Plunger covers and plungers for use in syringes

Information

  • Patent Grant
  • 10668221
  • Patent Number
    10,668,221
  • Date Filed
    Friday, December 22, 2017
    6 years ago
  • Date Issued
    Tuesday, June 2, 2020
    3 years ago
Abstract
A plunger cover for use with a syringe includes a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe. The central portion can, for example, be more rigid than the sealing portion. The sealing portion and the central portion are connected in an overmolding process. The sealing portion can, for example, be formed from a thermoplastic elastomer or a thermoplastic polyurethane. The central portion can, for example, be formed from polypropylene, acrylonitrile butadiene styrene, polycarbonate or copolymers thereof.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to plunger covers and to plungers for use in syringes and to methods of fabrication of plunger covers and plungers for use in syringes, and particularly, to plunger covers and to plungers for use in syringes to inject fluids into a patient and to methods of fabrication thereof.


A number of injector-actuated syringes and powered injectors for use in medical procedures such as angiography, computed tomography, ultrasound and magnetic resonance imaging (MRI) have been developed. U.S. Pat. No. 4,006,736, the disclosure of which is incorporated herein by reference, for example, discloses an injector and syringe for injecting fluid into the vascular system of a human being or an animal. Typically, such injectors comprise drive members such as pistons that operatively connect to a syringe plunger. For example, U.S. Pat. No. 4,677,980, the disclosure of which is incorporated herein by reference, discloses an angiographic injector and syringe wherein the drive member of the injector can be connected to, or disconnected from, the syringe plunger at any point along the travel path of the plunger via a releasable mechanism. A front-loading syringe and injector system is also disclosed in U.S. Pat. No. 5,383,858, the disclosure of which is incorporated herein by reference. Front-loading syringes and syringe plungers for use therewith are also disclosed in U.S. Pat. Nos. 6,585,700 and 6,224,577, the disclosures of which are incorporated herein by reference.


Forward, sliding motion of the syringe plunger within the syringe barrel pressurizes the fluid within the syringe, and the pressurized fluid is injected into that patient via a syringe outlet. A common method of manufacturing syringe plungers adapted, for example, for use in connection with powered injectors is to place an elastomeric, sealing plunger cover over a rigid base. Such rubber covers can, for example, be manufactured by a vulcanization compression molding process. The rubber covers can, for example, be molded into a sheet and then manually hand cut (through a cutting die) from the sheet. Once cut, the rubber covers are, for example, washed in a silicone wash and then assembled onto a plunger base for insertion into a syringe. The process results in substantial material waste and can also result in substantial manufacturing costs and time.


U.S. Pat. No. 5,902,276, the disclosure of which in incorporated herein by reference, discloses a syringe plunger that is formed by a two-shot molding process. A hard plastic core is first formed in a first mold. Subsequently, the distal portion of the hard plastic core is overmolded with a soft rubber plunger cover in a second mold. The second overmolding can occur in the second mold while the core is still cooling to effect molecular bonding of the rubber of the cover with the as-yet uncured plastic of the core.


WO 2004/035289, the disclosure of which is incorporated herein by reference, a copy of which is included herewith and made a part hereof, discloses a method of manufacturing plungers for medical syringes wherein the plunger includes at least two parts. In that regard, the plunger includes a plunger body made of a first plastic and a piston body (in the form of a sealing cover) at the front of the plunger body made of a second plastic. The second plastic (an elastomer) is softer than the first plastic (a generally rigid plastic) of the plunger cover. In forming the plunger, the piston body is first formed by injection molding. Then, the plunger body (or a part thereof) is injected molded against or over the piston body.


Although a number of syringe plungers and methods of fabrication or manufacture of syringe plungers have been developed, it is desirable to develop improved syringe plungers and methods of fabrication of syringe plungers.


SUMMARY OF THE INVENTION

In one aspect, the present invention provides a plunger cover for use with a syringe including a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe. The central portion can, for example, be more rigid than the sealing portion. The sealing portion and the central portion are connected in an overmolding process. The sealing portion can, for example, be formed from a thermoplastic elastomer or a thermoplastic polyurethane. The central portion can, for example, be formed from polypropylene, acrylonitrile butadiene styrene, polycarbonate or copolymers thereof.


In several embodiments, the sealing portion is injection molded first and the central portion is injection overmolded thereon. In other embodiments, the central portion is injection molded first and the sealing portion is injection overmolded thereon. In several preferred embodiments, the sealing portion is injection molded first and the central portion is injection overmolded thereon. The material for the sealing portion and the material for the central portion can be selected so that molecular bonding occurs between the sealing portion and the central portion.


In another aspect, the present provides a plunger for use with a syringe including a plunger cover including a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe as described above. The central portion can, for example, be more rigid than the sealing portion. The sealing portion and the central portion are connected in an overmolding process. The plunger further includes a support attached to the plunger cover.


The sealing portion can, for example, includes a radially inward projecting flange that is seated within a seating formed on the support to connect the plunger cover to the support. The support can, for example, include a forward surface adapted to abut the plunger cover to prevent rearward motion of the central portion relative to the support.


In another aspect, the present invention provides a syringe including a syringe body and a plunger slidably positioned within the syringe body. As described above, the plunger includes a plunger cover including a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe. The central portion can, for example, be more rigid than the sealing portion. The sealing portion and the central portion are connected in an overmolding process. The plunger further includes a support attached to the plunger cover.


In a further aspect, the present invention provides a method of fabricating a plunger cover for use in a syringe, including: connecting a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe in an overmolding process, the central portion being more rigid than the sealing portion. The sealing portion can, for example, be injection molded first and the central portion is injection overmolded thereon. Alternatively, the central portion can be injection molded first and the sealing portion is injection overmolded thereon.


