is measured as the percentage of the weight of components indicated, relative to the total weight of the binder system. When a liquid component such as a commercial binder product is used, the weight of the liquid component is used to calculate the weight basis, without regard to the relative amounts of solute and solvent that might be present in the commercial product. Thus, for example, when Polane® is used as a binder, the weight basis is calculated using the weight of the Polane® prepared as instructed by the manufacturer, without regard to the proportions of polyurethane solute and organic solvents. Optional solvents that are separately added to a composition merely to, for example, dilute the composition to a thickness suitable for spraying, are not included in the calculation of content on a weight basis.


Water-based as used herein to refer to binders refers to liquid compositions that comprise water or which can be diluted with water (e.g., to reduce viscosity). Water-based binder compositions include solutions, dispersions, suspensions, emulsion gels and the like.


The term metalloid includes the elements B, Si, Sb, Te and Ge. Oxides of metalloids or metalloid oxides include, but are not limited to, oxides of B, Si, Sb, Te, and Ge, such as SiO2.


2.0 PLUNGER CUPS

Referring now to FIG. 1, embodiments of plunger cups disclosed herein may take many forms. Generally, the cups are shaped to have a concave inner surface (4) and a convex outer surface (5) to which a handle is attached at a point that can be reinforced or are built to conform to an end of the handle (9). The inner surface and outer surface meet at a rim (7) that may have an optional lip (8) attached. The point where the handle is attached may be reinforced to provide an adequate strength to the joint and to spread the force applied to the cup from the handle. The shape at the point where the handle attaches to the outer surface of the cup may thus depart from a convex shape. A cross section (6) through the cup parallel to the rim and generally perpendicular to the long axis of the handle is generally circular, oval, elliptical, or oblate. In addition to the cups shown in the accompanying drawings, some examples of suitable cup shapes can be observed in U.S. Pat. Nos. 4,622,702 and 4,768,237, the disclosures of which are incorporated herein by reference in terms of their disclosures of plunger-cup shapes.


Referring to FIG. 2, in some embodiments, particularly industrial embodiments, the cup may be fitted with a “skirt” (3), which assists in conforming the plunger to the shape of the plumbing fixtures. The skirts are generally cylindrical sections of material that attach to, or just inside of, the rim of the cup. The skirt may narrow slightly as it extends away from the cup. Skirts, when present, are generally made from the same material as the cup, and in one piece with the cup, although they also can be made of a different material.


In embodiments described herein, plunger cups may be made from a resilient material that is resistant to water. In some embodiments the plunger consists of rubber (natural or synthetic) or a flexible polyvinyl chloride (PVC) material. Where PVC is employed, it may be prepared as a composite with fillers such as thermoplastic rubber (TPR), which may be added in an amount, e.g., up to 35% (by weight) or more, to impart desirable properties such as increasing the flexibility of the PVC while providing appropriate hardness and resilience. In other embodiments, the cup may be made from a rubber selected from the group consisting of: nitrile rubber, acrylonitrile-butadiene (NBR), natural rubber, butadiene-type rubber, styrene-butadiene rubber, chloroprene, ethylene propylene diene modified rubber (EPDM), polyurethane rubber, butyl rubber, neoprene, isoprene, polyisoprene, halobutyl rubber, fluoroelastomers, epichlorohydrin rubber, polyacrylate rubber, chlorinated polyethylene rubber, hydrogenated SBR, hydrogenated NBR, carboxylated NBR, silicone rubber, or mixtures, copolymers or terpolymers thereof.


3.0 HANDLES

Handles of plungers are generally attached to the outer surface of the cup at a point where the cup can be effectively compressed to provide pressure to water and material clogging a plumbing fixture. Where the plungers are circular in cross section the handle is typically attached to the outer surface at a point that is approximately equidistant from the rim in all direction.


Handles for use with plungers can be made of any suitable rigid material including, but not limited to, wood, plastic, and metal. In some embodiments, the handles can be made of clear plastic such as acrylic. In some embodiments, the handles may be hollow with a fluid connection with the inside of the cup on one end, and at the other end may be connected to a source of water to supply pressure, as in U.S. Pat. No. 4,768,237, the disclosure of which is incorporated herein by reference in terms of the use of a hollow handle and a fluid connection. The handle also may be provided with a hydrophobic coating as described herein.


4.0 COATINGS

Coatings applied to the surfaces of the plungers described herein may be any coating that provides a hydrophobic coating that is sufficiently flexible to endure the repeated bending and flexing that the plunger cup will be exposed to during use without substantial loss of hydrophobicity


In some embodiments, the hydrophobic coatings applied to the plungers, and optionally to the handles, comprise: i) a binder; ii) first particles having a size of about 30 μm to about 225 μm; and iii) second particles having a size of about 1 nanometer (nm) to about 25 μm comprising one or more independently selected hydrophobic or oleophobic moieties.


In other embodiments, the hydrophobic coatings applied to the plungers comprise a base coat comprised of said binder and said first particles applied to said cup, and optionally applied to said handle, and a top coat comprised of second particles applied to the base coat after it has been applied to a surface (e.g., a surface of the plunger such as the cup or handle).


4.1 Binders


Binders used to prepare hydrophobic coatings may have a variety of compositions. One consideration in choosing a suitable binder is the compatibility between the surface to be coated and any solvent(s) used to apply the binder. Virtually any binder may be employed that is capable of adhering to the surface of the plunger while retaining sufficient flexibility so that it does not appreciably chip, crack, or peel away from the plunger cup when subjected to repeated flexing due to pressure applied to the plunger handle to the point that the hydrophobic nature of the coating is substantially reduced (i.e. the coating hydrophobicity or ability to shed water is not substantially reduced by more than 5%, 10%, 15%, 20% or 25% (e.g., where 100 mg of water might adhere to a plunger before being subject to 100 depressions by applying pressure to the handle, the plunger will not retain more than 105, 110, 125, 120, or 125 mg of water adhering to its surface). In some embodiments, the binders employed are hydrophobic in the absence of any added first or second particles, which can be advantageous in the preparation of hydrophobic and/or oleophobic coatings.


In some embodiments, the binders may be selected from lacquers, polyurethanes (including water based polyurethanes), fluoropolymers, or epoxies. In other embodiments the binders may be selected from lacquers, polyurethanes, or fluoropolymers. Binders may be hydrophilic, hydrophobic, or hydrophobic and oleophobic in the absence of the first and second particles described herein that alter the durability, hydrophobic and oleophobic properties of the binder.


Where the binders employed are hydrophilic, the coating, including first and second particles, can be given an application of a silanizing agent after it has been applied to the plunger.


Hydrophobic coatings applied to the surfaces, such as the surfaces of the plungers described herein, may be formed with binders having a broad range of thicknesses. In some embodiments the coatings will have a thickness in a range selected from about 10 μm to about 225 μm. Within this broad range are embodiments employing coatings of thicknesses that range from about 10 μm to about 25 μm, from about 25 μm to about 50 μm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, from about 15 μm to about 200 μm; from about 20 μm to about 150 μm; from about 30 μm to about 175 μm, and from about 50 μm to about 200 μm.


4.1.1 Lacquer Binders


Embodiments of the plunger described herein may employ lacquer binders. Lacquers may be used on a variety of surfaces that may be employed to make plungers and/or plunger handles, and are particularly useful in forming coatings on plastics, rubbers, woods and metals, including, but not limited to, steel, stainless steel, and aluminum. Lacquer binders typically are polymeric materials that are suspended or dissolved in carrier solvents and which dry to a hard finish, at least in part, by evaporation of the carrier solvents used to apply them. The polymeric binders present in lacquers include, but are not limited to, nitrocellulose and acrylic lacquers; each of which are suitable for use in preparing hydrophobic coatings.


In embodiments of plungers herein, hydrophilic lacquers may be employed as binders; particularly where the coating will be given an application of a silanizing agent after it has been applied to the substrate. In other embodiments, lacquers that are hydrophobic in the absence of first or second particles described below may be employed to prepare the coatings described herein.


In addition to the polymeric materials and solvents present in lacquers, a variety of other materials that enhance the properties of lacquers also may be present to impart one or more desirable properties. For example, such materials can provide not only color but also increased adhesion between the lacquer and the surface of the plunger upon which it is applied (i.e. the cup or handle).


A variety of commercial lacquer preparations may be used to prepare the durable coatings described herein. Among the commercial acrylic lacquers that may be employed are “Self-Etching Primer” (Eastwood Co., Pottstown, Pa.); DuPont™ VariPrime® 615S™ (DuPont™ Performance Coatings, Wilmington, Del.) and Nason® 491-17™ Etch Primer™ (DuPont™ Performance Coatings, Wilmington, Del.).


Lacquers may be used on a variety of surfaces, and are particularly useful in forming coatings on plastics, woods, rubbers, and metals, including, but not limited to, metals (e.g., steel, stainless steel, and aluminum).


4.1.2 Polyurethane Binders


A wide variety of polyurethanes, including those prepared in organic solvent or in water may be used to prepare hydrophobic and/or oleophobic coatings described herein. Polyurethanes are polymers consisting of a chain of organic units joined by urethane (carbamate) linkages. Polyurethane polymers are typically formed through polymerization of at least one type of monomer containing at least two isocyanate functional groups with at least one other monomer containing at least two hydroxyl (alcohol) groups. A catalyst may be employed to speed the polymerization reaction. Other components may be present in the polyurethane coating compositions to impart desirable properties including, but not limited to, surfactants and other additives that bring about the carbamate forming reaction(s) yielding a coating of the desired properties in a desired cure time.


In some embodiments, the polyurethane employed in the durable coatings may be formed from a polyisocyanate and a mixture of —OH (hydroxyl) and NH (amine) terminated monomers. In such systems the polyisocyanate can be a trimer or homopolymer of hexamethylene diisocyanate.




embedded image


Some solvents compatible with such systems include n-butyl acetate, toluene, xylene, ethyl benzene, cyclohexanone, isopropyl acetate, and methyl isobutyl ketone and mixtures thereof.


In some embodiments, polyurethanes that are hydrophobic, as applied in the absence of first or second particles as described below, may be employed to prepare the coatings described herein. Among the commercial polyurethanes that may be employed are the POLANE® family of polyurethanes from Sherwin-Williams (Cleveland, Ohio).


Polyurethanes may come as a single component ready to apply composition, or as a two or three part (component) system, as is the case with POLANE® products. For example POLANE® B can be prepared by mixing POLANE® B (typically six parts), a catalyst (e.g., typically one part of V66V27 or V66V29 from Sherwin-Williams), and a reducer (typically 25 to 33% of R7K84 from Sherwin-Williams). The “pot life” of mixed POLANE® B prepared in that manner is typically 6-8 hours.


A variety of water-based polyurethane compositions (aqueous polyurethane suspensions, emulsions, dispersions, gels etc.) may be used to prepare hydrophobic and/or oleophobic coatings described herein. Some commercially available water-based polyurethane compositions include POLANE® 700T and KEM AQUA® (Sherwin-Williams), and Bayhydrol 124 (Bayer Material Science) and may be used alone or in combination.


Polyurethane binders are compatible with, and show good adhesion to, a wide variety of surfaces. Using polyurethane binders, hydrophobic coatings may be formed on many, if not most, surfaces including, but not limited to, those of metals, glass, rubber and plastics.


4.1.3 Fluoropolymer Binders


In other embodiments, a wide variety of fluoropolymer compositions may be used as binders in the preparation of hydrophobic and/or oleophobic (HP/OP) coatings described herein. Fluoropolymers are polymers comprising one or more fluoroalkyl groups. In some embodiments, the fluoropolymers employed in the durable coatings may be formed from fluoroethylene/vinyl ether copolymer (FEVE). Fluoropolymers that are hydrophobic as applied, in the absence of first or second particles which are described further below, may be employed to prepare the coatings described herein. Among the commercial fluoropolymers that may be employed to prepare HP/OP coatings are LUMIFLON® family polymers (Asahi Glass Co., Toyko, Japan).


Fluoropolymers that may be employed as binders typically come as a two or three component system, as is the case with LUMIFLON® products. For example LUMIFLON® LF can be prepared by mixing 58 parts of LUMIFLON® LF-200, 6.5 parts of DESMODUR® N3300A (Bayer Material Sciences, Leverkusen, Germany), 2.5 parts of catalyst (DABCO® T12 ( 1/10,000 part), DABCO® (1,4-diazabicyclo[2.2.2]octane, 1/10,000 part), 1 part xylene), with 33 parts xylene. Unless otherwise noted, references to LUMIFLON®, particularly in the Examples, refer to LUMIFLON® LF. Fluoropolymer coatings such as LUMIFLON® can be applied to a variety of surfaces including wood, metal, rubber, and plastic.


4.2 First Particles


Embodiments of the coatings disclosed herein may comprise particles that are added to the binder compositions to improve the mechanical properties of the coatings, e.g., the durability of the hydrophobic and/or oleophobic coatings. A wide variety of such particles, which are denoted herein as “first particles” because the coatings described herein optionally may have one or more additional types of particles, and also are known as extenders or fillers, may be added to the binders. Such first particles that may be employed in the HP/OP coatings include, but are not limited to, particles comprising: wood (e.g., wood dust), glass, metals (e.g., iron, titanium, nickel, zinc, tin), alloys of metals, metal oxides, metalloid oxides (e.g., silica), plastics (e.g., thermoplastics), carbides, nitrides, borides, spinels, diamonds, and fibers (e.g., glass fibers).


Numerous variables may be considered in the selection of first particles. These variables include, but are not limited to, the effect the first particles have on the resulting coatings, their size, their hardness, their compatibility with the binder, the resistance of the first particles to the environment in which the coatings will be employed, and the environment the first particles must endure in the coating process, including resistance to temperature and solvent conditions.


In embodiments described herein, first particles have an average size in a range selected from about 1 micron (μm) to about 250 μm. Within this broad range, embodiments include ranges of first particles having an average size of from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 μm to about 25 μm, from about 5 μm to about 25 μm, from about 25 μm to about 50 μmm, from about 50 μm to about 75 μm, from about 75 μm to about 100 μm, from about 100 μm to about 125 μm, from about 125 μm to about 150 μm, from about 150 μm to about 175 μm, from about 175 μm to about 200 μm, from about 200 μm to about 225 μm, and from about 225 μm to about 250 μm. Also included within the broader range are embodiments employing particles in ranges of from about 10 μm to about 100 μm, from about 10 μm to about 200 μm, from about 20 μm to about 200 μm, from about 30 μm to about 50 μm, from about 30 μm to about 100 μm, from about 30 μm to about 200 μm, from about 30 μm to about 225 μm, from about 50 μm to about 100 μm, from about 50 μm to about 200 μm, from about 75 μm to about 150 μm, from about 75 μm to about 200 μm, from about 100 μm to about 225 μm, from about 100 μm to about 250 μm, from about 125 μm to about 225 μm, from about 125 μm to about 250 μm, from about 150 μm to about 200 μm, from about 150 μm to about 250 μm, from about 175 μm to about 250 μm, and from about 200 μm to about 250 μm.


First particles may be incorporated into binders at various ratios depending on the binder composition and the first particles' properties. In some embodiments, the first particles may have a content range selected from about 1% to about 60% or more by weight. Included within this broad range are embodiments in which the first particles are present, by weight, in ranges of from about 2% to about 5%, from about 5% to about 10%, from about 10% to about 15%, from about 15% to about 20%, from about 20% to about 25%, from about 25% to about 30%, from about 30% to about 35%, from about 35% to about 40%, from about 40% to about 45%, from about 45% to about 50%, from about 50% to about 55%, from about 55% to about 60%, and greater than 60%. Also included within this broad range are embodiments in which the first particles are present, by weight, in ranges of from about 4% to about 30%, from about 5% to about 25%, from about 5% to about 35%, from about 10% to about 25%, from about 10% to about 30%, from about 10% to about 40%, from about 10% to about 45%, from about 15% to about 25%, from about 15% to about 35%, from about 15% to about 45%, from about 20% to about 30%, from about 20% to about 35%, from about 20% to about 40%, from about 20% to about 45%, from about 20% to about 55%, from about 25% to about 40%, from about 25% to about 45%, from about 25% to about 55%, from about 30% to about 40%, from about 30% to about 45%, from about 30% to about 55%, from about 30% to about 60%, from about 35% to about 45%, from about 35% to about 50%, from about 35% to about 60%, or from about 40% to about 60% on a weight basis.


In some embodiments, where the first particles comprise or consist of glass spheres, the first particles may be present in any of the foregoing ranges or in a range of from about 1% to about 40%, from about 3% to about 45%, from about 10% to about 45%, or from about 2% to about 15% on a weight basis.


In other embodiments, where the first particles are a polyethylene or modified polyethylene, the particles may be present in a content range selected from any of the foregoing ranges, or in a range of from about 3% to about 20%, from about 3% to about 15%, or from about 3% to about 10% on a weight basis.


The incorporation of first particles can lead to a surface that is textured due to the presence of the first particles. In such embodiments, the presence of the first particles results in a surface texture that has elevations on the level of the coating formed. The height of the elevations due to the presence of the first particles can be from 0 (where the first particles are just below the line of the binder surface) to a point where the first particles are almost completely above the level of the binder coating (although they may still be coated with binder). Thus, the presence of first particles can result in a textured surface wherein the first particles cause such elevations in the binder that have maximum heights in a range of up to about 250 μm. Accordingly, such elevations can be present in ranges of from about 1 μm to about 5 μm, from about 1 μm to about 10 μm, from about 1 μm to about 15 μm, from about 1 μm to about 20 μm, from about 1 μm to about 25 μm, from about 1 μm to about 50 μm, from about 1 μm to about 75 μm, from about 1 μm to about 100 μm, from about 1 μm to about 125 μm, from about 1 μm to about 150 μm, from about 1 μm to about 175 μm, from about 1 μm to about 200 μm, from about 1 μm to about 225 μm, from about 1 μm to about 250 μm, from about 10 μm to about 80 μm, from about 15 μm to about 80 μm, from about 20 μm to about 100 μm, and from about 30 μm to about 70 μm.


The surface texture of coatings may also be assessed using the arithmetical mean roughness (Ra) or the ten point mean roughness (Rz) as a measure of the surface texture. In some embodiments, a coating as described herein has an arithmetical mean roughness (Ra) in a range selected from: about 0.2 μm to about 20 μm; about 0.3 μm to about 18 μm; about 0.2 μm to about 8 μm; about 8 μm to about 20 μm; or about 0.5 μm to about 15 μm. In other embodiments, a coating as described herein has a ten point mean roughness (Rz) in a range selected from: about 1 μm to about 90 μm; about 2 μm to about 80 μm; about 3 μm to about 70 μm; about 1 μm to about 40 μm; about 40 μm to about 80 μm; about 10 μm to about 65 μm; or about 20 μm to about 60 μm.


First particles may optionally comprise moieties that make them hydrophobic and/or oleophobic. Where it is desirable to introduce such moieties the particles may be reacted with reagents that covalently bind moieties that make them hydrophobic and/or oleophobic. In some embodiments, the reagents may be silanizing agents, such as those that introduce alkyl, haloalkyl, fluoroalkyl or perfluoroalkyl moieties (functionalities). In some embodiments the silanizing agents are compounds of formula (I) (i.e., R4-nSi—Xn), and the various embodiments of compounds of formula (I) described below for the treatment of second particles. The surface of many types of first particles can be activated to react with silanizing agents by various treatments including exposure to acids, bases, plasma, and the like, where necessary to achieve functionalization of the particles.


In embodiments described herein, the first particles are not modified by adding functional groups that impart one or more of hydrophobic and/or oleophobic properties to the particles (e.g., properties beyond the properties inherent to the composition forming the particles). In one such embodiment, first particles do not contain covalently bound alkyl, haloalkyl, fluoroalkyl or perfluoroalkyl functionalities (moieties). In another such embodiment, the first particles are not treated with a silanizing agent (e.g., a compound of formula (I)).


