Claims
- 1. A plunger arrival target time adjustment method for use in conjunction with a gas-producing well, a freely movable plunger disposed in the well for traveling vertically relative to the well between a lower initial position and an upper terminal position in response to open and shut-in conditions of the well, a sales line connected in flow communication with the well and containing a gas under a first level of pressure, a vent line connected in flow communication with the well and containing a gas under a second level of pressure less than the first level of pressure of the gas in the sales line, an A valve interposed in the sales line and being convertable between open and close states in which flow of gas is correspondingly allowed and blocked from the well to the sales line, a B valve interposed in the vent line and being convertable between open and close states in which flow of gas is correspondingly allowed and blocked from the well to the vent line, a plunger arrival sensor disposed remote from the lower initial position of the plunger and adjacent to the upper terminal position of the plunger for sensing arrival of the plunger at the upper terminal position, and an electronic controller connected to the plunger arrival sensor and the A and B valves for controlling cycling of the A and B valves between open and close states and thereby the well between open and shut-in conditions in which the plunger is allowed to travel correspondingly upwardly to the upper terminal position and downwardly to the lower initial position and gas to correspondingly flow from the well and elevate in pressure in the well to a level above the first level of pressure of the gas sales line, said plunger arrival target time adjustment method comprising the steps of:
- (a) setting times of A valve open and close states;
- (b) setting times of B valve open and close states, said time of B valve open state to occur separately from and in succession to said time of A valve open state;
- (c) setting a target time for plunger arrival starting with opening of the well upon converting the A valve to said open state and ending with the sensing of arrival of the plunger at the upper terminal position of the well;
- (d) measuring travel time of the plunger from said opening of the well to said sensing of plunger arrival irrespective of whether said arrival occurs during the time of A valve open state or the time of B valve open state; and
- (e) setting a new target time for plunger arrival based on a predetermined relationship of the measured plunger arrival travel time to the previously set plunger arrival target time.
- 2. The method of claim 1 wherein said predetermined relationship includes incrementing the previously set target time by a preset time interval in response to occurrence of a preset number of plunger arrivals within a preset percentage of the previously set plunger arrival target time.
- 3. The method of claim 2 wherein said preset time interval is about thirty seconds.
- 4. The method of claim 2 wherein said preset percentage is about five percent.
- 5. The method of claim 1 wherein said predetermined relationship includes incrementing the previously set target time by a time interval of about thirty seconds in response to occurrence of a preset number of consecutive measured plunger arrival travel times within about five percent of the previously set target time.
- 6. The method of claim 1 wherein said predetermined relationship includes shortening the time the A valve is in open state and lengthing the time the A valve is in close state in response to the measured plunger arrival travel time being faster than the previously set plunger arrival target time.
- 7. The method of claim 6 further comprising the steps of:
- setting a maximum allowable change in time the A valve is in open state and a maximum allowable change in time the A valve is in close state such that the amount of time the A valve in open state can be lengthened or shortened is a function of the set maximum allowable changes in the times the A valve is in open and close states and of the difference of the measured plunger arrival travel time from the previously set target time.
- 8. The method of claim 7 wherein in response to the measured plunger arrival travel time being more than about fifty percent but less than about ninety-five percent of the previously set target time, a fraction of the set maximum allowable change in time the A valve is in open state is added to the previously set time of the A valve open state to provide a new set time of the A valve open state and a fraction of the set maximum allowable change in time the A valve is in close state is subtracted from the set time of the A valve close state to provide a new set time of the A valve close state.
- 9. The method of claim 7 wherein in response to the measured plunger arrival travel time being more than about ninety-five percent of the previously set target time and less than about one hundred five percent of the previously set target time, about five percent of the set maximum allowable change in time the A valve is in open state is added to the set time of the A valve open state to provide a new set time of the A valve open state and no change is made to the set time of the A valve close state.
- 10. The method of claim 1 wherein said predetermined relationship includes lengthening the time the A valve is in open state and shortening the time the A valve is in close state in response to the measured plunger arrival travel time being slower than the previously set plunger arrival target time.
- 11. The method of claim 10 further comprising the steps of:
- setting a maximum allowable change in the time the A valve is in open state and a maximum allowable change in the time the A valve is in close state such that the amount of time the A valve in open state can be lengthened or shortened is a function of the set maximum allowable changes in the times the A valve is in open and close states and of the difference of the measured plunger arrival travel time from the previously set target time.
- 12. The method of claim 11 wherein in response to the measured plunger arrival travel time being more than about one hundred five percent but less than about two hundred percent of the previously set target time, a fraction of the set maximum allowable change in time the A valve is in open state is subtracted from the previously set time of the A valve open state to provide a new set time of the A valve open state and a fraction of the set maximum allowable change in time the A valve is in close state is added to the set time of the A valve close state to provide a new set time of the A valve close state.
- 13. The method of claim 11 wherein in response to the measured plunger arrival travel time being more than about ninety-five percent of the previously set target time and less than about one hundred five percent of the previously set target time, about five percent of the set maximum allowable change in time the A valve is in open state is added to the set time of the A valve open state to provide a new set time of the A valve open state and no change is made to the set time of the A valve close state.
- 14. The method of claim 1 wherein in response to the measured plunger arrival travel time being more than about fifty percent but less than about ninety-five percent of the previously set target time, a fraction of a preset maximum allowable change in time the A valve is in open state is added to the previously set time of the A valve open state to provide a new set time of the A valve open state and a fraction of the set maximum allowable change in time the A valve is in close state is subtracted from the set time of the A valve close state to provide a new set time of the A valve close state.
- 15. The method of claim 1 wherein in response to the measured plunger arrival travel time being more than about ninety-five percent of the previously set target time and less than about one hundred five percent of the previously set target time, about five percent of a preset maximum allowable change in time the A valve is in open state is added to the set time of the A valve open state to provide a new set time of the A valve open state and no change is made to the set time of the A valve close state.
- 16. The method of claim 1 wherein in response to the measured plunger arrival travel time being more than about one hundred five percent but less than about two hundred percent of the previously set target time, a fraction of a preset maximum allowable change in time the A valve is in open state is subtracted from the previously set time of the A valve open state to provide a new set time of the A valve open state and a fraction of the set maximum allowable change in time the A valve is in close state is added to the set time of the A valve close state to provide a new set time of the A valve close state.
Parent Case Info
This application claims the benefit of U.S. provisional application No. 60/047,471, filed May 23, 1997.
US Referenced Citations (6)