In another aspect, the present invention provides a plunger cover for use with a syringe including a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe. The central portion has at least one physiochemical property that differs from the sealing portion. The sealing portion and the central portion are connected in an overmolding process.


In another aspect, the present invention provides a plunger cover for use with a syringe including a sealing portion adapted to form a seal with the syringe and a central portion. The central portion is more rigid than the sealing portion. The sealing portion and the central portion being connected in an overmolding process. In one embodiment, the central portion is positioned forward of at least a portion of the sealing portion and is adapted to contact fluid within the syringe. In another embodiment, the central portion is positioned rearward of a generally central section of the sealing portion and does not contact fluid within the syringe. The central portion can for example, be overmolded upon the sealing portion. Alternatively, the central portion can be injection molded first and the sealing portion is injection overmolded thereon.


In still a further aspect, the present invention provides a plunger for use with a syringe including a sealing portion adapted to form a seal with the syringe and a central portion adapted to contact fluid within the syringe. The central portion is, for example, more rigid than the sealing portion. The sealing portion and the central portion are connected in an overmolding process. The sealing portion can, for example, be adapted to form an operative connection with a drive member.


The present invention, along with the attributes and attendant advantages thereof, will best be appreciated and understood in view of the following detailed description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a perspective view of an embodiment of a plunger of the present invention.



FIG. 1B illustrates a perspective cutaway view of the plunger of FIG. 1A.



FIG. 1C illustrates an enlarged cutaway view of a portion of the plunger of FIG. 1A.



FIG. 1D illustrates a rear perspective, exploded view of the plunger of FIG. 1A wherein the plunger cover is disconnected from the base.



FIG. 1E illustrates a front perspective, exploded view of the plunger of FIG. 1A wherein the plunger cover is disconnected from the base.



FIG. 1F illustrates a side schematic view of the plunger of FIG. 1A slidably positioned within a syringe that is removably attached to a powered injector.



FIG. 2A illustrates a perspective view of another embodiment of a plunger of the present invention.



FIG. 2B illustrates a perspective cutaway view of the plunger of FIG. 2A.



FIG. 2C illustrates an enlarged perspective cutaway view of a portion of the plunger of FIG. 2A.



FIG. 2D illustrates a rear perspective, exploded view of the plunger of FIG. 2A wherein the plunger cover is disconnected from the base.



FIG. 2E illustrates a front perspective, exploded view of the plunger of FIG. 2A wherein the plunger cover is disconnected from the base.



FIG. 3A illustrates a perspective view of another embodiment of a plunger of the present invention.



FIG. 3B illustrates a perspective cutaway view of the plunger of FIG. 3A.



FIG. 3C illustrates a front perspective, exploded view of the plunger of FIG. 3A wherein the plunger cover is disconnected from the base and the sealing portion of the plunger cover is separated from the central or cone portion of the plunger cover.



FIG. 3D illustrates a rear perspective, exploded view of the plunger of FIG. 3A wherein the plunger cover is disconnected from the base and the sealing portion of the plunger cover is separated from the central or cone portion of the plunger cover.



FIG. 3E illustrates a front perspective view of the sealing portion of the plunger cover of FIG. 3A.



FIG. 3F illustrates a front perspective view of the central or cone portion of the plunger of FIG. 3A.



FIG. 4A illustrates a perspective view of another embodiment of a plunger of the present invention.



FIG. 4B illustrates a perspective cutaway view of the plunger of FIG. 4A.



FIG. 4C illustrates a front perspective, exploded view of the plunger of FIG. 4A wherein the plunger cover is disconnected from the base and the sealing portion of the plunger cover is separated from the central or cone portion of the plunger cover.



FIG. 4D illustrates a rear perspective view of the plunger cover of the plunger FIG. 4A.



FIG. 4E illustrates a front, cutaway perspective view of the plunger cover of the plunger of FIG. 4A.



FIG. 4F illustrates a rear perspective, exploded view of the plunger cover of the plunger of FIG. 4A wherein the sealing portion of the plunger cover is separated from the central or cone portion of the plunger cover.



FIG. 4G illustrates a front perspective, exploded view of the plunger cover of the plunger of FIG. 4A wherein the sealing portion of the plunger cover is separated from the central or cone portion of the plunger cover.



FIG. 5A illustrates a front perspective view of another embodiment of a plunger of the present invention.



FIG. 5B illustrates a perspective, cutaway view of the plunger of FIG. 5A.



FIG. 5C illustrates a rear perspective view of the plunger of FIG. 5A.



FIG. 5D illustrates a front perspective, exploded view of the plunger of FIG. 5A.



FIG. 5E illustrates a front perspective, exploded view of the plunger of FIG. 5A.





DETAILED DESCRIPTION OF THE INVENTION

One embodiment of a plunger 10 of the present invention is illustrated in FIGS. 1A through 1F. As illustrated, for example, in FIGS. 1D and 1E, plunger 10 includes a plunger cover 20 that contacts the fluid within a syringe 100 (see FIG. 1F) and forms a seal with the inner wall of the generally cylindrical barrel of syringe 100. Syringe 100 is adapted to be removably connected to an injector 200 via, for example, a retaining flange 110 on syringe 100 the cooperates with a retainer on a syringe interface 210 of injector 200. Injector 200 includes a drive member or piston 220 moveable in a reciprocal manner to pressurize fluid within syringe 100.