4.3 Exemplary Sources of First Particles


First particles may be prepared from the diverse materials described above. Alternatively, first particles may be purchased from a variety of suppliers. Some commercially available first particles that may be employed in the formation of the hydrophobic and/or oleophobic (HP/OP) coatings described herein include those in the accompanying Table I.









TABLE I







First Particles





















Particle

Crush




Filler
Filler
Filler
Filler
Density
Size Range

Strength


No.
ID
Type
Details
(g/cc)
(μm)
Color
(psi)
Source
Location



















1
K1
Glass
GPSa
0.125
30-120
White
250
3M ™
St. Paul,




Bubbles






MN


2
K15
Glass
GPSa
0.15
30-115
White
300
3M ™
St. Paul,




Bubbles






MN


3
S15
Glass
GPSa
0.15
25-95 
White
300
3M ™
St. Paul,




Bubbles






MN


4
S22
Glass
GPSa
0.22
20-75 
White
400
3M ™
St. Paul,




Bubbles






MN


5
K20
Glass
GPSa
0.2
20-125
White
500
3M ™
St. Paul,




Bubbles






MN


6
K25
Glass
GPSa
0.25
25-105
White
750
3M ™
St. Paul,




Bubbles






MN


7
S32
Glass
GPSa
0.32
20-80 
White
2000
3M ™
St. Paul,




Bubbles






MN


8
S35
Glass
GPSa
0.35
10-85 
White
3000
3M ™
St. Paul,




Bubbles






MN


9
K37
Glass
GPSa
0.37
20-85 
White
3000
3M ™
St. Paul,




Bubbles






MN


10
S38
Glass
GPSa
0.38
15-85 
White
4000
3M ™
St. Paul,




Bubbles






MN


11
S38HS
Glass
GPSa
0.38
15-85 
White
5500
3M ™
St. Paul,




Bubbles






MN


12
K46
Glass
GPSa
0.46
15-80 
White
6000
3M ™
St. Paul,




Bubbles






MN


13
S60
Glass
GPSa
0.6
15-65 
White
10000
3M ™
St. Paul,




Bubbles






MN


14
S60/HS
Glass
GPSa
0.6
11-60 
White
18000
3M ™
St. Paul,




Bubbles






MN


15
A16/500
Glass
Floated
0.16
35-135
White
500
3M ™
St. Paul,




Bubbles
Series





MN


16
A20/1000
Glass
Floated
0.2
30-120
White
1000
3M ™
St. Paul,




Bubbles
Series





MN


17
H20/1000
Glass
Floated
0.2
25-110
White
1000
3M ™
St. Paul,




Bubbles
Series





MN


18
D32/4500
Glass
Floated
0.32
20-85 
White
4500
3M ™
St. Paul,




Bubbles
Series





MN


19
H50/10000
Glass
Floated
0.5
20-60 
White
10000
3M ™
St. Paul,



EPX
Bubbles
Series





MN


20
iMK
Glass
Floated
0.6
8.6-26.7
White
28000
3M ™
St. Paul,




Bubbles
Series





MN


21
G-3125
Z-Light
CMb
0.7
50-125
Gray
2000
3M ™
St. Paul,




Spheres ™






MN


22
G-3150
Z-Light
CMb
0.7
55-145
Gray
2000
3M ™
St. Paul,




Spheres ™






MN


23
G-3500
Z-Light
CMb
0.7
55-220
Gray
2000
3M ™
St. Paul,




Spheres ™






MN


24
G-600
Zeeo-
CMb
2.3
1-40
Gray
>60000
3M ™
St. Paul,




spheres ™






MN


25
G-800
Zeeo-
CMb
2.2
 2-200
Gray
>60000
3M ™
St. Paul,




spheres ™






MN


26
G-850
Zeeo-
CMb
2.1
12-200
Gray
>60000
3M ™
St. Paul,




spheres ™






MN


27
W-610
Zeeo-
CMb
2.4
1-40
White
>60000
3M ™
St. Paul,




spheres ™






MN


28
SG
Extendo-
HSc
0.72
30-140
Gray
2500
Sphere
Chattanooga,




sphere ™





One
TN


29
DSG
Extendo-
HSc
0.72
30-140
Gray
2500
Sphere
Chattanooga,




sphere ™





One
TN


30
SGT
Extendo-
HSc
0.72
30-160
Gray
2500
Sphere
Chattanooga.




sphere ™





One
TN


31
TG
Extendo-
HSc
0.72
8-75
Gray
2500
Sphere
Chattanooga,




sphere ™





One
TN


32
SLG
Extendo-
HSc
0.7
10-149
Off
3000
Sphere
Chattanooga,




sphere ™



White

One
TN


33
SLT
Extendo-
HSc
0.4
10-90 
Off
3000
Sphere
Chattanooga,




sphere ™



White

One
TN


34
SL-150
Extendo-
HSc
0.62
70
Cream
3000
Sphere
Chattanooga,




sphere ™





One
TN


35
SLW-150
Extendo-
HSc
0.68
8-80
White
3000
Sphere
Chattanooga,




sphere ™





One
TN


36
HAT
Extendo-
HSc
0.68
10-165
Gray
2500
Sphere
Chattanooga,




sphere ™





One
TN


37
HT-150
Extendo-
HSc
0.68
8-85
Gray
3000
Sphere
Chattanooga,




sphere ™





One
TN


38
KLS-90
Extendo-
HSc
0.56
4-05
Light
1200
Sphere
Chattanooga,




sphere ™



Gray

One
TN


39
KLS-125
Extendo-
HSc
0.56
4-55
Light
1200
Sphere
Chattanooga,




sphere ™



Gray

One
TN


40
KLS-150
Extendo-
HSc
0.56
4-55
Light
1200
Sphere
Chattanooga,




sphere ™



Gray

One
TN


41
KLS-300
Extendo-
HSc
0.56
4-55
Light
1200
Sphere
Chattanooga,




sphere ™



Gray

One
TN


42
HA-300
Extendo-
HSc
0.68
10-146
Gray
2500
Sphere
Chattanooga,




sphere ™





One
TN


43
XIOM 512
Thermo-
MPRd
0.96
10-100
White
508
XIOM
West Babylon,




plastic





Corp.
NY


44
XIOM 512
Thermo-
MPRd
0.96
10-100
Black
508
XIOM
West Babylon,




plastic





Corp.
NY


45
CORVEL ™
Thermo-
Nylon
1.09
44-74 
Black

ROHM &
Philadelphia,



Black
plastic
Powder




HASS
PA



78-7001

Coating


46
Microglass
Fibers
MMEGFe
1.05
16X120
White

Fibertec
Bridgewater,



3082







MA


47
Microglass
Fibers
MMEGFe
0.53
10X150
White

Fibertec
Bridgewater,



9007D
Silane-






MA




Treated









4.4 Second Particles


Embodiments of the coatings disclosed herein also may employ second particles (e.g., nanoparticles), including those which bear hydrophobic moieties. A variety of second particles can be used to prepare the hydrophobic coatings applied to the plungers described herein. Suitable second particles have a size from about 1 nanometer (nm) to about 25 μm and are capable of binding covalently to one or more chemical moieties that provide the second particles, and the coatings into which they are incorporated, hydrophobicity and, when selected to include fluoroalkyl groups, oleophobicity.


In some embodiments the second particles may have an average size in a range selected from about 1 nm to about 25 μm or more. Included within this broad range are embodiments in which the second particles have an average size in a range of from about 1 nm to about 10 nm, from about 10 nm to about 25 nm, from about 25 nm to about 50 nm, from about 50 nm to about 100 nm, from about 100 nm to about 250 nm, from about 250 nm to about 500 nm, from about 500 nm to about 750 nm, from about 750 nm to about 1 μm, from about 1 μm to about 5 μm, from about 5 μm to about 10 μm, from about 10 μm to about 15 μm, from about 15 μm to about 20 μm, from about 20 μm to about 25 μm, from about 1 nm to about 100 nm, from about 2 nm to about 200 nm, from about 10 nm to about 200 nm, from about nm to about 400 nm, from about 10 nm to about 500 nm; from about 40 nm to about 800 nm, from about 100 nm to about 1 μm, from about 200 nm to about 1.5 μm, from about 500 nm to about 2 μm, from about 500 nm to about 2.5 μm, from about 1 μm to about 10 μm, from about 2 μm to about 20 μm, from about 2.5 μm to about 25 μm, from about 500 nm to about 25 μm, from about 400 nm to about 20 μm, from about 100 nm to about 15 μm, from about 1 nm to about 50 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 100 nm, from about 5 nm to about 200 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, or from about 20 nm to about 400 nm.


In the above-mentioned embodiments, the lower size of second particles may be limited to particles greater than about 20 nm, about 25 nm, about 30 nm, about 35 nm, about 40 nm, about 45 nm, about 50 nm, or about 60 nm; and the upper size of second particles may be limited to particles less than about 20 μm, about 10 μm, about 5 μm, about 1 μm, about 0.8 μm, about 0.6 μm, about 0.5 μm, about 0.4 μm, about 0.3 μm or about 0.2 μm. Limitations on the upper and lower size of second particles may be used alone or in combination with any of the above-recited size limits on particle composition, percent composition in the coatings, etc.


In some embodiments, the coatings may contain first particles in any of the above-mentioned ranges subject to either the proviso that the coatings do not contain only particles (e.g., first or second particles) with a size of 25 μm or less, or the proviso that the coatings do not contain more than an insubstantial amount of particles with a size of 25 μm or less (recognizing that separation processes for particles of size that is greater than 25 μm may ultimately provide an unintended, insubstantial amount of particles that are 25 μm or less).


In other embodiments, first particles have an average size greater than 30 μm and less than 250 μm, and do not contain substantial amounts of particles (e.g., first and second particles) with a size of 30 μm or less. In yet other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 40 μm or less, or particles with a size of 40 μm or less in substantial amounts. And in still other embodiments, the coatings do not contain only particles (e.g., first and second particles) with a size of 50 μm or less, or particles with a size of 50 μm or less in substantial amounts.


In other embodiments, such as where the second particles are prepared by fuming (e.g., fumed silica or fumed zinc oxide), the second particles may have an average size in a range selected from about 1 nm to about 50 nm; about 1 nm to about 100 nm; about 1 nm to about 400 nm; about 1 nm to about 500 nm; about 2 nm to about 120 nm; about 5 nm to about 100 nm; about 5 nm to about 200 nm; about 5 nm to about 400 nm; about 10 nm to about 300 nm; or about 20 nm to about 400 nm.


Second particles having a wide variety of compositions may be employed in the durable coatings described and employed herein. In some embodiments the second particles will be particles comprising metal oxides (e.g., aluminum oxides such as alumina, zinc oxides, nickel oxides, zirconium oxides, iron oxides, or titanium dioxides), or oxides of metalloids (e.g., oxides of B, Si, Sb, Te and Ge) such as glass, silicates (e.g., fumed silica), or particles comprising combinations thereof. The particles are treated to introduce one or more moieties (e.g., groups or components) that impart hydrophobicity and/or oleophobicity to the particles, either prior to incorporation into the compositions that will be used to apply coatings or after incorporation into the coatings. In some embodiments, the second particles are treated with a silanizing agent, a siloxane or a silazane to incorporate groups that will provide hydrophobic and/or oleophobic properties to the particles (in addition to any such properties already possessed by the particles). When treated after incorporation into the coatings, only those particles at or near the surface that can be contacted with suitable agents such as silanizing agents will have moieties that impart hydrophobicity and/or oleophobicity associated with them.


In some embodiments, second particles are silica (silicates), alumina (e.g., Al2O3), titanium oxide, or zinc oxide, that are optionally treated with a silanizing agent.


In other embodiments, the second particles are silica (silicates), glass, alumina (e.g., Al2O3), titanium oxide, or zinc oxide, which optionally may be treated with a silanizing agent, a siloxane or a silazane. In some embodiments, the second particles may be prepared by fuming (e.g., fumed silica or fumed zinc oxide).


4.5 Some Sources of Second Particles


Second particles such as fumed silica may be purchased from a variety of suppliers, including but not limited to Cabot Corp., Billerica, Mass. (e.g., Nanogel® TLD201, CAB-O-SIL® TS-720, and M5 (untreated silica)) and Evonik Industries, Essen, Germany (e.g., ACEMATT® silica such as untreated HK400, AEROXIDE® TiO2 titanium dioxide, and AEROXIDE® Alu alumina).


Some commercially available second particles are set forth in Scheme I.












Scheme I













Nominal BET Surface





Area of Base Silica


COB-O-SIL Grade
Surface Treatment
Level of Treatment
(m2/g)





M-5
None
None
200


TS-610
Dimethyldichlorosilane
Intermediate
130


TS-530
Hexamethyldisilazane
High
320


TS-382
Octyltrimethoxysilane
High
200


TS-720
Polydimethylsilixone
High
200





Data from Cabot Corp. website.


Dimethyldichlorosilane




embedded image

Hexamethyldisilazane





embedded image

Polydimethylsiloxane





embedded image

Octyltrimethoxysilane





embedded image









As purchased, the second particles may be untreated (e.g., M5 silica) and may not posses any HP/OP properties. Such untreated particles can be treated to covalently attach one or more groups or moieties to the particles that give them HP/OP properties, for example, by treatment with the silanizing agents discussed above.


5.0 HYDROPHOBIC AND OLEOPHOBIC MOIETIES OF FIRST AND/OR SECOND PARTICLES

As discussed above, both the first and second particles may comprise one or more independently selected moieties that impart hydrophobic and/or oleophobic properties to the particles, and the coatings into which they are incorporated. As also noted above, such chemical entities may be inherently associated with the particles themselves and/or added by way of treating the particles. Although first particles may be treated to make them hydrophobic and/or oleophobic either before or after incorporation into the coating compositions described herein, the second particles typically will be treated with agents that introduce such moieties before being incorporated into the coatings described herein. It is also possible to treat the coating after it is applied to a surface with agents that modify the second particles and introduce hydrophobic and/or oleophobic properties. In such circumstances, other components of the coating (e.g., the binder or first particles) may also become modified by the agent.


In some embodiments, the second particles will bear one or more alkyl, haloalkyl, fluoroalkyl, and perfluoroalkyl moieties. Such moieties can be covalently bound directly or indirectly to the second particles, such as through one or more intervening silicon or oxygen atoms.


In other embodiments, the second particles will bear one or more alkyl, haloalkyl, fluoroalkyl, and perfluoroalkyl moieties of the formula R3-nSi—, where n is from 1-3, that are directly or indirectly (e.g., covalently) bound to the second particles, such as through one or more intervening atoms.


5.1 Silanizing Agents and their Use


A variety of silanizing agents (e.g., compounds of the formula R4-nSi—Xn) can be employed to introduce moieties, e.g., R3-nSi— groups (where n is an integer from 0 to 2), to the first or second particles prior to or subsequent to their introduction into the coatings described herein. Suitable silanizing agents typically have both leaving groups and terminal functionalities. Terminal functionalities are groups that are not displaced by reaction of a silanizing agent with silica second particles (e.g., R groups of compounds of the formula (I)). Leaving groups are those groups that are displaced from silanizing agents upon reaction to form bonds with the second particles.


Prior to reacting first or second particles with silanizing agents, the particles may be treated with an agent that will increase the number of sites available for reaction with the silanizing agent (e.g., SiCl4, Si(OMe)4, Si(OEt)4, SiCl3CH3, SiCl3CH2SiCl3, SiCl3CH2CH2SiCl3, Si(OMe)3CH2Si(OMe)3, Si(OMe)3CH2CH2Si(OMe)3, Si(OEt)3CH2Si(OEt)3, or Si(OEt)3CH2CH2Si(OEt)3 and the like). Treatment with such agents is conducted, e.g., with a 1% to 5% solution of the agent in a suitable solvent (e.g., hexane), although higher concentrations may be employed (e.g., about 5% to about 10%). Where agents such as SiCl4 or Si(OMe)4 are employed to increase the number of sites available for reaction with silanizing agents, the surface may first be treated with SiCl4 followed by reaction with water to replace the chlorines with OH groups that react effectively with silanizing agents such as those of formula (I). Reaction with silanizing agents is typically conducted using a silanizing agent in the range of about 1% to about 2% w/v, although concentrations in the range of about 2% to about 5% w/v may also be used. Depending on the reagents employed, the reaction, which often can be conducted at room temperature, is typically conducted for 1 hour to 6 hours, although reaction for as long as 24 hours may be desirable in some instances. Skilled artisans will appreciate that concentrations and reaction times and conditions other than those described above also might be able to be used.


In some embodiments, silanizing agents are compounds of the formula (I):

R4-nSi—Xn  (I)


where n is an integer from 1-3;

    • each R is independently selected from
      • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
      • (ii) C1 to 20 alkyl optionally substituted with one or more independently selected substituents selected from fluorine atoms and C6-14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iii) C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents;
      • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy; and
      • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2-12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1-4;
    • each X is an independently selected —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, or —N(R3)2 group;
    • each R2 is an independently selected C1 to 4 alkyl or haloalkyl group; and
    • each R3 is an independently selected H, C1 to 4 alkyl, or haloalkyl group.


In some embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms.


In other embodiments, R is an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms and n is 3.


In other embodiments, R is an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms and n is 3.


In other embodiments, R is an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms and n is 3.


In other embodiments, R has the form —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4.


In any of the previously mentioned embodiments of compounds of formula (I), the value of n may be varied such that 1, 2 or 3 independently selected terminal functionalities are present in compounds of formula (I). Thus, in some embodiments, n is 3. In other embodiments, n is 2, and in still other embodiments, n is 1.


In any of the previously mentioned embodiments of compounds of formula (I), all halogen atoms present in any one or more R groups may be fluorine.


In any of the previously mentioned embodiments of compounds of formula (I), X may be independently selected from H, Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In other embodiments, X may be selected from Cl, —OR2, —NHR3, —N(R3)2, or combinations thereof. In still other embodiments, X may be selected from —Cl, —NHR3, —N(R3)2 or combinations thereof.


Any coating described herein may be prepared with one, two, three, four or more compounds of formula (I) employed alone or in combination to modify the first or second particles, and/or other components of the coating. For example, the same or different compounds of formula (I) may be employed to modify both the first particles and the binder.


The use of silanizing agents of formula (I) to modify first or second particles, or any of the other components of the coatings, will introduce one or more R3-nXnSi— groups (e.g., R3Si—, R2X1Si—, or RX2Si— groups) where R and X are as defined for a compound of formula (I). The value of n is 0, 1, or 2, due to the displacement of at least one “X” substituent and formation of at least one bond between a particle and the Si atom (the bond between the particle and the silicon atom is indicated by a dash “-” (e.g., R3Si—, R2X1Si—, or RX2Si— groups).


Exemplary reagents that can be employed to prepare first or second particles with hydrophobic and/or oleophobic properties include silanizing agents such as those that are commercially available from Gelest, Inc., Morrisville, Pa. Such silanizing agents include, but are not limited to, the following compounds, which are identified by their chemical name followed by the commercial supplier reference number (e.g., their Gelest reference in parentheses): (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO06645.0); n-octyltriethoxysilane (SIO06715.0); and nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).


Two attributes of silanizing agents that may be considered for the purposes of their reaction with first or second particles and the introduction of hydrophobic or oleophobic moieties are the leaving group (e.g., X groups of compounds of the formula (I)) and the terminal functionality (e.g., R groups of compounds of the formula (I)). A silanizing agent's leaving group(s) can determine the reactivity of the agent with the first or second particle(s) or other components of the coating. Where the first or second particles are a silicate (e.g., fumed silica) the leaving group can be displaced to form Si—O—Si bonds. Leaving group effectiveness is ranked in the decreasing order as chloro>methoxy>hydro (H)>ethoxy (measured as trichloro>trimethoxy>trihydro>triethoxy). This ranking of the leaving groups is consistent with their bond dissociation energy. The terminal functionality determines the level of hydrophobicity that results from application of the silane to the surface.