Plunger cover 20 includes a sealing section 30 formed, for example, from an elastomeric material suitable to form a sealing engagement with the inner wall of syringe 100. Plunger cover 20 further includes a generally central portion 40 formed from a generally rigid polymeric material. In the embodiment of FIGS. 1A through 1G, central portion 40 has a conical shape adapted to contact the injection fluid and to mate generally with a conical transition region 120 of syringe 100. Plunger 10 further includes a base, support or support ring 50 to which plunger cover 20 is attached. In that regard, elastomeric sealing portion 30 includes a radially inward projecting flange 32 that is seatable within a seating 52 formed in base 50. Base 50 further includes a forward surface 54 that is shaped to contact and mate generally with a rearward surface of plunger cover 20 and to provide support for plunger cover 20. In that regard, abutment of forward surface 54 with plunger cover 20 limits or prevents rearward motion of plunger cover 20 relative to base or support 50. To limit such rearward motion, forward surface 54 preferably contacts a portion of plunger cover 20 so that at least a portion of rigid central conical portion is in alignment with at least a portion forward surface 54. A rearward surface 56 of base 50 is adapted to be contacted by piston 220.


Preferably, plunger cover 20 is formed in an overmolding process such as disclosed in WO 2004/035289. In an injection overmolding process, an injection molding machine is used which includes a heated screw and barrel that melt polymer to a liquid state. In general, an injection molding machine pushes/injects the molten polymer through a heated manifold system into a mold. Once the polymer is inside the mold, it is cooled to a final shape (as determined by the internal dimensions of the mold), and then ejected. In general, waste material associated with injection molding overmolding processes is less than associated with many other manufacturing processes for multi-component articles. Moreover, the overmolding process can be operated automatically. Once the part is formed and cooled, no additional operations are required.


In one embodiment of an overmolding process of the present invention, sealing portion 30 of plunger cover 20 is first injection molded in an appropriately shaped mold. Examples of materials suitable for use in injection molding sealing portion 30 include thermoplastic elastomers (TPE) or thermoplastic polyurethanes (TPU). In general, a thermoplastic elastomer or thermoplastic rubber (TPR) is a polymer compound or blend which exhibits a thermoplastic character above its melt temperature that enables it to be shaped into a fabricated article. Within the design temperature range, the material exhibits elastomeric behavior. In one embodiment, sealing portion 30 was fabricated from SANTOPRENE®, a TPE available, for example, from Advanced Elastomer Systems, L.P. of Akron, Ohio. After injection molding of sealing portion 30, central portion 40 of plunger cover 20 was molded over the TPE/TPU material of molded sealing portion 30. Central portion 40 was injection overmolded with a rigid polymeric material (for example, polypropylene, acrylonitrile butadiene styrene (ABS) or polycarbonate (PC)). Copolymers such as, for example, a PC/ABS copolymer are also suitable for use herein. The overmolding process, for example, can be done in a manual transferred operation or automatically within the same molding machine. In an insert molding process, for example, sealing portion 30 is molded first. Sealing portion 30 is then inserted into another process/mold and is overmolded over with another polymer.


The overmolded polymer does not have to be rigid polymer. The overmolded polymer can, for example, be another polymer having different physiochemical properties. A multilayered plunger/plunger cover can thereby be formed. For example, a less expensive material can be used on an inner portion of the plunger/plunger cover and a more expensive material (having better functionality—for example, a medical grade material) can be used on the outside of the plunger/plunger cover . . . .


As known in the overmolding arts, a molecular bond can be formed between the material of sealing portion 30 and central portion 40. In addition to overmolding central portion 40 upon sealing portion 30, sealing portion 30 can be overmolded upon central portion 40. Control of the strength of the molecular bond can be achieved by appropriate selection of materials. In that regard, as known in the injection molding arts, to form a stronger molecular bond, the melt temperature of the first injected material is preferably similar to the melt temperature of the second, overmolded material. Materials that have dissimilar melt temperatures typically result in a weak molecular bond.


In addition to molecular bonding, sealing portion 30 and central portion 40 can be shaped to interconnect mechanically to add structural integrity to the connection therebetween. For example, elastomeric sealing portion 30 can be formed with a seating or groove 34 into which an extending portion 42 of central conical section 40 (see, for example, FIG. 1C) extends during the overmolding process to provide mechanical interconnection and structural integrity to the connection between sealing portion 30 and central portion 40.


As described above, elastomeric sealing portion 30 mates and form a sealing engagement with the syringe barrel wall to seal fluid inside syringe 100. As compared to plunger covers formed generally entirely of an elastomeric material via, for example, a compression molding process, central conical portion 40, formed from a relatively rigid polymeric material, provides additional structural integrity. The increased structural integrity also reduces compliance. Overmolded plunger cover 20 is a separate component of the plunger and can be assembled in various configurations (for example, with different bases or supports or without a base or support). The design and manufacturing methods associated with plunger 10 reduce manufacturing costs, while maintaining functionality. The manufacturing process provides the capability of customization of plunger cover 20. For example, colorants can be applied to the rigid polymer cone for various purposes. Moreover, the overall shape of the plunger cover can readily be altered for use with different syringes. For example, the forward portion of the plunger cover can have a conical, hemispherical, flat or other shape to mate with a correspondingly shaped syringe. In general, plunger 10 can replace currently available compression molded plunger covers in currently available plunger designs while maintaining or improving functionality of those plunger designs.



FIGS. 2A through 2E illustrate another embodiment of a plunger 310 of the present invention which is similar in design, operation and manufacture to plunger 10. In plunger 310, base or support 50 is identical to that used in plunger 10. Plunger cover 320 differs from plunger cover 20, for example, in the form of the mechanical interconnection between sealing portion 330 and central portion 340, which in the embodiment of FIGS. 2A through 2E is generally conical in shape. In that regard, For example, elastomeric sealing portion 330 is formed with a seating or groove 334 that is somewhat shorter in length than seating 34 of sealing portion 30. Similar to central portion 40, central portion 340 includes an extending portion 342 which extends into seating 334 during the overmolding process. In the embodiment of FIGS. 2A through 2E, forward surface 54 of base 50 contacts a rearward surface of central conical portion 340 directly (without any section of sealing portion 330 therebetween).