In addition to the silanizing agents recited above, a variety of other silanizing agents can be used to alter the properties of first or second particles and to provide hydrophobic and/or oleophobic properties. In some embodiments, second particles may be treated with an agent selected from dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, polydimethylsiloxane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane. In such embodiments, the second particles may be silica. Silica second particles treated with such agents may have an average size in a range selected from about 1 nm to about 50 nm, from about 1 nm to about 100 nm, from about 1 nm to about 400 nm, from about 1 nm to about 500 nm, from about 2 nm to about 120 nm, from about 5 nm to about 150 nm, from about 5 nm to about 400 nm, from about 10 nm to about 300 nm, from about 20 nm to about 400 nm, or from about 50 nm to about 250 nm.


In addition to the silanizing agents recited above, which can be used to modify any one or more components of coatings (e.g., first and/or second particles), other agents can be employed including, but not limited to, one or more of: gamma-aminopropyltriethoxysilane, Dynasylan® A (tetraethylorthosilicate), hexamethyldisilazane, and Dynasylan® F 8263 (fluoroalkylsilane), any one or more of which may be used alone or in combination with the silanizing agent recited herein.


5.2 Use of Compounds Other than Silanizing Agents


Other agents also can be used to introduce hydrophobic and/or oleophobic moieties into second particles. The choice of such agents will depend on the functionalities available for forming chemical (covalent) linkages between hydrophobic/oleophobic moieties and the functional groups present on the surface of the second particles. For example, where second particle surfaces have, or can be modified to have, hydroxyl or amino groups, then acid anhydrides and acid chlorides of alkyl, fluoroalkyl, and perfluoroalkyl compounds may be employed (e.g., the acid chlorides: Cl—C(O)(CH2)4 to 18CH3; Cl—C(O)(CH2)4-10(CF2)2 to 14CF3; Cl—C(O)(CF2)4 to 18CF3 or the anhydrides of those acids).


5.3 Preparation of Plungers with Hydrophobic and Oleophobic Coatings.


As noted above, in addition to the hydrophobicity displayed against aqueous-based solutions, suspensions, and emulsions, the coatings described herein also have the ability to display oleophobic behavior, thereby further reducing the ability of materials destined for the sewer to attach to the surface of coated plungers. Oleophobicity will be exhibited by embodiments described herein, particularly when the coatings comprise fluorinated or perfluorinated alkyl groups bound to first or second particles (e.g., where the terminal functionality, that is the R group(s), of a silane of the formula R4-nSi—Xn, are fluorinated alkyl or perfluoroalkyl).


6.0 METHODS OF APPLYING HYDROPHOBIC AND OLEOPHOBIC COATINGS

6.1 Portion of the Plunger Coated


All or only a portion of the cup and/or handle may be coated with a hydrophobic coating according to this disclosure. As the cup is the portion of the plunger with the most surface area that contacts standing water and other materials that are to enter sewage lines, in some embodiments the cup is the only portion of the plunger that is coated with a hydrophobic coating. Likewise, as only a part of the handle is typically immersed in water during the unclogging operation, in other embodiments only the cup and the part of the handle closest to the cup are treated to provide them with a hydrophobic surface (e.g., by coating them). In some embodiments, less than one-half of the handle's length will be treated, and in other embodiments greater than one-half of the handle will be treated. In yet other embodiments, the entire plunger (the cup and handle) is treated/coated so that the surface of the plunger is hydrophobic. The application of hydrophobic coatings to household and industrial plungers are illustrated in FIGS. 3-5.


6.2 Application of Coatings by One-Step and Two-Step Processes


The hydrophobic coatings described herein may be applied to substrates (e.g., the surface of one or more parts of a plunger) using a variety of techniques, some of which can be grouped into one-step processes and two-step processes. Within each of those categories numerous variations may be employed.


In one-step embodiments, the coating composition is substantially applied in a single step to the surfaces of an object (e.g., a plunger) on which a hydrophobic surface is desired, although coatings applied by a one-step method may subsequently be treated in one or more steps with one or more agents to increase the hydrophobicity of the coating or to effect some other modification of the properties of the hydrophobic coating or plunger. Exemplary coating compositions that can be applied in one step comprise a binder and at least one type of first particle and at least one type of second particle bearing a hydrophobic moiety. In some such embodiments, the coating may be treated with an agent that comprises a silanizing agent (e.g., compositions comprising a compound of formula (I)). In other embodiments, hydrophobic coating compositions that comprise a binder and a first particle may be applied in a single step and subsequently treated by an agent comprising second particles according to this disclosure that, for example, bear hydrophobic and/or oleophobic chemical moieties such as fluoroalkyl groups.


In one embodiment, a one-step method of applying a coating to a substrate comprises applying a coating composition comprising: i) a binder; ii) first particles having a size of about 30 μm to about 225 μm; and iii) second particles having a size of about 1 nm to about 25 μm and bearing hydrophobic moieties. Optionally, one or more independently selected alkyl, haloalkyl, or perfluoroalkyl groups may be covalently bound, either directly or indirectly, to the second particles prior to their incorporation into the coating composition. One-step coating compositions may be diluted with any compatible solvents/liquids to assist in the application process.


In two-step methods, the coating composition is applied to a surface in two steps that comprise, respectively, the application of a first composition followed by the application of a second composition. In embodiments of a two-step method, the first composition comprises a binder and at least one type of first particles, and does not contain second particles that bear hydrophobic moieties. Once applied to the substrate, the first coating composition is termed a “substrate coating” or a “base coat(ing).” Following the application of the first coating composition, a second composition that is sometimes referred to as a “second coat(ing)” or “top coat(ing)” is applied to the base coating. The second composition comprises second particles bearing hydrophobic moieties (e.g., alkyl or fluoroalkyl groups such as those introduced by reacting second particles with silanizing agents such as those of formula (I)).


In another embodiment a two-step method of forming a coating on at least a portion of a surface comprises: i) applying a composition comprising a binder to said surface, and ii) applying to said binder on said surface second particles having a size of about 1 nm to about 25 μm, wherein said second particles comprise one or more independently selected hydrophobic or oleophobic moieties; and wherein said applying to said binder comprises spray coating said second particles using a stream of gas (the second particles typically comprise less than about 2% by weight of a VOC (e.g., a volatile solvent with a boiling point below 150° or 200° C. at 1 atmosphere such as hexane, ethanol, and the like). In one variation of that method the composition comprising a binder further comprises first particles. In such an embodiment the first particles may have a size of about 1 μm to about 100 μm or of about 30 μm to about 225 μm (either average diameter or minimum diameter in any dimension). First particles, and their dimensions, are described elsewhere in this disclosure.


Second particles applied as part of the second coating composition in a two-step method may be applied either as a suspension in a suitable solvent that is compatible with the binder system (e.g., hexane, xylene, and ethanol) or without a solvent using a spray gun (air spray gun) supplied with a suitable supply of compressed air, nitrogen, or other compressed gas (e.g., a Binks Model 2001 or 2001V air spray gun; Binks, Inc., Glendale Heights, Ill., supplied with air at about 50 psi may be employed).


In some embodiments a two-step method of applying a coating to a substrate comprises:

    • a) applying to the substrate a coating composition comprising i) a binder and ii) first particles having a size of about 30 μm to about 225 μm, to provide a base coating; and
    • b) applying to this base coating a composition containing second particles having a size of about 1 nm to about 25 μm.


The composition may also contain any necessary solvents/liquids to assist in the application process.


In one embodiment, the present specification includes and provides for a method of forming a hydrophobic coating on at least a portion of a surface comprising: i) applying a composition comprising a binder on said surface and ii) applying to said binder on said surface second particles having a size of about 1 nm to about 25 μm wherein said second particles comprise one or more independently selected hydrophobic or oleophobic moieties; wherein said applying to said binder comprises spray coating of said second particles using a stream of gas; and wherein said second particles comprise less than 2% by weight of a solvent.


In another embodiment, the present specification includes and provides for a method of forming a hydrophobic coating on at least a portion of a surface comprising: i) applying a composition comprising a binder and first particles on said surface and ii) applying to said binder and first particles on said surface second particles having a size of about 1 nm to about 25 μm, wherein said second particles comprise one or more independently selected hydrophobic or oleophobic moieties; wherein said applying to said binder and first particles comprises spray coating of said second particles using a stream of gas; and wherein said second particles comprise less than 2% by weight of a solvent.


In one-step or two-step processes, the coatings may be applied using high or low VOC compositions (e.g., water-based or aqueous binder compositions etc.). Where two-step processes are used, either the first step of applying the base coat, the second step of applying a composition comprising second particles, or both steps may employ low VOC compositions. Where high VOC compositions are employed for hydrophobic/oleophobic surfaces, it can be advantageous to employ equipment that can capture the volatile solvents and reuse or recycle them.


Coatings applied by a one-step or two-step method may subsequently be treated with compositions comprising one or more agents to increase the hydrophobicity of the coating. In one embodiment, the agent is a silanizing agent (e.g., the compositions comprising a compound of formula (I)). In another embodiment, the coating resulting from a one-step process can be treated with a composition comprising second particles that have been treated so that they bear hydrophobic moieties (e.g., hydrophobic moieties or groups such as fluoroalkyl groups or dimethylsiloxanes). Where the coatings applied in one-step or two-step processes have not dried to the point that second particles can be incorporated, subsequent applications of second particles may be applied either in a binder compatible solvent, or with an air gun in the absence of a solvent as with the second step of a two-step process described above. In contrast, where coatings resulting from one-step or two-step processes have already dried to the point where second particles cannot be incorporated into the coating in any significant amount (e.g., an amount capable of altering the hydrophobicity of the coatings), second particles are generally applied in binder compatible solvents.


Coatings may be applied to substrates, or base coatings previously applied to substrates, by any method known in the art, including but not limited to: brushing, painting, dipping, spin coating, spraying, or electrostatic spraying.


6.3 Surface Preparation


To provide good adhesion of coatings (e.g., the base coat of a two-step coating) to a surface (e.g., the cup and handle parts of the plunger), the surfaces may be abraded to create some degree of surface roughness. For plungers, the surface roughness of the cup and handle can be created by methods including: (1) scuffing with an abrasive pad (e.g., Scotch-Brite™ pads), (2) fine sandblasting, (3) tumble blasting with small steel balls, and (4) coarse sandblasting. The surface roughness produced by different methods can be compared with the starting surface roughness. The surface roughness measured using a Mahr Pocket Surf® PS1 (Mahr Federal Inc., Providence, R.I.) can be expressed using a variety of mathematical expressions including, but not limited to, the arithmetical mean roughness (Ra) and ten-point mean roughness (Rz), which are described in FIG. 6.


Scuffing with abrasive materials such as Scotch-Brite™ pads increases the roughness values of plastics, such as those used in plunger handles, from an Ra of about 0.2-0.3 μm to about 0.7-0.9 μm and an Rz from about 1.4 to about 7 μm. Sandblasting plastics with coarse sand produces a very rough surface where the Ra increases substantially into the range of about 5 to about 6 μm and the Rz increases to the range of about 30 to about 37 μm.


The surface of flexible materials, such as the cup of the plunger, can also be abraded to improve the adherence of the hydrophobic coatings. Scuffing with abrasive materials (e.g. Scotch-Brite™ pads) can increase the Ra of flexible materials such as rubber from the range of about 0.2 to about 0.35 μm to the range of about 0.4 to about 0.5 μm and the Rz from about 2 μm to the range of about 3 to about 4 μm. Fine sandblasting of flexible materials, such as rubber, increases the Ra into the range from about 0.60 to about 0.75 μm and the Rz from about 2 μm to the range from about 6 to about 7 μm. Tumbling with small steel balls can increase the Ra from about 0.28 μm to the range of about 0.3 to about 0.4 μm and the Rz from about 2.043 to about 3.28 μm. Coarse sandblasting increases the Ra from 0.3 μm to the range of about 5 to about 6 μm and the Rz to the range of about 30 to about 35 μm.


The adhesion of the base coat to the plunger cup and handle is increased by any level of roughening. However, the surface roughness produced by coarse sandblasting with Ra values of about 5.662 μm for the handle and about 5.508 μm for the cup or corresponding Rz values of about 33.05 and about 33.150 μm for the handle and cup, respectively, are considered too excessive, and they result in a less pleasing surface finish. Thus, surface roughening may be accomplished by a variety of techniques including, but not limited to: abrading with abrasive cloths or papers (e.g., scuffing with sandpaper or a Scotch-Brite™ pad), sandblasting with fine sand, sandblasting with coarse sand (10-20 mesh), or tumbling with small metal (e.g., steel) balls, fine sand (20-50 mesh), fine alumina or other metal oxide or metalloid oxide powders.


7.0 CERTAIN EMBODIMENTS
Embodiment 1

A plunger for clearing clogged plumbing, having a handle and a resilient collapsible cup comprising an outer surface and an inner surface, said outer and inner surfaces meeting at a rim, and said handle attaching to said outer surface, wherein said cup is coated with a hydrophobic coating, and wherein at least a portion of said handle is optionally coated with a hydrophobic coating.


Embodiment 2

The plunger of embodiment 1, wherein said hydrophobic coating comprises:


i) a binder; ii) first particles having a size of about 30 μm to about 225 μm; and iii) second particles having a size of about 1 nm to about 25 μm comprising one or more independently selected hydrophobic or oleophobic moieties; wherein said composition optionally contains 5% to 10% of a block copolymer on a weight basis.


Embodiment 3

The plunger of any of embodiments 1 or 2, wherein said hydrophobic coating comprises a base coat comprised of said binder and said first particles applied to said cup and optionally applied to said handle, and a top coat applied to said base coat comprised of said second particles.


Embodiment 4

The plunger of any of embodiments 1 to 3, wherein the outer surface of the cup is generally convex and said inner surface is generally concave.


Embodiment 5

The plunger of any of embodiments 1 to 4, wherein a cross section through the cup in a plane parallel to said rim is generally oval, elliptical, or oblate.


Embodiment 6

The plunger of any of embodiments 1 to 5, wherein a cross section through the cup in a plane parallel to the rim is generally circular.


Embodiment 7

The plunger of embodiment 5, wherein said handle is attached to said outer surface at a point that is approximately equidistant from the rim in each direction.


Embodiment 8

The plunger of any of embodiments 1 to 7, wherein plumbing is selected from a toilet, bathtub, shower, pipe, or sink.


Embodiment 9

The plunger according to embodiment 8, wherein said cup is adapted to conform to said plumbing.


Embodiment 10

The plunger of any of embodiments 1 to 9, wherein said hydrophobic coating is resistant to greater than 200, 250, 300, 350 or 400 abrasions cycles on a Taber Model: 503 instrument using CS-10 wheels with 250 g load.


Embodiment 11

The plunger of any of embodiments 2 to 10, wherein said binder comprises a polyurethane.


Embodiment 12

The plunger of embodiment 11, wherein said polyurethane is a POLANE®.


Embodiment 13

The plunger of any of embodiments 1 to 12, wherein said hydrophobic coating comprises about 5 to about 15% of first particles which are comprised of a material selected from: polymers, metals, glasses, glass bubbles, metalloid oxides, metal oxides, and cellulose.


Embodiment 14

The plunger of any of embodiments 2 to 13, wherein said second particles comprise:

    • (i) a metal oxide (e.g., aluminum oxide, zinc oxide, nickel oxide, zirconium oxide, iron oxide, or titanium dioxide such as alumina), an oxide of a metalloid (e.g., oxides of B, Si, Sb, Te and Ge such as silica or fumed silica), or one or more metal oxides, oxides of metalloids or a combination thereof (e.g., glass particles); and
    • (ii) a silane, siloxane or a silazane, which may be covalently bound to said metal oxide, oxide of a metalloid, or a combination thereof.


Embodiment 15

The plunger of embodiment 14, wherein said silane, siloxane or silazane are selected from polydimethylsiloxane (PDMS) and hexamethyldisilazane.


Embodiment 16

The plunger of any of embodiments 1 to 15, wherein said hydrophobic coating is resistant to 40, 50, 60, 70, 80, 90, or 100 abrasion cycles on a Taber Model: 503 instrument using CS-10 wheels with 250 g load.


Embodiment 17

The plunger of any of embodiments 3 to 16, wherein said binder comprises a water-based polyurethane.


Embodiment 18

The plunger of embodiment 17, wherein said water-based polyurethane is a Polane®.


Embodiment 19

The plunger of any of embodiments 3 to 18, wherein said base coat comprises about 5 to about 15% of first particles which are comprised of a material selected from: polymers, metals, glasses, glass bubbles, metalloid oxides, metal oxides, or cellulose.


Embodiment 20

The plunger of any of embodiments 1 to 19, wherein said second particles are silica particles treated with a silanizing agent (e.g., a compound of formula (I)).


Embodiment 21

The plunger of embodiment 20, wherein said silanizing agent is selected from (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO06645.0); n-octyltriethoxysilane (SIO06715.0); and nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).


Embodiment 22

The plunger of any of embodiments 1 to 21, wherein the coating on said cup and/or at least a portion of said handle has an arithmetical roughness value from about 0.44 to about 5.51 μm or a ten point mean roughness value from about 0.9 to about 5.7 μm.


Embodiment 23

The plunger of any of embodiments 1 to 22, wherein less than about 0.2, 0.5, 1, 2, 3, or 4 grams of water remain bound to the surface after immersion in water at about 20° C.


Embodiment 24

The plunger according to embodiment 23, wherein less than about 0.2, 0.5, 1, 2, 3, or 4 grams of water remain bound to the surface after immersion in water at about 20° C. after the handle has been used to compress the cup more than about 100, 200, or 300 times.


Embodiment 25

The plunger of any of embodiments 1 to 24, wherein the coating further comprises silver particles.


Embodiment 26

The plunger of any of embodiments 3 to 25, wherein the base coat, top coat or both the base and top coat further comprise silver particles (e.g., silver nanoparticles for antibacterial action).


Embodiment 27

A method of forming a hydrophobic coating on at least a portion of a surface comprising:

    • i) applying a composition comprising a binder on said surface, wherein said binder optionally comprises one or more first particles; and
    • ii) applying to said binder on said surface second particles having a size of about 1 nm to about 25 μm wherein said second particles comprise one or more independently selected hydrophobic or oleophobic moieties; wherein said applying comprises spray coating of said second particles using a stream of gas; and wherein said second particles comprise less than 2% by weight of a solvent.


Embodiment 28

The method of embodiment 27, wherein said composition comprising a binder further comprises first particles having a size of about 30 μm to about 225 μm.


Embodiment 29

The method of any of embodiments 27 to 28, wherein said gas is air, nitrogen, or CO2.


Embodiment 30

The method of any of embodiments 27 to 29, wherein said second particles contain less than about 5%, 4%, 3%, 2%, or 1% by weight of a volatile solvent as applied to the base coat.


Embodiment 31

The method of any of embodiments 27 to 30, wherein said second particles comprise a metalloid oxide.


Embodiment 32

The method of any of embodiments 27 to 31 wherein said particles are silica particles.


Embodiment 33

The method of any of embodiments 27 to 32, wherein said coating composition comprises second particles in a range selected from: about 0.1% to about 5%; about 0.2% to about 6%; about 4% to about 10%; about 6% to about 12%; about 8% to about 16%; about 1% to about 16%; about 1% to about 20%; about 10% to about 20% or about 15% to about 20% on a weight basis.


Embodiment 34

The method of any of embodiments 27 to 33, wherein said coating has a surface in contact with said substrate and an exposed surface not in contact with said substrate, and said coating has a greater amount of second particles on, at, or adjacent to the exposed surface than on at or adjacent to the surface in contact with the substrate.


Embodiment 35

The method of embodiment 34, wherein said surface in contact with said substrate has no second particles.


Embodiment 36

The method of embodiment 34, wherein the number of second particles on said surface in contact with said substrate is less than about 1%, about 2%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90% of the number of second particles on at or adjacent to said exposed surface.


Embodiment 37

The method of any of embodiments 27 to 36, wherein the binder comprises a polyurethane, lacquer, fluoropolymer, or epoxy.


Embodiment 38

The method of any of embodiments 28 to 37, wherein the binder is hydrophilic or hydrophobic in the absence of said first particles and said second particles.


Embodiment 39

The method of any of embodiments 28 to 38, wherein said first particles comprise a material selected from the group consisting of: wood, cellulose, glass, metal oxides, metalloid oxides (e.g., silica), plastics, carbides, nitrides, borides, spinels, diamond, fly ash, hollow glass spheres, and fibers.


Embodiment 40

The method of any of embodiments 28 to 39, wherein the first particles have an average size in a range selected from: greater than about 5 μm to about 50 μm; about 10 μm to about 100 μm; about 10 μm to about 200 μm; about 20 μm to about 200 μm; about 30 μm to about 100 μm; about 30 μm to about 200 μm; about 50 μm to about 100 μm; about 50 μm to about 200 μm; about 75 μm to about 150 μm; about 75 μm to about 200 μm; about 100 μm to about 225 μm; about 125 μm to about 225 μm; and about 100 μm to about 250 μm.


Embodiment 41

The method of any of embodiments 28 to 40, wherein the first particles have an average size greater than 30 μm and less than 250 μm.


Embodiment 42

The method of any of embodiments 38 to 41, wherein the first particles have a size of 30 μm or greater in at least one dimension.


Embodiment 43

The method of any of embodiments 28 to 42, wherein said first particles do not comprise one or more independently selected hydrophobic and/or oleophobic moieties covalently bound to said first particle, or any hydrophobic or oleophobic moieties associated with said first particles as applied to (e.g., mixed with) said binder.


Embodiment 44

The method of any of embodiments 28 to 42, wherein said first particles comprise one or more independently selected hydrophobic and/or oleophobic moieties covalently bound to said first particles.


Embodiment 45

The method of any of embodiments 28 to 44, wherein said one or more hydrophobic and/or oleophobic moieties comprise one or more independently selected alkyl, fluoroalkyl or perfluoroalkyl moieties.


Embodiment 46

The method of any of embodiments 27 to 45, wherein said first particles and/or second particles comprise one or more covalently bound hydrophobic or oleophobic moieties of the form:

R3-nXnSi—*


where n is an integer from 0 to 2;

    • each R is independently selected from
      • (i) alkyl or cycloalkyl group optionally substituted with one or more fluorine atoms,
      • (ii) C1 to 20 alkyl optionally substituted with one or more independently selected substituents selected from fluorine atoms and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 to alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iii) C6 to 20 alkyl ether optionally substituted with one or more substituents independently selected from fluorine and C6 to 14 aryl groups, which aryl groups are optionally substituted with one or more independently selected halo, C1 to 10 alkyl, C1 to 10 haloalkyl, C1 to 10 alkoxy, or C1 to 10 haloalkoxy substituents,
      • (iv) C6 to 14 aryl, optionally substituted with one or more substituents independently selected from halo or alkoxy, and haloalkoxy substituents;
      • (v) C4 to 20 alkenyl or C4 to 20 alkynyl, optionally substituted with one or more substituents independently selected from halo, alkoxy, or haloalkoxy;
      • (vi) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 divalent alkane radical or a C2 to 12 divalent alkene or alkyne radical, q is an integer from 1 to 12, and r is an integer from 1 to 4);
    • each X is independently selected from —H, —Cl, —I, —Br, —OH, —OR2, —NHR3, and —N(R3)2;
    • each R2 is independently selected from C1 to 4 alkyl and haloalkyl; and
    • each R3 is independently selected from H, C1 to 4 alkyl and haloalkyl; where the open bond indicated by the * indicates a point of attachment to a particle.


Embodiment 47

The method of embodiment 46, wherein R is selected from: (a) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms; (b) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms; (c) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms; (d) an alkyl or fluoroalkyl group having from 6 to 20 carbon atoms when n is 3; (e) an alkyl or fluoroalkyl group having from 8 to 20 carbon atoms when n is 3; and (f) an alkyl or fluoroalkyl group having from 10 to 20 carbon atoms when n is 3.


Embodiment 48

The method of any of embodiments 46 to 47, wherein R is —Z—((CF2)q(CF3))r.


Embodiment 49

The method of any of embodiments 46 to 48, wherein all halogen atoms present in any one or more R groups are fluorine atoms.


Embodiment 50

The method of any of embodiments 27 to 45, wherein said second particles are prepared by treating a particle having a size of about 1 nm to about 25 μm with a silanizing agent selected from: tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO06645.0); n-octyltriethoxysilane (SIO06715.0); and nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).


Embodiment 51

The method of any of embodiments 27 to 45, wherein said second particles are particles having a size of about 1 nm to about 25 μm (e.g., silica particles) treated with a silanizing agent selected from: dimethyldichlorosilane, hexamethyldisilazane, octyltrimethoxysilane, polydimethylsiloxane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane.


Embodiment 52

The method of any of embodiments 27 to 45, wherein said second particles are silica particles prepared by treating said silica particles with an agent that will increase the number of sites on the silica particles that can react with a silanizing agent prior to being treated with said silanizing agent.


Embodiment 53

The method of embodiment 52, wherein said agent that will increase the number of sites on the silica particles that can react with silanizing agents is selected from the group consisting of: SiCl4, SiCl4, Si(OMe)4, Si(OEt)4, SiCl3CH3, SiCl3CH2SiCl3, SiCl3CH2CH2SiCl3, Si(OMe)3CH2Si(OMe)3, Si(OMe)3CH2CH2Si(OMe)3, Si(OEt)3CH2Si(OEt)3, or Si(OEt)3CH2CH2Si(OEt)3.


Embodiment 54

The method of any of embodiments 27 to 53, wherein second particles have an average size in a range selected from about 1 nm to about 100 nm; about 10 nm to about 200 nm; about 20 nm to about 400 nm; about 10 nm to 500 nm; about 40 nm to about 800 nm; about 100 nm to about 1 micron; about 200 nm to about 1.5 micron; about 500 nm to about 2 micron; about 500 nm to about 2.5 μm; about 1 micron to about 10 μm; about 2 micron to about 20 μm; about 2.5 micron to about 25 μm; about 500 nm to about 25 μm; about 400 nm to about 20 μm; and about 100 nm to about 15 μm.


Embodiment 55

The method of any of embodiments 27 to 54, wherein said second particles comprise: a metal oxide, an oxide of a metalloid, a silicate, or a glass.


Embodiment 56

The method of any of embodiments 27 to 55, wherein said second particles are comprised of silica and have an average size in a range selected from about 1 nm to about 50 nm; about 1 nm to about 100 nm; about 1 nm to about 400 nm; about 1 nm to about 500 nm; about 2 nm to about 120 nm; about 5 nm to about 150 nm; about 5 nm to about 400 nm; about 10 nm to about 300 nm; and about 20 nm to about 400 nm.


Embodiment 57

The method of embodiment 56, wherein said second particles have an average size in the range of about 1 nm to about 100 nm or about 2 nm to about 200 nm.


Embodiment 58

The method of any of embodiments 27 to 57, further comprising treating said coating with a silanizing agent such as a compound of formula I.


Embodiment 59

The method of embodiment 58, wherein said silanizing agent is selected from the group consisting of (tridecafluoro-1,1,2,2-tetrahydrooctyl)silane (SIT8173.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (SIT8174.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane (SIT8175.0); (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane (SIT8176.0); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane (SIH5840.5); (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane (SIH5841.7); n-octadecyltrimethoxysilane (SIO06645.0); n-octyltriethoxysilane (SIO06715.0); and nonafluorohexyldimethyl(dimethylamino)silane (SIN6597.4).


Embodiment 60

An article having a surface coated with a hydrophobic coating prepared by the method of embodiments 27-59.


Embodiment 61

The article of embodiment 60, wherein said article is a plunger.


Embodiment 62

A plunger for clearing clogged plumbing having a hydrophobic coating on at least a portion of its surface, that when removed from sewage waste water is substantially free of any adhering water or drips and free of any solid or semi-solid particle(s) attached to the portion of the plunger coated with a hydrophobic coating (e.g., the plunger has less than about 0.1, 0.2, 0.4, 0.5, 0.7, 1, 2, 3, or 5 grams of material adhering to the surface of the plunger).


Embodiment 63

The article of embodiment 60, or the plunger of embodiments 61 or 62, wherein the coating is resistant to bacterial growth.


Embodiment 64

The method of any of embodiments 27 to 59 or the article of any of embodiments 60 to 63, wherein the coating has an arithmetical roughness value from about 0.4 to about 5.6 μm or a ten point mean roughness value from about 0.8 to about 5.8 μm.


Embodiment 65

The method of any of embodiments 27 to 59 or the article of any of embodiments 60 to 64, wherein the coating is resistant to greater than 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, or 250 abrasion cycles on a Taber Model: 503 instrument using CS-10 wheels with 250 g load (e.g., tested as applied to a metal, such as aluminum, plate).


Embodiment 66

The plunger of embodiment 1, wherein said hydrophobic coating comprises:

    • i) a binder; and
    • ii) second particles having a size of about 1 nm to about 25 μm comprising one or more independently selected hydrophobic or oleophobic moieties; wherein said composition optionally contains 5% to 10% of a block copolymer on a weight basis.


Embodiment 67

The plunger of any of embodiments 1 or 66, wherein said hydrophobic coating comprises a base coat comprised of said binder (without added first particles) applied to said cup and optionally applied to said handle, and a top coat applied to said base coat comprised of said second particles.


Embodiments also include one-step and two-step compositions for use in forming hydrophobic and/or oleophobic compositions. Those compositions may be in the form of kits that include the coating component(s) and instructions for their use.


8.0 EXAMPLES
Example 1. High and Low Volatile Organic Compound (VOC) Two-Step Coating Processes

Process A: Two-Step High VOC Process


This process consists of two steps each applying coatings via wet spray technique. In the first step a first or base coat comprising POLANE® B system from Sherwin-Williams is formulated to a 6:3:1 volume ratio of POLANE® B, POLANE® Reducer and POLANE® A Catalyst as follows:


The first coat is prepared using a polyurethane binder, prepared as follows:















POLANE ® B (F63W13)
6 parts (strobe white, F63W13,



Sherwin-Williams, PA)


Catalyst (V66V29)
1 part


Reducer (R7K84)
3 parts


POLANE ® accelerator (V66VB11) 0.1%









All ingredients are mixed by weight. The accelerator is used to speed the POLANE® curing process.


To the composition comprising the binder used in the first coat (base coat) a variety of different first particles can be added to enhance the durability and/or the bonding of the top coat to the base coat. First particles, sometimes referred to as fillers herein, include, but are not limited to, glass bubbles (e.g., 3M™ glass bubbles, which are hollow glass microspheres of soda-lime-borosilicate glass). Some glass bubbles suitable for use in the present coatings include: S60, K20, and K25 glass bubbles, whose particle sizes are given in Table 1.1.


The first coat is applied to the article, and after about 60 to 120 seconds the second or top coat is applied. The second step comprises spraying a hexane slurry (4% w/v) of hydrophobic second particles (e.g., treated fumed silica).


The base coat composition, without the first particles, contains about 30% solids, and releases about 7 grams of VOCs per 10 grams of wet coating, which is about the amount applied to some plungers described in later examples. Additionally the second step in the process, which utilizes a hexane mixture with fumed silica, releases about 13 grams of VOCs per 25 ml applied to an article the size (surface area to be coated) of a plunger. This process therefore releases a total of about 20 grams of VOCs per article the size of a plunger.


Process B: Two-Step Low VOC Process


This process consists of two steps, the first comprising a wet application of a first or base coat) followed by an application of a second coating composition using materials that are not considered VOCs such as a stream of compressed air. In the first step a first coat (base coat) is prepared comprising a waterborne polyurethane dispersion based on Bayer Material Science product Bayhydrol 124 and Sherwin-Williams POLANE® 700T. That coating composition comprises about 35% solids and contains about 53% water and 12% n-methyl-2-pyrrolidone by weight. A 5% w/w loading of first particles (e.g., glass microspheres) is employed. The weight of glass microspheres used is determined based upon the weight of the coating composition as prepared.


To the composition comprising the binder used in the first coat a variety of different first particles can be added to enhance the durability and/or the bonding of the top coat to the base coat. First particles, sometimes referred to as fillers herein, include, but are not limited to, glass bubbles (e.g., 3M™ glass bubbles, which are hollow glass microspheres of soda-lime-borosilicate glass). Some glass bubbles suitable for use in the present coatings include: S60, K20, and K25 glass bubbles, whose particle sizes are given in Table 1.1.


The first coat is applied to the article, and after about 60 to 120 seconds the second or top coat is applied. The second step comprises applying an alcohol or acetone slurry (4% w/v) of hydrophobic second particles (e.g., treated fumed silica) onto the first coat by spraying or dipping. Alternatively, a hydrophobic fumed silica can be applied to the surface using a stream of compressed gas typically at about 10 to 100 psi in the absence of VOCs.


The coating process would release about 1.2 grams of VOC per article about the size of a plunger in the first step and 7 grams in the second step, bringing the total down to 8.2 g per article the size of a plunger if solvent is used in the second step and 1.2 g if no solvent is used in the second step.


Example 2. A Two-Step Hydrophobic Coating Process as Applied to Plunger for Drains

Although the methods described herein can be applied to any suitable surface, this example uses the two step coating process to apply a hydrophobic coating to a plunger for clearing drains.


Surface Preparation


In order to obtain tight adhesion of the base coat to the surface, such as the cup and handle parts of a plunger, the surface roughness is increased by methods including: (1) scuffing with a Scotch-Brite™ pad, (2) fine sandblasting, (3) tumble blasting with small steel balls, and (4) coarse sandblasting. The roughness can be expressed using a variety of mathematical expressions including, but not limited to, the Arithmetical Mean Roughness (Ra) and Ten-Point Mean Roughness (Rz), which are shown in FIG. 6. Values for Ra and Rz surface roughness produced by different methods compared with the starting surface roughness (measured using a Mahr Pocket Surf® PS1 by Mahr Federal Inc., Providence, R.I.) are given in Table 2.1.









TABLE 2.1







Plunger Roughness Produced by Different Methods












Ra
















(μm)
Rz (μm)

Ra (μm)
Rz (μm)















Starting Handle
0.222
1.160
Starting Cup
0.315
2.490



0.205
2.140

0.353
2.510



0.246
1.400

0.242
1.730


Average
0.224
1.567

0.204
1.440


Scotch Brite
0.804
5.77
Average
0.279
2.043


Scuffed
0.846
6.19
Scotch Brite
0.378
3.85


Handle
0.99
6.88
Scuffed Cup
0.51
3.99


Average
0.88
6.28

0.506
2.91


Coarse
5.921
34.300

0.37
3.41


Sandblast
5.175
32.100
Average
0.441
3.54


Handle
5.844
31.600
Fine
0.757
7.32



5.708
34.200
Sandblast Cup
0.578
4.61


Average
5.662
33.050

0.686
5.51






0.716
7.34






0.638
6.3





Average
0.675
6.216





Tumble Blaster
0.429
4.81





Cup (Small
0.407
2.88





Steel Balls)
0.459
4.32






0.434
4.92





Average
0.387
3.28





Coarse
4.118
25.000





Sandblast Cup
5.243
35.300






6.619
39.900






6.052
32.400





Average
5.508
33.150










Coating Process


The conversion of plunger parts (cup and handle) into hydrophobic surfaces is accomplished by application of a surface coating using a two-step process. In the two-step process the first coat (base coat) generally serves as a base or binder coat to the substrate (cup and handle of the plunger in this case) and the second coat (top coat) comprises hydrophobic second particles (hydrophobic fumed silica).


The first coat (base coat) is prepared using a polyurethane binder, prepared as follows from the following ingredients by weight:















POLANE ® B (F63W13)
6 parts (strobe white, F63W13,



Sherwin-Williams, PA)


Catalyst (V66V29)
1 part


Reducer (R7K84)
3 parts


POLANE ® accelerator (V66VB11)
0.1%









All ingredients are mixed. The accelerator is used to speed the POLANE® curing process.


A variety of different first particles can be added to enhance the durability of bonding of the top coat to the base coat. First particles, sometimes referred to as fillers herein, include, but are not limited to, glass bubbles (e.g., 3M™ glass bubbles, which are hollow glass microspheres of soda-lime-borosilicate glass). Some glass bubbles suitable for use in the present coatings include: S60, K20, and K25 glass bubbles, whose particle sizes are given in Table 2.2.









TABLE 2.2







Particle Size Distribution of 3M ™ Glass Bubbles









Particle Size (Microns, by Volume) 3M QCM 193.0










Distribution












Product
10th%
50th%
90th%
Effective Top














S60
15
30
55
65


K25
25
55
90
105


K20
20
60
90
105









The top coat comprises nano-sized (5-50 nm) fumed silica particles, which are pretreated with chemical moieties that impart hydrophobicity (e.g., a silazane or a siloxane). In one top coat of this example TS-720 (Cabot Corporation, Billerica, Mass.) is employed. In another top coat of this example R812S (Evonik Degussa Corp., Parsippany, N.J.) is employed.









TABLE 2.3







Properties of TS-720 and R812S Silicas










Silica


Nominal BET


Grade
Source
Surface Treatment
Surface Area (m2/g)













TS-720
Cabot
Polydimethylsiloxane
200


R812S
Evonik
Hexamethyldisilazane
220









Both TS-720 and R812S are fumed silica of approximately the same surface area. However, they are treated with two different compounds whose molecular formulas are shown below.




embedded image


In this example the top coat is applied by one of two methods:


Method 1:


In this method, fumed silica particles are dispersed in a solvent (e.g., hexane) and sprayed. Typical dispersions obtained with TS-720 are prepared with 4 g of TS-720 in 100 ml of hexane. For R812S, the dispersion employed uses 8 g of R812S in 100 ml of hexane. The fumed silica dispersion is sprayed onto the base coat using a Binks Model 2001 or 2001V air spray gun.


Method 2:


The fumed silica is delivered to the surface of the base coat without hexane. The fumed silica is sprayed on at a high air pressure (20-100 psi) onto the base coat. The pressure of spray is critical to get a good bond with the base coat using a Binks Model 2001 or 2001V air spray gun.


In method 2 excess fumed silica is recovered by a dust collection system from the spray booth and can be reused.


Sample 1: Plunger Prepared with Two-Step Coating Using a Base Coat (Containing No First Particles)


A plunger cup and a part of the handle adjacent to the cup (part most likely to contact water/sewage) are coated with the above-described strobe white POLANE® containing base coat. A total of 10 g of the POLANE® containing base coat is applied by spraying the inside and outside of the cup and part of the handle. The base-coated cup and handle are subsequently coated with a second (top) coat of ml of composition comprising 4 g of TS-720 fumed silica suspended in 100 ml of hexane within 30 min after spraying the base coat to maximize the bonding of the fumed silica top coat to the base coat.


The coated plunger is cured at room temperature for 24 hours. After curing, the plunger is tested by inserting it in the toilet water. After 50 plunges, some water droplets remain on the edge of the top plunger and on the bottom side of the rim.


Sample 2: Two-Step Coating Employing Glass Bubble Second Particles (10%-15% S60 Particles)


A plunger is coated using the process described for Sample 1, except that the base coating of POLANE® contains 10%-15% (by weight) of S60 glass bubbles (see Table 1 for details). Quantities of the base and top coats are kept nearly the same. After curing, the plunger is tested in a toilet by repeated plunges. After about 100 plunges, some water droplets were seen on the bottom rim (7) and lip (8) of the cup. No droplets were seen on the edge of the top of the plunger as was the case in Example 1. The incorporation of S60 particles in the base coat approximately doubles the number of plunges with minimum droplet adherence at limited locations.