FIGS. 3A through 3F illustrate another embodiment of a plunger 410 of the present invention. Similar to plungers 10 and 310, plunger 410 includes a plunger cover 420, which includes a sealing section 430 formed, for example, from an elastomeric material such as a TPE/TPU material. Plunger cover 420 further includes a generally conical central portion 440 formed from a generally rigid polymeric material, preferably in an overmolding process. Plunger 410 further includes base or support ring 50 as described above to which plunger cover 420 is attached. In that regard, elastomeric sealing portion 430 includes a radially inward projecting flange 432 that is seatable within seating 52 formed in base 50. As with other embodiments of the present invention, however, plunger cover 420 is readily adjusted in shape and dimension to mate with a desired support.


Central portion 440 can include extending tabs 442 which can assist in forming a secure interconnection between central portion 440 and sealing portion 430. In general, such mechanical interconnections are optional in all overmolding embodiments of the present invention. In the embodiment of FIGS. 3A through 3F sealing portion 430 includes a generally conical central section 436 appropriately dimensioned such that the forward surface of central section 436 of sealing portion 430 mates with the rearward surface of rigid conical central portion 440. Central section 436 of sealing portion 430 can, for example, provide greater area for molecular bonding between central portion 440 and sealing portion 430 during the overmolding process. Central section 436 of sealing portion 430 can also provide for more effective molding of plunger cover 420 in that injection gates for sealing portion 430 and central portion 440 can have the same general location.



FIGS. 4A through 4G illustrate another embodiment of a plunger 510 of the present invention. Similar to plunger 410, plunger 510 includes a plunger cover 520, which includes a sealing portion 530 formed, for example, from an elastomeric material such as a TPE/TPU material. Plunger cover 520 further includes a generally conical central portion 540 formed from a generally rigid polymeric material, preferably in an overmolding process. Plunger 510 further includes base or support ring 50 as described above to which plunger cover 520 is attached. In that regard, elastomeric sealing portion 530 includes a radially inward projecting flange 532 that is seatable within seating 52 formed in base 50. As with other embodiments of the present invention, however, plunger cover 520 is readily adjusted in shape and dimension to mate with a desired support.


In the embodiment of FIGS. 4A through 4G central portion 540 is positioned to the rear of a generally conical central section 536 of sealing portion 430. In this embodiment, rigid central portion 540 does not contact the injection fluid, but still provides structural integrity to plunger cover 520.



FIGS. 5A through 5E illustrate another embodiment of a plunger 610 of the present invention. Unlike the plunger embodiments set forth above, plunger 610 does not include a plunger base or support as, for example, described in connection with base or support ring 50. In that regard, a sealing portion 630 (formed or molded from and elastomeric material such as a TPE/TPU material) includes a seating 638 (for example, a threaded seating) to form a connection (for example, a removable connection) with a drive member. A rigid central portion 640 can, for example, be connected with sealing portion 630 in an overmolding process as described above.


The foregoing description and accompanying drawings set forth the preferred embodiments of the invention at the present time. Various modifications, additions and alternative designs will, of course, become apparent to those skilled in the art in light of the foregoing teachings without departing from the scope of the invention. The scope of the invention is indicated by the following claims rather than by the foregoing description. All changes and variations that fall within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A plunger cover for use with a syringe, the plunger cover comprising: a sealing portion having an outer sealing section and a conical central section; anda conical central portion adapted to contact a fluid within the syringe,wherein the sealing portion is made from a first material and the conical central portion is made from a second material different than the first material, the first material being less rigid than the second material, andwherein the sealing portion and the conical central portion are overmolded such that the conical central section of the sealing portion and the conical central portion are coextensively connected to form a multilayer conical portion of the plunger cover.
  • 2. The plunger cover of claim 1, wherein the first material is a thermoplastic elastomer or a thermoplastic polyurethane.
  • 3. The plunger cover of claim 1, wherein the second material is polypropylene, acrylonitrile butadiene styrene, or polycarbonate.
  • 4. The plunger cover of claim 1, wherein the first material and the second material are selected so that molecular bonding occurs between the sealing portion and the conical central portion.
  • 5. The plunger cover of claim 1, wherein the sealing portion and the conical central portion are shaped to interconnect mechanically.
  • 6. The plunger cover of claim 1, wherein the plunger cover contains colorant.
  • 7. The plunger cover of claim 1, wherein the sealing portion comprises an inwardly projecting flange configured for being seated in a seating formed in a support ring.
  • 8. The plunger cover of claim 1, wherein the conical central portion contains colorant.
  • 9. A plunger for use with a syringe, the plunger comprising: a rigid support ring; anda plunger cover connected to the rigid support ring, the plunger cover comprising: a sealing portion made from a first material; anda conical central portion made from a second material different from the first material and adapted to contact a fluid within the syringe,wherein the first material is less rigid than the second material, andwherein the sealing portion and the conical central portion are overmolded such that the sealing portion and the conical central portion are coextensively connected to form a multilayer conical portion of the plunger cover.
  • 10. The plunger of claim 9, wherein the first material is a thermoplastic elastomer or a thermoplastic polyurethane.
  • 11. The plunger of claim 9, wherein the second material is polypropylene, acrylonitrile butadiene styrene, or polycarbonate.
  • 12. The plunger of claim 9, wherein the first material and the second material are selected so that molecular bonding occurs between the sealing portion and the conical central portion.
  • 13. The plunger of claim 9, wherein the sealing portion and the conical central portion are shaped to interconnect mechanically.
  • 14. The plunger of claim 9, wherein the plunger cover contains colorant.
  • 15. The plunger of claim 9, wherein the sealing portion includes a radially inward projecting flange that is seated within a seating formed on the support ring to connect the plunger cover to the support ring.
  • 16. The plunger of claim 9, wherein a forward surface of the support ring abuts the plunger cover to prevent rearward motion of the conical central portion of the plunger cover relative to the support ring.
  • 17. The plunger of claim 9, wherein the conical central portion contains colorant.
  • 18. A syringe comprising: a syringe body and a plunger slidably positioned within the syringe body, the plunger comprising:a rigid support ring; anda plunger cover connected to the rigid support ring, the plunger cover comprising: a sealing portion made from a first material; anda conical central portion made from a second material different from the first material and adapted to contact a fluid within the syringe,wherein the first material is less rigid than the second material, andwherein the sealing portion and the conical central portion are overmolded such that the sealing portion and the conical central portion are coextensively connected to form a multilayer conical portion of the plunger cover.
CROSS REFERENCE TO RELATED APPLICATION