Sample 3: Base Coat with 5% K25 Glass Bubbles as Filler


A plunger is coated using the process described for Sample 1, except that the base coating of POLANE® contains 5% of K25 glass bubbles (see Table 1 for details) as first particles. After applying the top coat and curing at room temperature for 24 hours, the plunger is tested in a toilet. After about 100 plunges only one or two droplets are seen on the inside of the cup near the rim and lip.


Sample 4: Base Coat with 10-15% K25 Glass Bubbles


A plunger is coated using the process described for Sample 1, except that the base coating of POLANE® contains 10-15% K25. After curing at room temperature for 24 hours the plunger is tested by plunging 100 times in a toilet. This plunger, which has a slightly rougher surface than the plunger in Sample 3, shows no sticking of any water droplets in any location (outside or inside the cup).


Sample 5: Base Coat with 5% K20 Glass Bubbles and Top Coat Using R812S-Treated Silica


A plunger is coated using the process described for Sample 1, except that the base coating of POLANE® contains K20 glass bubbles (5%) to limit the coating roughness. After applying the base coat by spraying, the top coat, which is prepared by suspending 8 g of R812S-treated fumed silica (Evonik Industries) in 50 ml of hexane is applied. Although the same quantity of top coat is used as in Sample 1, it contains only half the amount of hexane. After curing at room temperature for 24 hours, the plunger is tested by plunging a toilet 250 times, after which no water droplets are noted on any of the surfaces. In addition, even following 250 plunges no indication of any cracking or flaking of the coating is noted.


Sample 6: Base Coat with 5% K20 Glass Bubbles as Filler and Pressure Applied Dry Top Coat of TS-720


A plunger is coated with a base coating of POLANE® containing 5% K20 glass bubbles, as in Sample 5. A top coat of TS-720 fumed silica is applied within 10 minutes by high pressure (50 psi) spraying using a Binks Model 2001 or 2001 Vair spray gun in an enclosed box with dust collection system. After curing at room temperature for 24 hours, the plunger is tested by plunging in a toilet 300 times, without the adherence of any water droplets.


Sample 7: Base Coat with 5% K20 Glass Bubble Filler and Pressure Applied Dry Top Coat of R812S


A plunger is coated with a base coating of POLANE® containing 5% K20 glass bubbles, as in Sample 6. However, the top coat of TS-720 applied by pressure spraying is replaced by a coating of R812S fumed silica applied using the same air pressure (50 psi). After curing at room temperature for 24 hours, the plunger is tested in a toilet by plunging 250 times without the adherence of any water droplets.


Example 3. Plunger Base and Coating and Top Coating Procedure

A base coat is prepared using POLANE® System and glass bubbles:


POLANE® B=6 parts (Sherwin-Williams (521-1404), Strobe White, F63W13)


POLANE® A Exterior Catalyst=1 part (Sherwin-Williams (500-1417), V66V29)


POLANE® Reducer=3 parts (Sherwin-Williams (530-2641), R7K69)


K20 Glass Bubbles=5.0% by weight to POLANE® mix (3M™, 70-0704-8403-8)


To a plastic mixing container whose empty weight is determined is added POLANE® B (6 parts), POLANE® A (1 part) and POLANE® Reducer (3 parts) by volume. Hazardous Air Pollutants (HAPS) free POLANE® Reducer (R7K95) can be used in place of POLANE® Reducer (R7K96). The mixture is stirred for 3 minutes using a mechanical mixer/drill with mixing blade. The container and its contents are weighed and the weight of the POLANE® components determined by deducting the empty weight of the container. K20 glass bubbles are added (5% by weight) and the mixture is stirred for 5 minutes to ensure complete mixing of K20 glass bubbles into the liquid components to form a K20/POLANE® base coat composition. The approximate pot-life of the base coat composition is 4-6 hours.


Plungers are prepared for the application of the base coat by scuffing of the handle and plunger head using an abrasive pad (e.g. Scotch-Brite™ pads), fine sandblast, and/or tumble blasting with aluminum oxide or steel ball bearings. The plunger is cleaned of debris from the scuffing process, for example using high pressure air or water, followed by drying.


The K20/POLANE® base coat composition is poured into a gravity fed spray gun (Central Pneumatic, 20 oz. (50-70 psi), Item #47016) and sprayed onto the plunger head and at least the portion of the handle closest to the plunger head (e.g., about 6 inches of the handle) (approximately 15-20 mL of K20/POLANE® mixture per plunger is sprayed in the process. Including overspray, the coating amounts to about 3.0 g of dried coating mixture. The thickness will depend upon the amount of material sprayed and the amount of overspray. Care must be taken to ensure complete coverage of all portions of the plunger cup, such as the inside of the cup and underneath parts of the rim/lip.


Top coats, such as those comprising silica and a hydrophobic moiety (e.g., a bound silane group), can be applied to the base coat after a period of about 60 to 120 seconds. The application of the top coat may be conducted by spraying the base coat with top coat composition comprising second particles using a stream of gas (e.g. air) in the presence or absence of a compatible solvent. Alternatively, the top coat may be applied by dipping a plunger into a coating composition comprising secondary particles.


Example 4. Abrasion Testing of Coatings

To assess the abrasion resistance of the hydrophobic coatings, and particularly the abrasion resistance of coatings that can be applied to flexible materials such as the cup of a plunger, a first coat binder composition as described in Example 2 including the indicated filler is applied to 4 inch by 4 inch aluminum plates. One of four different fillers (S60, K20, 512 Black or K25 Black) is added to the coating composition applied to each plate. Following the application of the first coat, second coats are applied to the plates using compressed air at the indicated pressures to apply TS-720 silica or R812S silica (see the columns marked “Dry Power Spraying”) in the accompanying table. Control aluminum plates, where the second coat is applied by spraying them with a slurry comprising TS-720 or R812S hydrophobic fumed silica (4 g/100 ml w/v) in hexane, are also prepared.


After air drying at room temperature for 24 hours the plates are subjected to abrasion testing. Although resistance to abrasion may be measured using any method known in the art, for the purpose of this application abrasion testing is conducted using a Taber Model: 503 instrument equipped with CS-10 wheels with loads as indicated.















Dry Powder Spraying
Dry Powder Spraying




(TS-720)
(R812S)














Spray
Taber Cycles
Spray
Taber Cycles

Taber Cycles


Pressure
(250 g load)
Pressure
(250 g load)
Filler
(250 g load)











S60 Glass (10-15%)
Hexane Spraying (TS-720)












10 psi
 20 cycles
10 psi
 20 cycles
S60 Glass (10-15%)
200


20 psi
 40 cycles
20 psi
 40 cycles
K20 Glass (5%)
350


30 psi
 80 cycles
30 psi
 70 cycles
K25 Glass (5%)
450


40 psi
100 cycles
40 psi
105 cycles
512 White or Black
400









Filler K20 Glass (5%)
(10-15%)












10 psi
20 cycles
10 psi
20 cycles
Hexane Spraying


20 psi
30 cycles
20 psi
40 cycles
POLANE ® White/R812S












30 psi
50 cycles
30 psi
65 cycles
S60 Glass (10-15%)
180-220


40 psi
85 cycles
40 psi
90 cycles
K20 Glass (5%)
400









K25 Black (10-15%)
K25 Glass(5%)
400












10 psi
20 cycles
10 psi
15 cycles
512 White or Black
375-425


20 psi
30 cycles
20 psi
30 cycles
(10-15%)



30 psi
60 cycles
30 psi
55 cycles




40 psi
80 cycles
40 psi
80 cycles











512 Black (10-15%)














10 psi
125 cycles
10 psi
125 cycles




20 psi
150 cycles
20 psi
150 cycles




30 psi
200 cycles
30 psi
200 cycles




40 psi
200 cycles
40 psi
200 cycles









Example 5. One-Step Coating Process Employing Water-Based Polyurethanes

A 40-g quantity of 40:60 ratio by volume of POLANE® 700T (Sherwin-Williams Co., Cleveland, Ohio) and Bayhydrol 124 (Bayer Material Science, Pittsburgh, Pa.) is prepared as a binder composition. Both 700T and Bayhydrol 124 are water-based polyurethanes. POLANE® 700T comes with pigment preloaded, whereas Bayhydrol 124 is provided from the manufacturer as an un-pigmented coating composition to which pigment can be added at will. A 40:60 blend of POLANE® 700T to Bayhydrol 124 achieves a desirable pigment content. Optional components such as silver nanoparticles (10-30 ppm) may be added to the coating composition to provide antimicrobial action.


To the 40-g mixture of POLANE® and Bayhydrol described above, 2 g of S60, glass spheres (first particles), 4.5 g of TS-720 (second particles of fumed silica treated with polydimethyl-siloxane), and 15 g of water are added. The components are mixed extensively to achieve a good dispersion of TS-720 in the polyurethane binder composition and to form a one-step coating composition. The one-step-coating composition can be applied to surfaces by any suitable means including, but not limited to, spraying for several hours provided it is periodically mixed.


There are several advantages to the use of one-step processes, including one-step processes that employ water based binder systems to prepare hydrophobic and/or oleophobic coatings. One advantage is a minimization of the time that is needed to coat objects. Another advantage of the process described in this example is that it releases very low amounts of VOCs because essentially no solvents are used. Any VOCs released are associated with the water-based binder components (POLANE® 700T and/or Bayhydrol 124).


To prepare hydrophobic and/or oleophobic coated objects (e.g., plungers), the composition comprising binder, first, and second particles is sprayed on to the desired portions of the object after surface preparation (e.g., the plunger cup and part of the handle after roughening and cleaning) such as by using an air spray gun. The coating is left to dry for a suitable period depending on local conditions such as temperature and humidity (generally about 3 to 4 hours for water based polyurethane compositions.


Two plungers treated by coating the plunger cup and a portion of the handle with the one-step POLANE® 700T-Bayhydrol composition described in this example are dried for 3-4 hours and tested. The coated plungers are tested by repeated plunging of a toilet. Each of the two plungers shows no water droplet sticking to any coated part of the plunger even after 500 plunges. The process yields hydrophobic and/or oleophobic coatings that are comparable in their ability to shed water to coatings that have been prepared by two step processes (e.g., the amount of water retained by the coating does not significantly increase even after repeated use such as in plunging tests).


Example 6. Two-Step Coating Process Employing Water-Based Polyurethanes

A mixture comprising a 40:60 ratio of POLANE® 700T and Bayhydrol 124 by volume is prepared. To that mixture water (7% by weight), K20 glass beads (5% by weight) and untreated M5 fumed silica (2.5% by weight) are added to form a base coating composition (i.e., to 100 g of the POLANE®/Bayhdrol mixture, 7 g of water, 5 g of glass beads, and 2.5 g of silica are added). The mixture is stirred and applied to prepared surfaces to form a base coat. After its application, the base coat is allowed to dry for a suitable period of time and a second coating (a 4% w/v mixture of TS-720 in acetone) is applied, for example by dipping. After application of the second coating composition, the two-step coating can be given a subsequent treatment, for example with the second coating, if desired or needed to produce a suitably hydrophobic and/or oleophobic surface. Optional components such as silver nanoparticles (10-30 ppm) may be added to the coating composition to provide antimicrobial action.


Four plungers are prepared for treatment using the two step process described above. Three of the plungers are prepared for coating by sandblasting and a fourth plunger is prepared by tumble blasting. Residue from the blasting step is removed by washing, and the plungers are dried prior to any subsequent treatment. Each of the four plungers is sprayed with the above-described base coating composition. After the base coat, the three sandblasted plungers are left to dry for 45, 60, and 75 minutes, respectively; the tumble blast plunger is dried for about 70 minutes. After the specified drying time, the plunger is dipped into a second coating composition of 4% w/v mixture of TS-720 silica in acetone. After dipping, each plunger is allowed to dry and then given 3 to 5 minutes in acetone, after which it is sprayed with the same second coating composition in critical areas such as at the base of the cup and areas around the cup and both inside and outside the cup. The plungers are left to cure for two days prior to testing. The following test results are noted for each of the plungers:


Plunger #1 (Sandblast, 45 minutes drying time before dipping in second coating): With the treatment used to apply the coating to this plunger, some tiny water droplets attach to the inside of the cup at points where cracking was observed after subjecting the plunger to testing. The cracking is apparently caused by the excess application of TS-720 during the dip application step. The first tiny droplets are observed to adhere to the plunger after about 50 plunges. Besides the adherence of droplets to that local area no other droplets are observed adhering to any other part of the plunger for 400 plunges.


Plunger #2 (Sandblast, 60 minutes drying time before dipping in second coating): The base coat applied to this plunger is drier than the base coat applied to plunger #1 at the time the second coating is applied by dipping. The cup still acquires excess TS-720 in small areas during the dipping process. With this plunger, the tiny droplets stick to the inside of the cup, but only after 100 plunges. Aside from this local effect, the plunger shows no additional droplets adhering to its surface for 400 plunges, at which point the testing is stopped.


Plunger #3 (Sandblast, 75 minutes drying time before dipping in second coating): The drying time for this plunger permits a more uniform coating with the second coating composition in the dipping process. As dipping the base coated plunger into the TS-720/acetone mixture does not cause any excess build-up in any areas of the plunger no cracking or water droplet adherence is observed. No water droplets are observed adhering to the inside of the cup, or elsewhere, even after 400 plunges, as compared to plungers #1 and #2.


Plunger #4 (Tumble blast, 70 minutes drying time before dip): This plunger performs in a manner similar to plunger #3, and does not show any excess pick-up of TS-720 during the dip process. The plunger can be subjected to 400 plunges without any droplets sticking to the cup.


As with the one-stop process using water-based polyurethanes described in Example 5, this two-step process advantageously limits the amount of VOCs released in the coating process (acetone is VOC exempt). For coatings applied after a drying time of about 60 to 70 minutes (for plungers), the plungers performed about as well as those prepared using the one step process regardless of the pretreatment of the surface (e.g., sandblasting or tumble blasting).

Claims
  • 1. A method of forming a hydrophobic coating on at least a portion of a surface comprising the steps: i) applying a composition comprising water, a polymeric binder that can be diluted with water, and first particles on said at least a portion of a surface, wherein said first particles have a size of about 30 μm to about 225 μm; andii) applying second particles having a size of about 1 nm to about 25 μm to said polymeric binder on said at least a portion of said surface; wherein said applying second particles to said polymeric binder comprises applying either a liquid composition comprising said second particles or a spray coating of said second particles, using a stream of gas wherein the second particles comprise less than 2% by weight of a solvent; and
  • 2. A method of forming a hydrophobic coating on at least a portion of a surface comprising applying a composition comprising water, a polymeric binder that can be diluted with water, first particles having a size of about 30 μm to about 225 μm, and hydrophobic second particles having a size of about 1 nm to about 25 μm on said at least a portion of a surface,
  • 3. A system for preparing a hydrophobic coating comprising as two separate components: i) a first component comprising water, a polymeric binder that can be diluted with water, and first particles, wherein said first particles have a size from about 30 μm to about 225 μm; andii) a second component comprising hydrophobic second particles having a size of about 1 nm to about 25 μm;
  • 4. An article having a surface coated with the hydrophobic coating system of claim 3, wherein said coating has a hydrophobic exposed surface formed by i) applying the first component comprising the binder on least a portion of the surface; andii) applying to the binder on at least a portion of the surface the second component comprising second particles; wherein the resulting coating has a greater amount of second particles on, at, or adjacent to the exposed surface than on, at, or adjacent to the surface of the article.
  • 5. The system of claim 3, wherein the binder comprises a polyurethane, lacquer, fluoropolymer, or epoxy coating composition.
  • 6. The system of claim 5, wherein the binder comprises a polyurethane or epoxy coating composition.
  • 7. The system of claim 3, wherein said second particles, but not said first particles, comprise one or more independently selected hydrophobic, or hydrophobic and oleophobic, moieties covalently bound.
  • 8. The system of claim 3, wherein said second particles have an average size in a range selected from about 1 nm to about 100 nm, about 100 nm to about 1 micron, about 1.0 micron to about 10 μm, and about 2.5 micron to about 25 μm.
  • 9. The system of claim 3, wherein said second particles comprise: a metal oxide, an oxide of a metalloid, a silicate, or a glass.
  • 10. A hydrophobic coating prepared by (i) applying the first component of the system of claim 3 to at least a portion of a surface, and (ii) applying the second component of the system of claim 3 to at least a portion of the surface coated by the first component, wherein the coating is resistant to 40 abrasion cycles on a Taber Model 503 instrument using CS-10 wheels with 250 g load without loss of hydrophobicity.
  • 11. A coating composition comprising: water, a polymeric binder that can be diluted with water, first particles having a size from about 30 μm to about 225 μm, and hydrophobic second particles having a size of about 1 nm to about 25 μm, wherein said second particles, or said first particles and second particles, comprise one or more independently selected hydrophobic, or hydrophobic and oleophobic, moieties covalently bound to said first or second particles through a silicon atom, wherein said hydrophobic and/or oleophobic moieties are independently selected from:(a) C6 to 20 alkyl or cycloalkyl, either or both of which are optionally substituted with one or more fluorine atoms, or(b) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 alkyl group, and where q is an integer from 1 to 12, and r is an integer from 1-4.
  • 12. The composition of claim 11, wherein the binder comprises a polyurethane, lacquer, fluoropolymer, or epoxy coating composition.
  • 13. The composition of claim 12, wherein the binder comprises a polyurethane or epoxy coating composition.
  • 14. The composition of claim 11, wherein said second particles, but not said first particles, comprise one or more independently selected hydrophobic, or hydrophobic and oleophobic, moieties covalently bound.
  • 15. The composition of claim 14, wherein said second particles are prepared by treating a particle having a size of about 1 nm to 25 μm with a silanizing agent selected from: tridecafluoro-1,1,2,2-tetrahydrooctyl)silane; (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; and nonafluorohexyldimethyl(dimethylamino)silane.
  • 16. The composition of claim 11, wherein said second particles have an average size in a range selected from about 1 nm to about 100 nm; about 100 nm to about 1 micron; about 1.0 micron to about 10 μm; and about 2.5 micron to about 25 μm.
  • 17. The composition of claim 11, wherein said second particles comprise: a metal oxide, an oxide of a metalloid, a silicate, or a glass.
  • 18. A hydrophobic coating prepared by applying a composition according to claim 11 to at least a portion of a surface, wherein said coating is resistant to 40 abrasion cycles on a Taber Model 503 instrument using CS-10 wheels with 250 g load without loss of hydrophobicity.
  • 19. A system for preparing a hydrophobic coating comprising as two separate components: i) a first component comprising water, a polymeric binder that can be diluted with water, and first particles, wherein said first particles have a size from about 30 μm to about 225 μm; andii) a second component comprising hydrophobic second particles having a size of about 1 nm to about 25 μm;
  • 20. The system of claim 19, wherein said second particles are prepared by treating a particle having a size of about 1 nm to 25 μm with a silanizing agent selected from: tridecafluoro-1,1,2,2-tetrahydrooctyl)silane; (tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)triethoxysilane; (tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl(dimethylamino)silane; (heptadecafluoro-1,1,2,2-tetrahydrodecyl)tris(dimethylamino)silane; n-octadecyltrimethoxysilane; n-octyltriethoxysilane; and nonafluorohexyldimethyl(dimethylamino)silane.
  • 21. The system of claim 19, wherein said fluoroalkyl or perfluoroalkyl moieties comprise from six to twenty carbon atoms.
  • 22. A system for preparing a hydrophobic coating comprising as two separate components: i) a first component comprising water, a polymeric binder that can be diluted with water, and first particles, wherein said first particles have a size from about 30 μm to about 225 μm, and wherein said first particles do not comprise a hydrophobic moiety; andii) a second component comprising hydrophobic second particles having a size of about 1 nm to about 25 μm;
  • 23. A coating composition comprising: water, a polymeric binder that can be diluted with water, first particles having a size from about 30 μm to about 225 μm, and hydrophobic second particles having a size of about 1 nm to about 25 μm,
  • 24. The composition of claim 23, wherein said first particles are hollow microspheres that have an average diameter greater than about 30 μm and less than about 200 μm.
  • 25. The composition of claim 23, wherein said second particles are prepared by treating a particle having a size of about 1 nm to about 25 μm with a silanizing agent selected from: dimethyldichlorosilane, octyltrimethoxysilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane.
  • 26. A coating composition comprising: water, a polymeric binder that can be diluted with water, first particles having a size from about 30 μm to about 225 μm, and hydrophobic second particles having a size of about 1 nm to about 25 μm,
  • 27. A coating composition for preparing a hydrophobic coating comprising: water, a polymeric binder that can be diluted with water, first particles having a size from about 30 μm to about 225 μm, and hydrophobic second particles having a size of about 1 nm to about 25 μm, wherein said first particles do not comprise a hydrophobic moiety wherein, upon curing the coating formed from the coating composition is hydrophobic with a contact angle greater than 90° with water at 23° C., andwherein the second particles comprise one or more independently selected hydrophobic moieties covalently bound to said first or second particles through a silicon atom independently selected from: (a) C6 to 20 alkyl or cycloalkyl, either or both of which are optionally substituted with one or more fluorine atoms, or(b) —Z—((CF2)q(CF3))r, wherein Z is a C1 to 12 alkyl group, and where q is an integer from 1 to 12, and r is an integer from 1-4.
  • 28. The composition of claim 27, wherein upon curing the coating formed from the coating composition is resistant to 60 abrasion cycles on a Taber Model: 503 instrument using CS-10 wheels with 250 g load without loss of hydrophobicity.
PRIORITY DATA & INCORPORATION BY REFERENCE

This application is a continuation of International Application No. PCT/US2011/028541, filed Mar. 15, 2011, which claims the benefit of U.S. Provisional Patent Application No. 61/314,137, filed Mar. 15, 2010, entitled “Plunger and Methods of Producing Hydrophobic Surfaces,” each of which applications is incorporated by reference in its entirety. This international application claims the benefit of priority to U.S. Provisional Patent Application No. 61/314,137, filed Mar. 15, 2010, entitled “Plunger and Methods of Producing Hydrophobic Surfaces” which is incorporated by reference in its entirety.