This Application is a Continuation of U.S. application Ser. No. 14/576,354, filed Dec. 19, 2014, which is a Division of U.S. application Ser. No. 11/686,000, filed Mar. 14, 2007, now U.S. Pat. No. 8,926,569, which claims the benefit from the earlier filed U.S. Provisional Application No. 60/782,623, filed Mar. 15, 2006, entitled “Plunger covers and plungers for use in syringes and methods of fabricating plunger covers and plungers for use in syringes,” and is hereby incorporated into this application by reference as if fully set forth herein.

US Referenced Citations (368)
Number Name Date Kind
1265537 Ivan May 1918 A
1687323 Cook Oct 1928 A
1988480 Campkin Jan 1935 A
2392196 Smith Jan 1946 A
2419401 Hinds Apr 1947 A
2702547 Glass Feb 1955 A
2842126 Brown Jul 1958 A
3051173 Johnson et al. Aug 1962 A
D203730 Porat Feb 1966 S
3270483 Smoyer et al. Sep 1966 A
3348545 Sarnoff et al. Oct 1967 A
3468471 Linder Sep 1969 A
3604417 Stolzenberg et al. Sep 1971 A
3623474 Heilman Nov 1971 A
3645262 Harrigan Feb 1972 A
3701345 Heilman Oct 1972 A
3705582 Stumpf et al. Dec 1972 A
3720211 Kyrias Mar 1973 A
3738539 Beich Jun 1973 A
3752145 Runnells et al. Aug 1973 A
3796218 Burke et al. Mar 1974 A
3809082 Hurschman May 1974 A
3812843 Wootten et al. May 1974 A
3902491 Lajus Sep 1975 A
3964139 Kleinmann et al. Jun 1976 A
3987940 Tischlinger Oct 1976 A
3998224 Chiquiar-Arias Dec 1976 A
4006736 Kranys et al. Feb 1977 A
4030498 Tompkins Jun 1977 A
4080967 O″Leary Mar 1978 A
4148316 Xanthopoulos Apr 1979 A
4155490 Glenn May 1979 A
4159713 Prais Jul 1979 A
4180006 Ross Dec 1979 A
4180069 Walters Dec 1979 A
4226236 Genese Oct 1980 A
4252118 Richard et al. Feb 1981 A
4278086 Hodgins et al. Jul 1981 A
4303070 Ichikawa et al. Dec 1981 A
4345595 Whitney et al. Aug 1982 A
4351332 Whitney et al. Sep 1982 A
4356822 Winstead-Hall Nov 1982 A
4424720 Bucchianeri Jan 1984 A
4452251 Heilman Jun 1984 A
4453934 Gahwiler et al. Jun 1984 A
4464265 Joyner Aug 1984 A
4465472 Urbaniak Aug 1984 A
4465473 Ruegg Aug 1984 A
4475666 Bilbrey et al. Oct 1984 A
4476381 Rubin Oct 1984 A
4490256 Nussbaumer et al. Dec 1984 A
4493646 Lacour et al. Jan 1985 A
4500310 Christinger Feb 1985 A
4529401 Leslie et al. Jul 1985 A
4562844 Carpenter et al. Jan 1986 A
4568335 Updike et al. Feb 1986 A
4573978 Reilly Mar 1986 A
4585439 Michel Apr 1986 A
4604847 Moulding, Jr. et al. Aug 1986 A
4612010 Hamacher et al. Sep 1986 A
4617016 Blomberg Oct 1986 A
4628969 Jurgens, Jr. et al. Dec 1986 A
4636198 Stade Jan 1987 A
4648872 Kamen Mar 1987 A
4650475 Smith et al. Mar 1987 A
4652260 Fenton, Jr. et al. Mar 1987 A
4664128 Lee May 1987 A
4676776 Howson Jun 1987 A
4677980 Reilly et al. Jul 1987 A
4677981 Coursant Jul 1987 A
4681566 Fenton, Jr. et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4695271 Goethel Sep 1987 A
4705509 Stade Nov 1987 A
4718463 Jurgens, Jr. et al. Jan 1988 A
4722734 Kolln Feb 1988 A
4741732 Crankshaw et al. May 1988 A
4741736 Brown May 1988 A
4749109 Kamen Jun 1988 A
4755172 Baldwin Jul 1988 A
4767406 Wadham et al. Aug 1988 A
4773900 Cochran Sep 1988 A
4838857 Strowe et al. Jun 1989 A
4840616 Banks Jun 1989 A
4842581 Davis Jun 1989 A
RE32974 Porat et al. Jul 1989 E
4852768 Bartsch Aug 1989 A
4853521 Claeys et al. Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4863427 Cocchi Sep 1989 A
4869720 Chernack Sep 1989 A
4878896 Garrison et al. Nov 1989 A
4908022 Haber Mar 1990 A
4911695 Lindner Mar 1990 A
4923443 Greenwood et al. May 1990 A
4929238 Baum May 1990 A
4931043 Ray et al. Jun 1990 A
4932941 Min et al. Jun 1990 A
4936833 Sams Jun 1990 A
4943279 Samiotes et al. Jul 1990 A
4950243 Estruch Aug 1990 A
4966601 Draenert Oct 1990 A
4969874 Michel et al. Nov 1990 A
4973309 Sultan Nov 1990 A
4978335 Arthur, III Dec 1990 A
4988337 Ito Jan 1991 A
4997423 Okuda et al. Mar 1991 A
5000735 Whelan Mar 1991 A
5007904 Densmore et al. Apr 1991 A
5019045 Lee May 1991 A
5024663 Yum Jun 1991 A