US Referenced Citations (669)
Number Name Date Kind
870439 Kade Nov 1907 A
2191701 Wood Feb 1940 A
2976386 Salton Mar 1961 A
3185426 Bjerke May 1965 A
3207698 Liebling Sep 1965 A
3212106 Noel Oct 1965 A
3244541 Fain et al. Apr 1966 A
3354022 Dettre et al. Nov 1967 A
3579540 Ohlhausen May 1971 A
3716502 Loew Feb 1973 A
3861425 Clark Jan 1975 A
3931428 Reick Jan 1976 A
3950588 McDougal Apr 1976 A
3963349 Albright et al. Jun 1976 A
3967030 Johnson et al. Jun 1976 A
3975197 Mikelsons Aug 1976 A
3976572 Reick Aug 1976 A
3980153 Andrews Sep 1976 A
4142724 Reick Mar 1979 A
4151327 Lawton Apr 1979 A
4199142 Reick Apr 1980 A
4301197 Franz et al. Nov 1981 A
4301213 Davies Nov 1981 A
4308353 Saito et al. Dec 1981 A
4311755 Rummel Jan 1982 A
4377665 Shiraki et al. Mar 1983 A
4397988 Sherman Aug 1983 A
4415405 Ruddle et al. Nov 1983 A
4451619 Heilmann et al. May 1984 A
4453533 Scheidler et al. Jun 1984 A
4474852 Craig Oct 1984 A
4492217 Scheidler Jan 1985 A
4536454 Haasl Aug 1985 A
4581149 Horodysky et al. Apr 1986 A
4591530 Lui May 1986 A
4614464 Christensen Sep 1986 A
4622702 Allen Nov 1986 A
4624900 Fau Nov 1986 A
4646948 Jennings Mar 1987 A
4680173 Burger Jul 1987 A
4687707 Matsuo et al. Aug 1987 A
4716183 Gamarra et al. Dec 1987 A
4733843 Bessinger Mar 1988 A
4738426 Bessinger Apr 1988 A
4745139 Haasl et al. May 1988 A
4749110 Maeno et al. Jun 1988 A
4753977 Merrill Jun 1988 A
4768237 Torti Sep 1988 A
4782112 Kondo et al. Nov 1988 A
4835014 Roth et al. May 1989 A
4837260 Sato et al. Jun 1989 A
4855176 Ohwaki et al. Aug 1989 A
4870907 McKee Oct 1989 A
4923260 Poulsen May 1990 A
4971912 Buhl et al. Nov 1990 A
4983459 Franz et al. Jan 1991 A
5011727 Kido et al. Apr 1991 A
5011963 Ogawa et al. Apr 1991 A
5032641 Nanishi et al. Jul 1991 A
5041304 Kusano et al. Aug 1991 A
5057050 Hill Oct 1991 A
5084191 Nagase et al. Jan 1992 A
5104938 Toyama et al. Apr 1992 A
5112911 Mori et al. May 1992 A
5121134 Albinson et al. Jun 1992 A
5156611 Haynes et al. Oct 1992 A
5192603 Slater et al. Mar 1993 A
5202361 Zimmerman et al. Apr 1993 A
5212215 Nanri et al. May 1993 A
5225274 Ogawa et al. Jul 1993 A
5228764 Cherry et al. Jul 1993 A
5228905 Grunewalder et al. Jul 1993 A
5238746 Soga et al. Aug 1993 A
5240774 Ogawa et al. Aug 1993 A
5274159 Pellerite et al. Dec 1993 A
5284707 Ogawa et al. Feb 1994 A
5294252 Gun Mar 1994 A
5300239 Ozaki et al. Apr 1994 A
5308705 Franz et al. May 1994 A
5312573 Rosenbaum et al. May 1994 A
5314940 Stone May 1994 A
5316799 Brunken et al. May 1994 A
5317129 Taplan et al. May 1994 A
5324566 Ogawa et al. Jun 1994 A
5328768 Goodwin Jul 1994 A
5338345 Scarborough et al. Aug 1994 A
5348547 Payne et al. Sep 1994 A
5352733 Hart Oct 1994 A
5362145 Bird et al. Nov 1994 A
5364299 Hill et al. Nov 1994 A
5366810 Merrifield et al. Nov 1994 A
5368892 Berquier Nov 1994 A
5372888 Ogawa et al. Dec 1994 A
5380585 Ogawa et al. Jan 1995 A
5385966 Hermansen et al. Jan 1995 A
5395657 Strepparola et al. Mar 1995 A
5397817 Smith Mar 1995 A
5424130 Nakanishi et al. Jun 1995 A
5429433 Bird et al. Jul 1995 A
5435839 Ogawa Jul 1995 A
5437894 Ogawa et al. Aug 1995 A
5437900 Kuzowski Aug 1995 A
5441338 Kane et al. Aug 1995 A
5441809 Akhter Aug 1995 A
5458976 Horino et al. Oct 1995 A
5466770 Audenaert et al. Nov 1995 A
5489328 Ono et al. Feb 1996 A
5500216 Julian et al. Mar 1996 A
5527536 Merkle et al. Jun 1996 A
5534580 Mitsui et al. Jul 1996 A
5539054 LaFleur Jul 1996 A
5540493 Kane et al. Jul 1996 A
5556667 Teranishi et al. Sep 1996 A
5558940 Michels et al. Sep 1996 A
5564809 Kane et al. Oct 1996 A
5576096 Ono et al. Nov 1996 A
5578361 Tsujioka et al. Nov 1996 A
5584957 Schultheis et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5599893 Asai et al. Feb 1997 A
5612433 Ono et al. Mar 1997 A
5618627 Merrifield et al. Apr 1997 A
5618883 Plamthottam et al. Apr 1997 A
5651921 Kaijou Jul 1997 A
5658969 Gerace Aug 1997 A
5674967 Goodwin Oct 1997 A
5679460 Schakenraad et al. Oct 1997 A
5688864 Goodwin Nov 1997 A
5697991 Frazer Dec 1997 A
5707740 Goodwin Jan 1998 A
5719226 Kegley Feb 1998 A
5725789 Huber et al. Mar 1998 A
5735589 Herrmann et al. Apr 1998 A
5747561 Smirnov et al. May 1998 A
5753734 Maruyama May 1998 A
5777043 Shafer et al. Jul 1998 A
5798144 Varanasi et al. Aug 1998 A
5800918 Chartier et al. Sep 1998 A
5813741 Fish et al. Sep 1998 A
5814411 Merrifield et al. Sep 1998 A
5824421 Kobayashi et al. Oct 1998 A
5830529 Ross Nov 1998 A
5840201 Elledge Nov 1998 A
5843338 Inoue et al. Dec 1998 A
5853690 Hibino et al. Dec 1998 A
5853800 Dombrowski et al. Dec 1998 A
5856378 Ring et al. Jan 1999 A
5858551 Salsman Jan 1999 A
5876806 Ogawa Mar 1999 A
5890907 Minasian Apr 1999 A
5910557 Audenaert et al. Jun 1999 A
5921411 Merl Jul 1999 A
5924359 Watanabe Jul 1999 A
5945482 Fukuchi et al. Aug 1999 A
5947574 Avendano Sep 1999 A
5948685 Angros Sep 1999 A
5952053 Colby Sep 1999 A
5958601 Salsman Sep 1999 A
5980990 Goodwin Nov 1999 A
6013724 Mizutani et al. Jan 2000 A
6017609 Akamatsu et al. Jan 2000 A
6017831 Beardsley et al. Jan 2000 A
6017997 Snow et al. Jan 2000 A
6020419 Bock et al. Feb 2000 A
6024948 Samain et al. Feb 2000 A
6025025 Bartrug et al. Feb 2000 A
6033738 Teranishi et al. Mar 2000 A
6040382 Hanes Mar 2000 A
6045650 Mitchnick et al. Apr 2000 A
6068911 Shouji et al. May 2000 A
6090447 Suzuki et al. Jul 2000 A
6093559 Bookbinder et al. Jul 2000 A
6096380 Takebe et al. Aug 2000 A
6105233 Neal Aug 2000 A
6114446 Narisawa et al. Sep 2000 A
6117555 Fujimori et al. Sep 2000 A
6119626 Miyazawa et al. Sep 2000 A
6120720 Meier et al. Sep 2000 A
6136210 Biegelsen et al. Oct 2000 A
6153304 Smith et al. Nov 2000 A
6162870 Yamada et al. Dec 2000 A
6187143 Juppo et al. Feb 2001 B1
6191122 Lux et al. Feb 2001 B1
6201058 Mahr et al. Mar 2001 B1
6207236 Araki et al. Mar 2001 B1
6214278 Yamada et al. Apr 2001 B1
6221434 Visca et al. Apr 2001 B1
6224974 Wuu May 2001 B1
6228435 Yoshikawa et al. May 2001 B1
6228972 Hikita et al. May 2001 B1
6235383 Hong et al. May 2001 B1
6235833 Akamatsu et al. May 2001 B1
6245387 Hayden Jun 2001 B1
6248850 Arai Jun 2001 B1
6264751 Kamura et al. Jul 2001 B1
6280834 Veerasamy et al. Aug 2001 B1
6288149 Kroll Sep 2001 B1
6291054 Thomas et al. Sep 2001 B1
6333074 Ogawa et al. Dec 2001 B1
6333558 Hasegawa Dec 2001 B1
6337133 Akamatsu et al. Jan 2002 B1
6340502 Azzopardi et al. Jan 2002 B1
6342268 Samain Jan 2002 B1
6352758 Huang et al. Mar 2002 B1
6358569 Badyal et al. Mar 2002 B1
6361868 Bier et al. Mar 2002 B1
6376592 Shimada et al. Apr 2002 B1
6379751 Schafer et al. Apr 2002 B1
6383642 Le Bellac et al. May 2002 B1
6403397 Katz Jun 2002 B1
6410673 Arai et al. Jun 2002 B1
6419985 Ishizuka Jul 2002 B1
6423372 Genzer et al. Jul 2002 B1
6423381 Colton et al. Jul 2002 B1
6432181 Ludwig Aug 2002 B1
6451432 Azzopardi et al. Sep 2002 B1
6451876 Koshy Sep 2002 B1
6458420 Akamatsu et al. Oct 2002 B1
6458467 Mizuno et al. Oct 2002 B1
6461537 Turcotte et al. Oct 2002 B1
6461670 Akamatsu et al. Oct 2002 B2
6462115 Takahashi et al. Oct 2002 B1
6471761 Fan et al. Oct 2002 B2
6476095 Simendinger, III Nov 2002 B2
6479612 Del Pesco et al. Nov 2002 B1
6482524 Yamamoto et al. Nov 2002 B1
6488347 Bienick Dec 2002 B1
6495624 Brown Dec 2002 B1
6559234 Arai et al. May 2003 B1
6564935 Yamamoto et al. May 2003 B1
6566453 Arai et al. May 2003 B1
6579620 Mizunno et al. Jun 2003 B2
6582825 Amarasekera et al. Jun 2003 B2
6584744 Schultheis et al. Jul 2003 B1
6589641 Stirniman et al. Jul 2003 B1
6596060 Michaud Jul 2003 B1
6610363 Arora et al. Aug 2003 B2
6613860 Dams et al. Sep 2003 B1
6623863 Kamitani et al. Sep 2003 B2
6641654 Akamatsu et al. Nov 2003 B2
6649222 D'Agostino et al. Nov 2003 B1
6652640 Asai et al. Nov 2003 B2
6660339 Datta et al. Dec 2003 B1
6660363 Barthlott Dec 2003 B1
6660686 Inagaki et al. Dec 2003 B2
6683126 Keller et al. Jan 2004 B2
6685992 Ogawa et al. Feb 2004 B1
6689200 Scarborough et al. Feb 2004 B2
6692565 Johansen, Jr. et al. Feb 2004 B2
6706798 Kobayashi et al. Mar 2004 B2
6720371 Furuta et al. Apr 2004 B2
6729704 Ames May 2004 B2
6733892 Yoneda et al. May 2004 B1
6743467 Jones et al. Jun 2004 B1
6767984 Toui et al. Jul 2004 B2
6770323 Genzer et al. Aug 2004 B2
6780497 Walter Aug 2004 B1
6786562 Obrock et al. Sep 2004 B2
6793821 Lee et al. Sep 2004 B2
6800354 Baumann et al. Oct 2004 B2
6806299 Baumann et al. Oct 2004 B2
6808835 Green et al. Oct 2004 B2
6811716 Stengaard et al. Nov 2004 B1
6811844 Trouilhet Nov 2004 B2
6811884 Goodwin Nov 2004 B2
6835778 Swisher et al. Dec 2004 B2
6845788 Extrand Jan 2005 B2
6852389 Nun et al. Feb 2005 B2
6852390 Extrand Feb 2005 B2
6855375 Nakagawa et al. Feb 2005 B2
6855759 Kudo et al. Feb 2005 B2
6858284 Nun et al. Feb 2005 B2
6871923 Dietz et al. Mar 2005 B2
6872441 Baumann et al. Mar 2005 B2
6884904 Smith et al. Apr 2005 B2
6890360 Cote et al. May 2005 B2
6923216 Extrand Aug 2005 B2
6926946 Ogawa et al. Aug 2005 B2
6931888 Shekunov et al. Aug 2005 B2
6938774 Extrand Sep 2005 B2
6942746 Niejelow et al. Sep 2005 B2
6966990 Chattopadhyay et al. Nov 2005 B2
6976585 Extrand Dec 2005 B2
6976998 Rizzo et al. Dec 2005 B2
6982242 Liss et al. Jan 2006 B2
6992858 Kaneko Jan 2006 B2
6994033 Kweon Feb 2006 B2
6994045 Paszkowski Feb 2006 B2
6998051 Chattopadhyay et al. Feb 2006 B2
7004184 Handique et al. Feb 2006 B2
7005372 Levy et al. Feb 2006 B2
7019069 Kobayashi et al. Mar 2006 B2
7022416 Teranishi Apr 2006 B2
7026018 Kranovich Apr 2006 B2
7037591 Henze et al. May 2006 B2
7048889 Arney et al. May 2006 B2
7052244 Fouillet et al. May 2006 B2
7056409 Dubrow Jun 2006 B2
7057832 Wu et al. Jun 2006 B2
7057881 Chow et al. Jun 2006 B2
7074273 Shimomura et al. Jul 2006 B2
7074294 Dubrow Jul 2006 B2
7083748 Chattopadhyay et al. Aug 2006 B2
7083828 Muller et al. Aug 2006 B2
7109256 Amano et al. Sep 2006 B2
7112369 Wang et al. Sep 2006 B2
7124450 Davidson Oct 2006 B2
7141276 Lehmann et al. Nov 2006 B2
7148181 Tanaka et al. Dec 2006 B2
7150904 D'Urso et al. Dec 2006 B2
7153357 Baumgart et al. Dec 2006 B2
7157018 Scheidler Jan 2007 B2
7166235 Majeti et al. Jan 2007 B2
7175723 Jones et al. Feb 2007 B2
7179758 Chakrapani et al. Feb 2007 B2
7179864 Wang Feb 2007 B2
7188917 Bienick Mar 2007 B2
7198855 Liebmann-Vinson et al. Apr 2007 B2
7204298 Hodes et al. Apr 2007 B2
7211223 Fouillet et al. May 2007 B2
7211313 Nun et al. May 2007 B2
7211329 Metz et al. May 2007 B2
7211605 Coronado et al. May 2007 B2
7213309 Wang et al. May 2007 B2
7238751 Wang et al. Jul 2007 B2
7253130 Chiang et al. Aug 2007 B2
7258731 D'Urso et al. Aug 2007 B2
7264845 Papadaki et al. Sep 2007 B2
7265468 Mancl et al. Sep 2007 B1
7268179 Brown Sep 2007 B2
7273658 Banayoun et al. Sep 2007 B2
7285331 Reihs et al. Oct 2007 B1
7288311 Kawashima et al. Oct 2007 B2
7288592 Stark et al. Oct 2007 B2
7291653 Baumann et al. Nov 2007 B2
7297375 Wegner Nov 2007 B2
7306895 Kano et al. Dec 2007 B2
7309278 Shibata Dec 2007 B2
7312057 Bookbinder et al. Dec 2007 B2
7323033 Kroupenkine et al. Jan 2008 B2
7338835 Bao Mar 2008 B2
7342551 King Mar 2008 B2
7344619 Helmeke Mar 2008 B2
7344758 Franchina et al. Mar 2008 B2
7344783 Shea Mar 2008 B2
7354328 Lee Apr 2008 B2
7354624 Millero et al. Apr 2008 B2
7354650 Nakajima et al. Apr 2008 B2
7368510 Lee et al. May 2008 B2
7393515 Hoshino et al. Jul 2008 B2
7396395 Chen et al. Jul 2008 B1
7419615 Strauss Sep 2008 B2
7449233 Arora Nov 2008 B2
7468333 Kimbrell, Jr. et al. Dec 2008 B2
7497533 Remmers Mar 2009 B2
7524531 Axtell, III et al. Apr 2009 B2
7527832 Sakoske et al. May 2009 B2
7531598 Muller et al. May 2009 B2
7544411 Baumann et al. Jun 2009 B2
7563505 Reihs Jul 2009 B2
7568583 Wing et al. Aug 2009 B2
7607744 Casoli et al. Oct 2009 B2
7726615 Rutz Jun 2010 B2
7731316 Wing Jun 2010 B2
7748806 Egan Jul 2010 B2
7767758 Moorlag et al. Aug 2010 B2
7901731 Russell et al. Mar 2011 B2
7919180 Furukawa Apr 2011 B2
7935209 Ward May 2011 B2
7950756 Collins et al. May 2011 B2
7989619 Guire et al. Aug 2011 B2
8231191 Leconte et al. Jul 2012 B2
8258206 Kanagasabapathy et al. Sep 2012 B2
8286561 Driver et al. Oct 2012 B2
8513342 Gao et al. Aug 2013 B2
8580884 Ding Nov 2013 B2
8596205 Driver et al. Dec 2013 B2
8715906 Blanchet et al. May 2014 B2
8779025 Stone Jul 2014 B1
8899704 Bienick Dec 2014 B2
9067821 Bleecher et al. Jun 2015 B2
9096786 Sikka et al. Aug 2015 B2
9139744 Sikka et al. Sep 2015 B2
20010018130 Hayden Aug 2001 A1
20010019773 Akamatsu et al. Sep 2001 A1
20010024728 Kamitani et al. Sep 2001 A1
20010030808 Komatsu et al. Oct 2001 A1
20010055677 Wuu Dec 2001 A1
20020001676 Hayden Jan 2002 A1
20020034627 Jacquiod et al. Mar 2002 A1
20020045007 Arora et al. Apr 2002 A1
20020049276 Zwick Apr 2002 A1
20020077412 Kobayashi et al. Jun 2002 A1
20020111402 Mizuno et al. Aug 2002 A1
20020115736 Koshy Aug 2002 A1
20020161130 Arai et al. Oct 2002 A1
20020177655 Pratt et al. Nov 2002 A1
20020192472 Metz et al. Dec 2002 A1
20020197490 Amidaiji et al. Dec 2002 A1
20030009049 Smith et al. Jan 2003 A1
20030013795 Nun et al. Jan 2003 A1
20030021902 Yamamoto et al. Jan 2003 A1
20030026972 Reihs Feb 2003 A1
20030040243 Ward Feb 2003 A1
20030040568 Furuta et al. Feb 2003 A1
20030065093 Custro et al. Apr 2003 A1
20030070677 Handique et al. Apr 2003 A1
20030072723 Gers-Barlag et al. Apr 2003 A1
20030073067 Bookfinder et al. Apr 2003 A1
20030077533 Murota et al. Apr 2003 A1
20030091809 Scarborough et al. May 2003 A1
20030096120 Schafheutle May 2003 A1
20030110976 Abidh et al. Jun 2003 A1
20030117051 Kweon Jun 2003 A1
20030119684 Tsao Jun 2003 A1
20030125656 Davankov et al. Jul 2003 A1
20030143339 Kobayashi Jul 2003 A1
20030149218 Cote' et al. Aug 2003 A1
20030166840 Urry et al. Sep 2003 A1
20030170401 Shimomura et al. Sep 2003 A1
20030176572 Maekawa et al. Sep 2003 A1
20030176574 St. Clair et al. Sep 2003 A1
20030179494 Kaneko Sep 2003 A1
20030194565 Schaefer Oct 2003 A1
20030203771 Rosenberg et al. Oct 2003 A1
20030203991 Schottman Oct 2003 A1
20040005469 Metz et al. Jan 2004 A1
20040020104 Feldhege et al. Feb 2004 A1
20040025747 Kamitani et al. Feb 2004 A1
20040039128 Sasagawa et al. Feb 2004 A1
20040050297 Kobayashi et al. Mar 2004 A1
20040053058 Kamitani et al. Mar 2004 A1
20040056575 Dietz et al. Mar 2004 A1
20040097616 Hoppler et al. May 2004 A1
20040102124 Suzuki May 2004 A1