5033650 Colin et al. Jul 1991 A
5034004 Crankshaw Jul 1991 A
5047014 Mosebach et al. Sep 1991 A
5059179 Quatrochi et al. Oct 1991 A
5062832 Seghi Nov 1991 A
5078683 Sancoff et al. Jan 1992 A
5084017 Maffetone Jan 1992 A
5085638 Farbstein et al. Feb 1992 A
5085643 Larkin et al. Feb 1992 A
5090962 Landry, Jr. et al. Feb 1992 A
5093079 Bakaitis Mar 1992 A
5094148 Haber et al. Mar 1992 A
5104374 Bishko et al. Apr 1992 A
5106372 Ranford Apr 1992 A
5106379 Leap Apr 1992 A
5122118 Haber et al. Jun 1992 A
5135507 Haber et al. Aug 1992 A
5147311 Pickhard Sep 1992 A
5153827 Coutre et al. Oct 1992 A
5176642 Clement Jan 1993 A
5181912 Hammett Jan 1993 A
5226897 Nevens et al. Jul 1993 A
5236416 McDaniel et al. Aug 1993 A
5242408 Jhuboo et al. Sep 1993 A
5246423 Farkas Sep 1993 A
5254086 Palmer et al. Oct 1993 A
5254101 Trombley, III Oct 1993 A
5256154 Liebert et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5269762 Armbruster et al. Dec 1993 A
5275582 Wimmer Jan 1994 A
5279569 Neer et al. Jan 1994 A
5282792 Imbert Feb 1994 A
5282858 Bisch et al. Feb 1994 A
5300031 Neer et al. Apr 1994 A
5308330 Grimard May 1994 A
5314415 Liebert et al. May 1994 A
5317506 Coutre et al. May 1994 A
5324273 Discko, Jr. Jun 1994 A
5336189 Sealfon Aug 1994 A
5338309 Imbert Aug 1994 A
5342298 Michaels et al. Aug 1994 A
5353691 Haber et al. Oct 1994 A
5354287 Wacks Oct 1994 A
5356375 Higley Oct 1994 A
5356393 Haber et al. Oct 1994 A
5373684 Vacca Dec 1994 A
5380285 Jenson Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5389075 Vladimirsky Feb 1995 A
5397313 Gross Mar 1995 A
5411488 Pagay et al. May 1995 A
5413563 Basile et al. May 1995 A
5425716 Kawasaki et al. Jun 1995 A
5429602 Hauser Jul 1995 A
5429611 Rait Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5433712 Stiles et al. Jul 1995 A
5439452 McCarty Aug 1995 A
5445622 Brown Aug 1995 A
5451211 Neer et al. Sep 1995 A
5456670 Neer et al. Oct 1995 A
5478314 Malenchek Dec 1995 A
5484413 Gevorgian Jan 1996 A
5512054 Morningstar Apr 1996 A
5520653 Reilly et al. May 1996 A
5531698 Olsen Jul 1996 A
5531710 Dang et al. Jul 1996 A
5533981 Mandro et al. Jul 1996 A
5535746 Hoover et al. Jul 1996 A
5540660 Jenson Jul 1996 A
5545140 Conero et al. Aug 1996 A
5573515 Wilson et al. Nov 1996 A
5593386 Helldin Jan 1997 A
5624408 Helldin Apr 1997 A
5658261 Neer et al. Aug 1997 A
5662612 Niehoff Sep 1997 A
5681285 Ford et al. Oct 1997 A
5681286 Niehoff Oct 1997 A
5683367 Jordan et al. Nov 1997 A
5688252 Matsuda et al. Nov 1997 A
5695477 Sfikas Dec 1997 A
5722951 Marano Mar 1998 A
5735825 Stevens et al. Apr 1998 A
5738655 Vallelunga et al. Apr 1998 A
5738659 Neer et al. Apr 1998 A
5741227 Sealfon Apr 1998 A
5741232 Reilly et al. Apr 1998 A
5779675 Reilly et al. Jul 1998 A
5782803 Jentzen Jul 1998 A
5785682 Grabenkort Jul 1998 A
5795333 Reilly et al. Aug 1998 A
5807334 Hodosh et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5827219 Uber, III et al. Oct 1998 A
5827262 Neftel et al. Oct 1998 A
5840026 Uber, III et al. Nov 1998 A
RE35979 Reilly et al. Dec 1998 E
5865805 Ziemba Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
5879336 Brinon Mar 1999 A
5882343 Wilson et al. Mar 1999 A
5899885 Reilly et al. May 1999 A
5902276 Namey, Jr. May 1999 A
5913844 Ziemba et al. Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5938637 Austin et al. Aug 1999 A
5938639 Reilly et al. Aug 1999 A
5944694 Hitchins et al. Aug 1999 A
5947929 Trull Sep 1999 A
5947935 Rhinehart et al. Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5954700 Kovelman Sep 1999 A
5997502 Reilly et al. Dec 1999 A
5997511 Curie et al. Dec 1999 A
6004300 Butcher Dec 1999 A
6017330 Hitchins et al. Jan 2000 A
6042565 Hirschman et al. Mar 2000 A
6048334 Hirschman et al. Apr 2000 A
6059756 Yeh May 2000 A
6080136 Trull et al. Jun 2000 A
6083197 Umbaugh Jul 2000 A
6083200 Grimm et al. Jul 2000 A
6090064 Reilly et al. Jul 2000 A
6099502 Duchon et al. Aug 2000 A