20040102588 Arai et al. May 2004 A1
20040121168 Goodwin et al. Jun 2004 A1
20040137814 Kimbrell, Jr. et al. Jul 2004 A1
20040138083 Kimbrell, Jr. et al. Jul 2004 A1
20040142557 Levy et al. Jul 2004 A1
20040154106 Oles et al. Aug 2004 A1
20040192844 Ikematsu et al. Sep 2004 A1
20040201048 Seki et al. Oct 2004 A1
20040202872 Fang et al. Oct 2004 A1
20040209203 Kano et al. Oct 2004 A1
20040213904 Muller et al. Oct 2004 A1
20040216227 Papadaki et al. Nov 2004 A1
20050000463 Mochizuki Jan 2005 A1
20050004264 Tanabe Jan 2005 A1
20050008859 Forgacs Jan 2005 A1
20050009953 Shea Jan 2005 A1
20050020763 Milic Jan 2005 A1
20050022313 Scheidler Feb 2005 A1
20050053793 Benay-Oun et al. Mar 2005 A1
20050075020 Benayoun et al. Apr 2005 A1
20050075455 Chang et al. Apr 2005 A1
20050106762 Chakrapani et al. May 2005 A1
20050121782 Nakamura et al. Jun 2005 A1
20050143547 Stark et al. Jun 2005 A1
20050165194 Benayoun et al. Jul 2005 A1
20050170098 Baumann et al. Aug 2005 A1
20050197447 Gu et al. Sep 2005 A1
20050221098 Azzopardi et al. Oct 2005 A1
20050239211 Uchihara et al. Oct 2005 A1
20050245395 Tanaka et al. Nov 2005 A1
20060013983 Sebastian et al. Jan 2006 A1
20060029808 Zhai et al. Feb 2006 A1
20060040164 Vyas et al. Feb 2006 A1
20060051561 Badyal Mar 2006 A1
20060052556 Franchina et al. Mar 2006 A1
20060057390 Kittle et al. Mar 2006 A1
20060058458 Hasskerl et al. Mar 2006 A1
20060062695 Haab et al. Mar 2006 A1
20060062929 Kittle et al. Mar 2006 A1
20060081394 Li et al. Apr 2006 A1
20060089466 Shimomura et al. Apr 2006 A1
20060110541 Russell et al. May 2006 A1
20060110542 Dietz et al. May 2006 A1
20060113443 Remmers Jun 2006 A1
20060147634 Strauss Jul 2006 A1
20060147705 Huang et al. Jul 2006 A1
20060151739 Sandner et al. Jul 2006 A1
20060154048 Teranishi et al. Jul 2006 A1
20060162373 McMillin et al. Jul 2006 A1
20060172641 Hennige et al. Aug 2006 A1
20060185555 Giessler et al. Aug 2006 A1
20060205874 Uzee et al. Sep 2006 A1
20060207032 Reiners et al. Sep 2006 A1
20060213791 Holden Sep 2006 A1
20060213792 Nguyen et al. Sep 2006 A1
20060213849 Bienick Sep 2006 A1
20060222865 Hoshino et al. Oct 2006 A1
20060240218 Parce Oct 2006 A1
20060263516 Jones et al. Nov 2006 A1
20060266258 Asakura et al. Nov 2006 A1
20060269758 Helmeke Nov 2006 A1
20060281889 Kobayashi et al. Dec 2006 A1
20060286305 Thies et al. Dec 2006 A1
20060292345 Dave et al. Dec 2006 A1
20070003705 Strauss Jan 2007 A1
20070005024 Weber et al. Jan 2007 A1
20070009657 Zhang et al. Jan 2007 A1
20070014970 Nun et al. Jan 2007 A1
20070026193 Luzinov et al. Feb 2007 A1
20070036906 Reeve Feb 2007 A1
20070046160 Egan Mar 2007 A1
20070065668 Idei Mar 2007 A1
20070075199 Stewart et al. Apr 2007 A1
20070141114 Muisener et al. Jun 2007 A1
20070141306 Kasai et al. Jun 2007 A1
20070148407 Chen et al. Jun 2007 A1
20070166513 Sheng et al. Jul 2007 A1
20070172650 O'Rear, III et al. Jul 2007 A1
20070172658 Deruelle et al. Jul 2007 A1
20070172661 Fechner et al. Jul 2007 A1
20070176379 Sonnendorfer et al. Aug 2007 A1
20070196656 Rowell Aug 2007 A1
20070202342 Whiteford et al. Aug 2007 A1
20070213230 Pfeiffer et al. Sep 2007 A1
20070215004 Kuroda et al. Sep 2007 A1
20070218265 Harris et al. Sep 2007 A1
20070224898 Deangelis et al. Sep 2007 A1
20070231517 Golownia Oct 2007 A1
20070238807 Safir et al. Oct 2007 A1
20070259156 Kempers et al. Nov 2007 A1
20070274871 Jiang Nov 2007 A1
20070275245 Persson et al. Nov 2007 A1
20070298216 Jing et al. Dec 2007 A1
20080008838 Arpac et al. Jan 2008 A1
20080012459 Picken et al. Jan 2008 A1
20080015306 Wright et al. Jan 2008 A1
20080017071 Moebus Jan 2008 A1
20080018709 Takenaka et al. Jan 2008 A1
20080020127 Whiteford et al. Jan 2008 A1
20080021212 Whiteford et al. Jan 2008 A1
20080032403 Saito et al. Feb 2008 A1
20080039558 Lazzari et al. Feb 2008 A1
20080039576 Griswold et al. Feb 2008 A1
20080044635 O'Neill et al. Feb 2008 A1
20080050567 Kawashima et al. Feb 2008 A1
20080063870 O'Rear et al. Mar 2008 A1
20080066648 Asakura et al. Mar 2008 A1
20080070146 Fomitchev et al. Mar 2008 A1
20080081858 Okazaki Apr 2008 A1
20080088192 Hsu Apr 2008 A1
20080090004 Zhang et al. Apr 2008 A1
20080101041 Chang et al. May 2008 A1
20080102347 Blunk May 2008 A1
20080107864 Zhang et al. May 2008 A1
20080131653 Lyons et al. Jun 2008 A1
20080160257 Takada et al. Jul 2008 A1
20080166549 Shieh et al. Jul 2008 A1
20080171805 Mingarelli Jul 2008 A1
20080172937 Palmer et al. Jul 2008 A1
20080176991 Osawa et al. Jul 2008 A1
20080193740 Nesbitt Aug 2008 A1
20080197760 Leconte et al. Aug 2008 A1
20080199657 Capron et al. Aug 2008 A1
20080199659 Zhao Aug 2008 A1
20080205950 Moorlag et al. Aug 2008 A1
20080206550 Borlner Aug 2008 A1
20080207581 Whiteford et al. Aug 2008 A1
20080213601 Yamamoto et al. Sep 2008 A1
20080220170 Van Der Flaas Sep 2008 A1
20080220676 Marin et al. Sep 2008 A1
20080221009 Kanagasabapathy et al. Sep 2008 A1
20080221263 Kanagasabapathy et al. Sep 2008 A1
20080226694 Gelbert et al. Sep 2008 A1
20080237126 Hoek et al. Oct 2008 A1
20080241512 Boris et al. Oct 2008 A1
20080241523 Huignard et al. Oct 2008 A1
20080245273 Vyorkka et al. Oct 2008 A1
20080246804 Kawase et al. Oct 2008 A1
20080248263 Kobrin Oct 2008 A1
20080250978 Baumgart et al. Oct 2008 A1
20080261024 Xenopoulos et al. Oct 2008 A1
20080268233 Lawin et al. Oct 2008 A1
20080269358 Inoue et al. Oct 2008 A1
20080280699 Jarvholm Nov 2008 A1
20080286556 D'Urso et al. Nov 2008 A1
20080295347 Braham Dec 2008 A1
20080296252 D'Urso et al. Dec 2008 A1
20080306202 Lin et al. Dec 2008 A1
20080310660 Lin Dec 2008 A1
20090010870 Greiner et al. Jan 2009 A1
20090011222 Xiu et al. Jan 2009 A1
20090011227 Furukawa Jan 2009 A1
20090011960 Wu Jan 2009 A1
20090018249 Kanagasabapathy et al. Jan 2009 A1
20090025508 Liao et al. Jan 2009 A1
20090025609 Egami et al. Jan 2009 A1
20090032088 Rabinowitz Feb 2009 A1
20090035519 Gaeta et al. Feb 2009 A1
20090036978 Kleiner et al. Feb 2009 A1
20090042469 Simpson Feb 2009 A1
20090058247 Collins et al. Mar 2009 A1
20090064894 Baumgart et al. Mar 2009 A1
20090076430 Simpson et al. Mar 2009 A1
20090084574 Balfour et al. Apr 2009 A1
20090084914 Picken et al. Apr 2009 A1
20090085453 Daley et al. Apr 2009 A1
20090087670 Peng et al. Apr 2009 A1
20090095941 Nakata et al. Apr 2009 A1
20090099301 Naraghi et al. Apr 2009 A1
20090105409 Munzmay et al. Apr 2009 A1
20090105679 Joubert et al. Apr 2009 A1
20090111344 Murphy et al. Apr 2009 A1
20090115302 Benz et al. May 2009 A1
20090123728 Cheung et al. May 2009 A1
20090134758 Vardon May 2009 A1
20090136737 Ring et al. May 2009 A1
20090142604 Imai et al. Jun 2009 A1
20090155566 Gentleman et al. Jun 2009 A1
20090162592 Baikerikar et al. Jun 2009 A1
20090163637 Li et al. Jun 2009 A1
20090182085 Escobar Barrios et al. Jul 2009 A1
20090186070 Guire et al. Jul 2009 A1
20090188877 Stewart Jul 2009 A1
20090193743 Wiercinski Aug 2009 A1
20090195136 Wing et al. Aug 2009 A1
20090208739 Husemann et al. Aug 2009 A1
20090212505 McMillin et al. Aug 2009 A1
20090240004 Maier et al. Sep 2009 A1
20090263604 Arai et al. Oct 2009 A1
20090286023 Dobreski et al. Nov 2009 A1
20090298369 Koene et al. Dec 2009 A1
20090324910 Gemici et al. Dec 2009 A1
20100001625 Eckartsberg et al. Jan 2010 A1
20100003493 Cheng et al. Jan 2010 A1
20100004373 Zhu et al. Jan 2010 A1
20100006223 Krawinkel et al. Jan 2010 A1
20100026156 Leconte et al. Feb 2010 A1
20100052491 Vardon Mar 2010 A1
20100102693 Driver et al. Apr 2010 A1
20100109498 Ramm et al. May 2010 A1
20100117502 Kang et al. May 2010 A1
20100133970 Shin et al. Jun 2010 A1
20100176703 Kim Jul 2010 A1
20100181884 De La Garza et al. Jul 2010 A1
20100196702 Furukawa Aug 2010 A9
20100213334 Davenport Aug 2010 A1
20100272913 Russell et al. Oct 2010 A1
20100314575 Gao et al. Dec 2010 A1
20100330347 Badyal et al. Dec 2010 A1
20110020637 Ikishima et al. Jan 2011 A1
20110027531 Uchida et al. Feb 2011 A1
20110033662 Ikishima et al. Feb 2011 A1
20110111656 Gao et al. May 2011 A1
20110184082 Wright et al. Jul 2011 A1
20110206925 Kissel et al. Aug 2011 A1
20110217544 Young et al. Sep 2011 A1
20110243985 Pagani et al. Oct 2011 A1
20110251318 Ishizaki et al. Oct 2011 A1
20110303156 Sikka et al. Dec 2011 A1
20110313082 Popp Dec 2011 A1
20120009396 Sikka et al. Jan 2012 A1
20120040577 Kissel et al. Feb 2012 A1
20120045954 Bleecher et al. Feb 2012 A1
20130216820 Riddle et al. Aug 2013 A1
20140087134 Gesford et al. Mar 2014 A1
20140205804 Jones et al. Jul 2014 A1
20140296409 Sikka et al. Oct 2014 A1
20140349061 Sikka et al. Nov 2014 A1
20150005424 Jones et al. Jan 2015 A1
20150030779 Bleecher et al. Jan 2015 A1
20150097475 Sikka et al. Apr 2015 A1
20150320646 Kameya Nov 2015 A1
20150368500 Sikka et al. Dec 2015 A1
20160208111 Hurley Jul 2016 A1
Foreign Referenced Citations (234)
Number Date Country
1 002 256 Dec 1976 CA
2175848 Dec 1996 CA
10306891 Aug 2004 DE
10 2010 022 265 May 2010 DE
0 166 363 Jan 1986 EP
0 207 282 Jul 1987 EP
0 307 915 Mar 1989 EP
0 317 057 May 1989 EP
0 332 141 Sep 1989 EP
0 386 991 Sep 1990 EP
0 399 568 Nov 1990 EP
0 446 391 Sep 1991 EP
0 452 723 Oct 1991 EP
0 472 215 Feb 1992 EP
0 476 510 Mar 1992 EP
0 493 270 Jul 1992 EP
0 545 201 Jun 1993 EP
0 623 656 Nov 1994 EP
0 649 887 Apr 1995 EP
0 657 393 Jun 1995 EP
0 714 870 Jun 1996 EP
0 714 921 Jun 1996 EP
0 719 743 Jul 1996 EP
0 719 821 Jul 1996 EP
0 739 714 Oct 1996 EP
0 745 567 Dec 1996 EP
0 745 568 Dec 1996 EP
0 752 459 Jan 1997 EP
0 770 706 May 1997 EP
0 904 343 May 1997 EP
0 799 791 Oct 1997 EP
0 811 430 Dec 1997 EP
0 863 191 Sep 1998 EP
0 969 718 Sep 1998 EP
0 903 389 Mar 1999 EP
0 914 873 May 1999 EP
0 915 103 May 1999 EP
0 930 351 Jul 1999 EP
1 047 735 Nov 2000 EP
1 048 696 Nov 2000 EP
1 097 979 May 2001 EP
1 108 735 Jun 2001 EP
1 113 064 Jul 2001 EP
1 136 539 Sep 2001 EP
1 180 533 Feb 2002 EP
1 187 872 Mar 2002 EP
1 193 289 Apr 2002 EP
1 215 252 Jun 2002 EP
1 401 903 Sep 2002 EP
1 261 559 Dec 2002 EP
1 392 619 Dec 2002 EP
1 392 772 Dec 2002 EP
1 407 919 Feb 2003 EP
1 492 837 Oct 2003 EP
1 360 253 Nov 2003 EP
1 362 904 Nov 2003 EP
1 503 813 Nov 2003 EP
1 387 011 Feb 2004 EP
1 387 169 Feb 2004 EP
1 407 792 Apr 2004 EP
1 433 821 Jun 2004 EP
1 583 615 Jul 2004 EP
1 473 355 Nov 2004 EP
1 475 234 Nov 2004 EP
1 479 738 Nov 2004 EP
1 524 290 Apr 2005 EP
1 875 279 Nov 2006 EP
1 883 669 Nov 2006 EP
1 902 091 Jan 2007 EP
1 752 284 Feb 2007 EP
1 857 497 Nov 2007 EP
1 873 218 Jan 2008 EP
1 908 804 Apr 2008 EP
1 988 129 Nov 2008 EP
1 997 619 Dec 2008 EP
2 346 678 Jul 2011 EP
2 678 400 Aug 2012 EP
2 547 832 Jan 2013 EP
06787306.7 May 2013 EP
2 791 255 Jun 2013 EP
2 864 430 Apr 2015 EP
3 049 453 Aug 2016 EP
1 341 605 Dec 1973 GB
1 465 495 Feb 1977 GB
2 484 751 Apr 2012 GB
62-246960 Oct 1987 JP
H05-186738 Jul 1993 JP
H07-090691 Apr 1995 JP
H10-309768 Nov 1998 JP
2002-020575 Jan 2002 JP
2004-143352 May 2004 JP
2004162133 Jun 2004 JP
2004308984 Nov 2004 JP
2005082616 Mar 2005 JP
2005-533946 Nov 2005 JP
2006131938 May 2006 JP
2006-176559 Jul 2006 JP
2007144917 Jun 2007 JP
2007182491 Jul 2007 JP
2007-526366 Sep 2007 JP
2008228958 Oct 2008 JP
2009071672 Apr 2009 JP
2009-100879 May 2009 JP
2009-120792 Jun 2009 JP
10-2003-052853 Jun 2003 KR
10-2009-90240 Oct 2010 KR
175646 Aug 1994 MX
183533 Dec 1996 MX
192053 May 1999 MX
195031 Jan 2000 MX
199899 Nov 2000 MX
201072 Mar 2001 MX
203880 Aug 2001 MX
205074 Nov 2001 MX
PA01011653 Dec 2002 MX
215752 Aug 2003 MX
PA02006399 Sep 2003 MX
PA04010165 Feb 2005 MX
PA05006898 Aug 2005 MX
PA02012841 Jan 2006 MX
234477 Feb 2006 MX
PA06003323 Mar 2006 MX
WO 1986-005389 Sep 1986 WO
WO 1991-004305 Apr 1991 WO
WO 1993-016131 Aug 1993 WO
WO 1994-013734 Jun 1994 WO
WO 1996-004123 Feb 1996 WO
WO 1996-007621 Mar 1996 WO
WO 1997-007993 Mar 1997 WO
WO 1998-020960 May 1998 WO
WO 1999-023137 May 1999 WO
WO 1999-023437 May 1999 WO
WO 1999-040431 Aug 1999 WO
WO 1999-047578 Sep 1999 WO
WO 1999-048339 Sep 1999 WO
WO 1999-057185 Nov 1999 WO
WO 1999-064363 Dec 1999 WO
WO 2000-005321 Feb 2000 WO
WO 2000-014297 Mar 2000 WO
WO 2000-025938 May 2000 WO
WO 2000-034361 Jun 2000 WO
WO 2000-039240 Jul 2000 WO
WO 2000-046464 Aug 2000 WO
WO 2000-066241 Nov 2000 WO
WO 2001-019745 Mar 2001 WO
WO 2001-062682 Aug 2001 WO
WO 2001-074739 Oct 2001 WO
WO 2001-079142 Oct 2001 WO
WO 2001-079371 Oct 2001 WO
WO 2001-098399 Dec 2001 WO
WO 2002-014417 Feb 2002 WO
WO 2002-028951 Apr 2002 WO
WO 2002-062910 Aug 2002 WO
WO 2002-074869 Sep 2002 WO
WO 2002-098983 Dec 2002 WO
WO 2003-010255 Feb 2003 WO
WO 2003-012004 Feb 2003 WO
WO 2003-030879 Apr 2003 WO
WO 2003-037702 May 2003 WO
WO 2003-045693 Jun 2003 WO
WO 2003-063646 Aug 2003 WO
WO 2003-080258 Oct 2003 WO
WO 2003-082998 Oct 2003 WO
WO 2003-093568 Nov 2003 WO
WO 2004-009920 Jan 2004 WO
WO 2004-012625 Feb 2004 WO
WO 2004-043319 May 2004 WO
WO 2004-058418 Jul 2004 WO
WO 2004-104116 Dec 2004 WO
WO 2004-110132 Dec 2004 WO
WO 2005-021843 Mar 2005 WO
WO 2005-023935 Mar 2005 WO
WO 2005-028562 Mar 2005 WO
WO 2005-068399 Jul 2005 WO
WO 2005-077429 Aug 2005 WO
WO 2006-044641 Apr 2006 WO
WO 2006-044642 Apr 2006 WO
WO 2006-081891 Aug 2006 WO
WO 2006-083600 Aug 2006 WO
WO 2006-101934 Sep 2006 WO
WO 2006-135755 Dec 2006 WO
WO 2007-011731 Jan 2007 WO
WO 2007-027276 Mar 2007 WO
WO 2007-052260 May 2007 WO
WO 2007-053266 May 2007 WO
WO 2007-056427 May 2007 WO
WO 2007-070801 Jun 2007 WO
WO 2007-075407 Jul 2007 WO
WO 2007-092746 Aug 2007 WO
WO 2007-102960 Sep 2007 WO
WO 2007-104494 Sep 2007 WO
WO 2007-126432 Nov 2007 WO
WO 2007-126743 Nov 2007 WO
WO 2007-130294 Nov 2007 WO
WO 2007-149617 Dec 2007 WO
WO 2008-004827 Jan 2008 WO
WO 2008-004828 Jan 2008 WO
WO 2008-006078 Jan 2008 WO
WO 2008-021791 Feb 2008 WO
WO 2008-035347 Mar 2008 WO
WO 2008-035917 Mar 2008 WO
WO 2008-050895 May 2008 WO
WO 2008-051221 May 2008 WO
WO 2008-066828 Jun 2008 WO
WO 2008-078346 Jul 2008 WO
WO 2008-106494 Sep 2008 WO
WO 2008-112158 Sep 2008 WO
WO 2008-123650 Oct 2008 WO
WO 2008-123955 Oct 2008 WO
WO 2008-123961 Oct 2008 WO
WO 2008-134243 Nov 2008 WO
WO 2008-137973 Nov 2008 WO
WO 2008-151991 Dec 2008 WO
WO 2008-153687 Dec 2008 WO
WO 2009-003847 Jan 2009 WO
WO 2009-005465 Jan 2009 WO
WO 2009-012116 Jan 2009 WO
WO 2009-018327 Feb 2009 WO
WO 2009-032988 Mar 2009 WO
WO 2009-037717 Mar 2009 WO
WO 2009-041752 Apr 2009 WO
WO 2009-061199 May 2009 WO
WO 2009-076108 Jun 2009 WO
WO 2009-148611 Dec 2009 WO
WO 2009-158567 Dec 2009 WO
WO 2010-033288 Mar 2010 WO
WO 2010-042191 Apr 2010 WO
WO 2010-042668 Apr 2010 WO
WO 2011-116005 Sep 2011 WO
WO 2011-151151 Dec 2011 WO
WO 2012-115986 Aug 2012 WO
WO 2013-090939 Jun 2013 WO
WO 2014-003852 Jan 2014 WO
WO 2015-048539 Apr 2015 WO
Non-Patent Literature Citations (101)
Entry
U.S. Appl. No. 60/699,200, filed Jul. 14, 2005, Guire et al. (Innovative Surface Technologies, Inc.).
U.S. Appl. No. 60/807,143, filed Jul. 12, 2006, Guire et al. (Innovative Surface Technologies, Inc.).
U.S. Appl. No. 60/891,876, filed Feb. 27, 2007, Lawin et al. (Innovative Surface Technologies, Inc.).
U.S. Appl. No. 60/058,902, filed Jun. 4, 2008, Driver et al.
U.S. Appl. No. 61/090,002, filed Aug. 19, 2008, Driver et al.
U.S. Appl. No. 61/133,273, filed Jun. 27, 2008, Driver et al.
U.S. Appl. No. 61/198,414, filed Jun. 16, 2009, Gao.
U.S. Appl. No. 61/216,540, filed May 18, 2009, Driver et al.
U.S. Appl. No. 61/252,229, filed Oct. 16, 2009, Gao.
U.S. Appl. No. 12/037,520, now U.S. Pat. No. 7,943,234.
“Composition,” in Collins English Dictionary, found at http://www.credoreference.com/entry/hcengdict/composition, 2000 (viewed Aug. 26, 2013).
“NeverWet—product characteristics,” found at http://www.neverwet.com/product-characteristics.php, NeverWet LLC (viewed Mar. 7, 2013).
“Surfactant,” found at https://en.wikipedia.org/wiki/Surrfactant, Wikipedia (viewed Dec. 28, 2015).
“TABER® Test Method Reference,” found at http://www.taberindustries.com/documents/Taber Test Reference by Method.pdf (Jun. 2014, viewed Oct. 6, 2015) (2 pages).
“Yield strength, elastic limit, and ultimate strength,” found at http://inventor.grantadesign.com/en/notes/science/material/S04%20strength.htm, Granta Design Ltd. (viewed Feb. 10, 2015).
2009 R&D 100 Award Entry Form (p. 5 excerpt from another document) showing Fig. 1 Schematic of NICE (“no ice nanocoating”) (2009).
Bae et al., “Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent,” J Colloid Interface Sci, abstract only (May 3, 2009; epublication ahead of print).
Bayer Materials Science product information on Bayhydrol® 110 polyurethane dispersion (two first pages of this brochure) (Aug. 2002).
Bayer Materials Science product information on Bayhydrol® 122 polyurethane dispersion (Jan. 2004).
Bayer Materials Science product information on Bayhydrol® 124 polyurethane dispersion (Jan. 2004).
Bayer Materials Science product information on Bayhydrol® 140AQ, polyurethane dispersion (Aug. 2002).
Bayer Materials Science product information on Bayhydrol® A145, aqueous hydroxyl-functional polyurethane dispersion (Jan. 2010).
Beyler et al, “Thermal Decomposition of Polymers,” Chapter 7 of The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 1-110-1-131 (2002).
Bliznakov et al., “Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper,” Langmuir, 25(8):4760-4766, abstract only (Apr. 21, 2009).
Boinovich et al., “Principles of design of superhydrophobic coatings by deposition from dispersions,” Langmuir, 25(5):2907-2912, abstract only (Mar. 3, 2009).
Boinovich et al., “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Bravo et al., “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23(13):7293-7298, abstract only (Jun. 19, 2007; epublished May 25, 2007).
Choi et al., “Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface,” Phys Rev Lett, 96(6):066001, abstract only (Feb. 17, 2006; epublished Feb. 16, 2006).
Clark, M.D.T. et al. “Paints and Pigments” available at nzic.org.nz/ChemProcesses/polymers/10D.pdf (copyright 2005-2008 at http://nzic.org.nz/ChemProcesses/polymers/).
Courbin et al., “Your wetting day,” Physics Today, 60(2):84 (Feb. 2007).
De Givenchy et al., “Fabrication of Superhydrophobic PDMS Surfaces by Combining Acidic Treatment and Perfluorinated Monolayers,” Langmuir, 25(11):6448-6453, abstract only (Jun. 2, 2009).
Du, “Surfactants, Dispersants, and Defoamers for the Coatings, Inks, and Adhesives Industries,” in Coatings Technology Handbook, Third Edition, Tracton (ed.), CRC Press (2005).
EPO Communication dated Dec. 5, 2011, regarding third-party observations filed in European Application No. 09771098.2.
Expancel DE product list, “Product Specification for Expancel® Microspheres,” Issue Oct. 2010, AkzoNobel (Oct. 2010).
Extended European search report for European Application No. 920119918, dated Jul. 22, 1997.
Extended European search report for European Application No. 09771098.2, dated Dec. 27, 2011.
Extended European search report for European Application No. 09819851.8, dated Jul. 22, 2014.
Extended European search report for European Application No. 12749985.3, dated Apr. 7, 2015.
Extended European search report for European Application No. 12857248.4, dated Apr. 7, 2015.
Fürstner et al., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces,” Langmuir, 21(3):956-961, abstract only (Feb. 1, 2005).
García et al., “Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces; preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica,” J Am Chem Soc, 129(16):5052-5060, abstract only (Apr. 25, 2007; epublished Mar. 31, 2007).
Gonçalves et al., “Superhydrophobic cellulose nanocomposites,” J. Colloid Interface Sci, 324(1-2):42-46, abstract only (Aug. 2008; epublished May 7, 2008).
Guo et al., “A novel approach to stable superhydrophobic surfaces,” Chemphyschem, 7(8):1674-1677, abstract only (Aug. 11, 2006; epublished Jul. 17, 2006).
International Preliminary Report on Patentability for International Application No. PCT/US2009/059909 (published as WO Publication No. 2010/042668), dated Apr. 21, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2009/005512 (published as WO Publication No. 2010/042191), dated Dec. 8, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2009/048775 (published as WO Publication No. 2009/158567), dated Nov. 19, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2009/059909 (published as WO Publication No. 2010/042668), dated Dec. 4, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2010/048711 (published as WO Publication No. 2011/034835), dated Mar. 17, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2010/054936 (published as WO Publication No. 2011/056742), dated Feb. 16, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/028541 (published as WO Publication No. 2011/116005), dated May 17, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2012/025982 (published as WO Publication No. 2012/115986), dated Jun. 13, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2012/070200 (published as WO Publication No. 2013/090939), dated Feb. 27, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2013/031751 (published as WO Publication No. 2014/003852), dated Dec. 23, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2014/057848 (published as WO Publication No. 2015/048539), dated Dec. 29, 2014.
Jauregui-Beloqui et al., “Thermoplastic polyurethane-fumed silica composites: influence of the specific surface area of fumed silica on the viscoelastic and adhesion properties,” Journal of Adhesive Science and Technology, 13(6):695-711, abstract only (1999).
Kietzig et al., “Patterned superhydrophobic metallic surfaces,” Langmuir, 25(8):4821-4827, abstract only (Apr. 21, 2009).
Kim et al., “A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold,” Chem Commun (Camb), 22:2237-2239, abstract only (Jun. 14, 2007; epublished Mar. 6, 2007).
Kobayashi et al., Surface Tension of Poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)-methylsiloxane], Macromolecules, 23:4929-4933 (1990).
Kovalchuk et al., “Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?,” Advances in Colloid and Interface Science, 210:65-71 (available online Apr. 13, 2014).
Kraton® FG1901 G Polymer, Data Document, Identifier K127DDh14U, the KRATON Polymers Group of Companies (Jun. 17, 2014).
Kraton® FG1924 G Polymer, Data Document, Identifier K123DDe09U, the KRATON Polymers Group of Companies (Aug. 10, 2009).
Kraton™ Polymers for Modification of Thermoplastics, found at http://docs.kraton.com/kraton/attachments/downloads/81311AM.pdf (last accessed on Aug. 3, 2015).
Le Marechal et al., “Textile Finishing Industry as an Important Source of Organic Pollutants,” in Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update, Puzyn (ed.), Chapter 2, pp. 29-54, InTech (2012).
Lee et al., “Impact of a superhydrophobic sphere onto water,” Langmuir, 24(1):142-145, abstract only (Jan. 1, 2008; epublished Nov. 14, 2007).
Li et al., “Conversion of a metastable superhydrophobic surface to an ultraphobic surface,” Langmuir, 24(15):8008-8012, abstract only (Aug. 5, 2008; epublished Jul. 8, 2008).
Ling et al., “Stable and transparent superhydrophobic nanoparticle films,” Langmuir, 25(5):3260-3263, abstract only (Mar. 3, 2009).
Litvinov et al., “Structure of a PDMS Layer Grafted onto a Silica Surface Studied by Means of DSC and Solid-State NMR,” Macromolecules, 35(11):4356-4364 (2002).
Manca et al., “Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing,” Langmuir, 25(11):6357-6362, abstract only (Jun. 2, 2009).
Marmur, “Super-hydrophobicity fundamentals: implications to biofouling prevention,” Biofouling, 22(1-2):107-115, abstract only (2006).
Ming et al., “Toward Superlyophobic Surfaces,” Contact Angle, Wettability and Adhesion (ed. Mittal), vol. 6, pp. 191-205, Koninklijke Brill NV, Leiden (2009).
Mohammadi et al., “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces,” Langmuir, 20:9657-9662 (available online Oct. 2, 2004).
Nosonovsky et al., “Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions,” Langmuir, 24(4):1525-1533, abstract only (Feb. 19, 2008; epublished Dec. 12, 2007).
Park et al., “Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials,” J. Colloid Interface Sci, 336(1):298-303, abstract only (Aug. 1, 2009; epublished Apr. 15, 2009).
Perez, Jr., et al., “Performance and Processing Enhancements of Aromatic Polyurea Elastomer Systems Prepared from High 2,4′-MDI Isocyanates,” in Polyurethanes Conference 2000: Defining the Future Through Technology, Boston, Massachusetts, pp. 219-232 (Oct. 8-11, 2000).
Piret et al., “Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces,” Langmuir, 24(5):1670-1672, abstract only (Mar. 4, 2008; epublished Feb. 6, 2008).
Puukilainen et al., “Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures,” Langmuir, 23(13):7263-7268, abstract only (Jun. 19, 2007; epublished May 23, 2007).
Sakai et al., “Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces,” Langmuir, 22(11):4906-4909, abstract only (May 23, 2006).
Sherwin Williams Chemical Coatings product information for CC-D14, POLANE® 2.8T, plus polyurethane enamel (Oct. 19, 2006).
Sherwin Williams Chemical Coatings product information for CC-D5, POLANE® T, polyurethane enamel (Sep. 2001).
Sherwin Williams Chemical Coatings product information for CC-E14, POLANE® 700T, water reducible enamel (May 2010).
Shirtcliffe et al., “Wetting and wetting transitions on copper-based super-hydrophobic surfaces,” Langmuir, 21(3):937-943, abstract only (Feb. 1, 2005).
Smith et al., “Modeling of PDMS—Silica Nanocomposites,” NSTI-Nanotech, 3:115-118 (2004).
SSW Holding Company, Inc. v. Schott Gemtron Corporation, Civil Docket, Civil Action No. 3:12-cv-00661-CRS (as of Dec. 6, 2013).
SSW Holding Company, Inc. v. Schott Gemtron Corporation, Complaint for Patent Infringement, Demand for Jury Trial, Civil Action No. 3:12-cv-00661-CRS (Oct. 16, 2012).
Su et al., “From Suerhydrophophilic to Superhydrophobic: Controlling Wettability of Hydroxide Zinc Carbonate Film on Zinc Plates,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Synytska et al., “Wetting on Fractal Superhydrophobic Surfaces from ‘Core-Shell’ Particles: A Comparison of Theory and Experiment,” Langmuir, abstract only (Feb. 10, 2009; epublication ahead of print).
Torró-Palau et al., “Characterization of polyurethanes containing different silicas,” International Journal of Adhesion and Adhesives, 21(1):1-9, abstract only (2001).
Two webpages re pigment particle size: http://www.specialchem4coatings.com/tc/color-handbook/index.aspx?id=size and http://www.specialchem4coatings.com/tc/tio2/index.aspx?id=whiteness, SpecialChem, S.A. (printed on Jul. 19, 2013).
Venkateswara et al., “Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method,” J Colloid Interface Sci, 332(2):484-490, abstract only (Apr. 15, 2009; epublished Jan. 14, 2009).
Wang et al., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity,” Chem Commun (Camb),7:877-879, abstract only (Feb. 21, 2008; epublished Dec. 18, 2007).
Yang et al., “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, 97(11):116103, abstract only (Sep. 15, 2006; epublished Sep. 14, 2006).
Zhang et al., “Application of superhydrophobic edge effects in solving the liquid outflow phenomena,” Langmuir, 23(6):3230-3235, abstract only (Mar. 13, 2007; epublished Jan. 25, 2007).
Zhou et al., “Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings,” Journal of Materials Science, 39:1593-1594, abstract only (2004).
EPO Communication dated Aug. 2, 2012, regarding third-party observations filed in European Application No. 09819851.8.
Extended European search report for European Application No. 13809987.4, dated Feb. 22, 2016.
Machine translation, German Application No. DE10306891, 8 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2002-020575 A, 15 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2004-143352 A, 13 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2006-176559 A, 15 pages, (prepared Aug. 6, 2015).
Machine translation, Japanese Application No. JP 2009-120792 A, 24 pages, (prepared Aug. 6, 2015).
Shang et al., “Facile fabrication of superhydrophpobic surface via SiO2/fluoro-containing polymer composite particles,” CAPlus Abstract, Accession No. 2013:1045604, 2 pages (Jul. 5, 2013).
Related Publications (1)
Number Date Country
20130139309 A1 Jun 2013 US
Provisional Applications (1)
Number Date Country
61314137 Mar 2010 US
Continuations (1)
Number Date Country
Parent PCT/US2011/028541 Mar 2011 US
Child 13618779 US