6129712 Sudo et al. Oct 2000 A
6162200 Sawa et al. Dec 2000 A
6196999 Goethel et al. Mar 2001 B1
6221045 Duchon et al. Apr 2001 B1
6224577 Dedola et al. May 2001 B1
6267749 Miklos et al. Jul 2001 B1
6315758 Neer et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
RE37487 Reilly et al. Dec 2001 E
6336913 Spohn et al. Jan 2002 B1
6339718 Zatezalo et al. Jan 2002 B1
6345262 Madden Feb 2002 B1
6432089 Kakimi et al. Aug 2002 B1
6447487 Cane′ Sep 2002 B1
6511459 Fago Jan 2003 B1
6517516 Caizza Feb 2003 B1
6533758 Staats et al. Mar 2003 B1
6582399 Smith et al. Jun 2003 B1
6585700 Trocki et al. Jul 2003 B1
6652489 Trocki et al. Nov 2003 B2
6659979 Neer et al. Dec 2003 B2
6669663 Thompson Dec 2003 B1
6733477 Cowan et al. May 2004 B2
6733478 Reilly et al. May 2004 B2
6752789 Duchon et al. Jun 2004 B2
6764466 Staats et al. Jul 2004 B1
6808513 Reilly et al. Oct 2004 B2
6817990 Yap et al. Nov 2004 B2
6958053 Reilly Oct 2005 B1
7018363 Cowan et al. Mar 2006 B2
7029459 Reilly Apr 2006 B2
7300417 Goethel et al. Nov 2007 B1
7337538 Moutafis et al. Mar 2008 B2
7399293 Oyibo et al. Jul 2008 B2
7419478 Reilly et al. Sep 2008 B1
7455659 Nemoto et al. Nov 2008 B2
7462166 Kowan et al. Dec 2008 B2
7465290 Reilly Dec 2008 B2
7497843 Castillo et al. Mar 2009 B1
7501092 Chen Mar 2009 B2
7540856 Hitchins Jun 2009 B2
7549977 Schriver et al. Jun 2009 B2
7553294 Lazzaro et al. Jun 2009 B2
7566326 Duchon et al. Jul 2009 B2
7666169 Cowan et al. Feb 2010 B2
7682345 Savage Mar 2010 B2
7803134 Sharifi et al. Sep 2010 B2
7972306 Shearn Jul 2011 B2
8012124 Fago et al. Sep 2011 B1
8012125 Fago et al. Sep 2011 B1
8038656 Lloyd et al. Oct 2011 B2
8070732 Rochette Dec 2011 B2
8105293 Pickhard Jan 2012 B2
8172814 Cane May 2012 B2
8177757 Nemoto et al. May 2012 B2
8308689 Lewis Nov 2012 B2
8353879 Goethel et al. Jan 2013 B2
8475415 Schiller et al. Jul 2013 B2
8480631 Wotton et al. Jul 2013 B2
8585658 Forstreuter Nov 2013 B2
8613730 Hieb et al. Dec 2013 B2
8628495 Horton et al. Jan 2014 B2
8721596 Trocki et al. May 2014 B2
8740854 Schiller et al. Jun 2014 B2
8740856 Quinn et al. Jun 2014 B2
8845596 Berman et al. Sep 2014 B2
8851866 Moutafis et al. Oct 2014 B2
8857674 Nighy et al. Oct 2014 B2
8864712 Fago et al. Oct 2014 B1
8926569 Bisegna et al. Jan 2015 B2
8932255 Fago et al. Jan 2015 B1
9173995 Tucker et al. Nov 2015 B1
9174003 Cowan et al. Nov 2015 B2
9199033 Cowan et al. Dec 2015 B1
9474857 Riley et al. Oct 2016 B2
9694131 Cowan et al. Jul 2017 B2
9844622 Savage et al. Dec 2017 B2
20010047153 Trocki et al. Nov 2001 A1
20020022807 Duchon et al. Feb 2002 A1
20020068905 Cowan et al. Jun 2002 A1
20020128606 Cowan et al. Sep 2002 A1
20020165491 Reilly Nov 2002 A1
20020177811 Reilly et al. Nov 2002 A1
20030004468 Righi et al. Jan 2003 A1
20030009133 Ramey Jan 2003 A1
20030060754 Reilly et al. Mar 2003 A1
20030120219 Nielsen et al. Jun 2003 A1
20030153877 Huang et al. Aug 2003 A1
20030163089 Bynum Aug 2003 A1
20030216683 Shekalim Nov 2003 A1
20030236800 Goeltzenleuchter et al. Dec 2003 A1
20040006314 Campbell et al. Jan 2004 A1
20040039368 Reilly et al. Feb 2004 A1
20040064041 Lazzaro et al. Apr 2004 A1
20040068223 Reilly Apr 2004 A1
20040074453 Roelle et al. Apr 2004 A1
20040116861 Trocki et al. Jun 2004 A1
20040133153 Trocki et al. Jul 2004 A1
20040133161 Trocki et al. Jul 2004 A1
20040133162 Trocki et al. Jul 2004 A1
20040133183 Trocki et al. Jul 2004 A1
20040158205 Savage Aug 2004 A1
20040186437 Frenette et al. Sep 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040243067 Sibbitt Dec 2004 A1
20050015056 Duchon et al. Jan 2005 A1
20050113754 Cowan et al. May 2005 A1
20050240149 Lu Oct 2005 A1
20060129104 Cowan et al. Jun 2006 A1
20060173411 Barere Aug 2006 A1
20070123830 Johannes, Sr. et al. May 2007 A1
20070191785 Barere et al. Aug 2007 A1
20090247957 Heutschi Oct 2009 A1
20100016796 Derichs Jan 2010 A1
20100057014 Cane et al. Mar 2010 A1
20100318030 Jenkins Dec 2010 A1
20110034882 Quinn et al. Feb 2011 A1
20110178500 Shang et al. Jul 2011 A1
20110224611 Lum et al. Sep 2011 A1
20120039809 Levinson et al. Feb 2012 A1
20120184920 Okihara et al. Jul 2012 A1
20130211325 Wang et al. Aug 2013 A1
20130317427 Brereton et al. Nov 2013 A1
20130317480 Reber et al. Nov 2013 A1
20130338605 Chen Dec 2013 A1
20140031763 Soma et al. Jan 2014 A1
20140094749 Cowan et al. Apr 2014 A1
20140200483 Fojtik Jul 2014 A1
20140243746 Trocki et al. Aug 2014 A1
20140330216 Weaver et al. Nov 2014 A1
20170333619 Cowan et al. Nov 2017 A1
20170333624 Tucker et al. Nov 2017 A1
Foreign Referenced Citations (72)
Number Date Country
317487 Jan 2008 AU
2919978 Nov 1980 DE
3227417 Feb 1983 DE
4017920 Dec 1991 DE
19601214 Aug 1996 DE
19633530 Feb 1998 DE
0111724 Jun 1984 EP
0160303 Nov 1985 EP
0164904 Dec 1985 EP
0308380 Mar 1989 EP
0319275 Jun 1989 EP
0320168 Jun 1989 EP
0323321 Jul 1989 EP
0346950 Dec 1989 EP
0364010 Apr 1990 EP
0384657 Aug 1990 EP
0482677 Apr 1992 EP
0523343 Jan 1993 EP
0523434 Jan 1993 EP
0567944 Nov 1993 EP
0567945 Nov 1993 EP
0584531 Mar 1994 EP
0736306 Oct 1996 EP
0749757 Dec 1996 EP
0900573 Mar 1999 EP
0919251 Jun 1999 EP
0951306 Oct 1999 EP
0951306 Oct 1999 EP
1002551 May 2000 EP
1166807 Jan 2002 EP
1166807 Nov 2005 EP
847914 Sep 1960 GB
1380873 Jan 1975 GB
2108852 May 1983 GB
S61500415 Mar 1986 JP
S6327770 Feb 1988 JP
S6368177 Mar 1988 JP
2001029466 Feb 2001 JP
4462798 May 2010 JP
01398129 Oct 2010 JP
01398130 Oct 2010 JP
01400385 Nov 2010 JP
01400386 Nov 2010 JP
01400551 Nov 2010 JP
01400552 Nov 2010 JP
8002376 Nov 1980 WO
8500292 Jan 1985 WO
8502256 May 1985 WO
8906145 Jul 1989 WO
8909071 Oct 1989 WO
8911310 Nov 1989 WO
9001962 Mar 1990 WO
9104759 Apr 1991 WO
9221391 Dec 1992 WO
9413336 Jun 1994 WO
9425089 Nov 1994 WO
9632975 Oct 1996 WO
9707841 Mar 1997 WO
9736635 Oct 1997 WO
9820920 May 1998 WO
9965548 Dec 1999 WO
0137903 May 2001 WO
0137905 May 2001 WO
0204049 Jan 2002 WO
03101527 Dec 2003 WO
2004035289 Apr 2004 WO
2005053771 Jun 2005 WO
2007130061 Nov 2007 WO
2010139793 Dec 2010 WO
2012124028 Sep 2012 WO
2012155035 Nov 2012 WO
2015006430 Jan 2015 WO
Non-Patent Literature Citations (34)
Entry
Brochure for “Angiomat 6000” of Liebel-Farsheim, 2111 E. Galbraith Road, Cincinnati, OH 45215, © 1987.
Brochure for “Angiomat CT” of Liebel-Farsheim, 2111 E. Galbraith Road, Cincinnati, OH 45215, © 1988.
Brochure for “Cordis Lymphography Injector,” Cordis Corporation, Miami, FL 33137 (1972).
Brochure for “PercuPump 1A” of E-Z-Em, Inc, 717 Main Street, Westbury, NY 11590, © 1990.
Brochure for the “The First and Only True Injection System,” Medrad Mark V System, Control No. 85106-00-BA-02, Nov. 1988.
Non-Final Office Action dated Mar. 28, 2013 in related case U.S. Appl. No. 12/728,869.
Feb. 23, 2015 ISR and WO from PCT/US2014/067435.
Injektron 82 MRT User Instructions, Version MR2, CEO535, Med-Tron GmbH(Mar. 10, 1999).
International Search Report & Written Opinion for International Application No. PCT/US2004/039225, ISA/US, dated May 12, 2006.
International Search Report for Counterpart PCT Application No. PCT/US00/32271 dated Jul. 3, 2001.
International Search Report for International Application No. PCT/AU01/00830, dated Nov. 1, 2001.
International Search Report for International Application No. PCT/US03/17305, dated Oct. 21, 2003.
IPRP dated Jan. 12, 2016 from PCT/US2014/045923.
ISR dated Oct. 30, 2014 from PCT/US2014/045923.
ISR dated May 12, 2006 by PCT/US2004/039225.
ISR from PCT/US97/20122, dated Jun. 30, 1998.
Liebel-Flarsheim company—Angiomat 6000 Digital Injection System Operator's Manual, 600950 Rev 1 (1990); p. 3-6 to 3-8, 4-52 to 4-56.
Medrad Envision CT Injector Operation Manual, EOM 700E, 92401-T-123 Rev E, Copyright 1995.
Medrad Envision CT Injector Operation Manual, EOM 700E, 92401-T-123 Rev E, pp. 2-10 to 2-11 and pp. 2-30 to 2-35(Copyright 1995).
Medrad, Mark V/Mark V Plus Injector Operation Manual,KMP 805P Rev. B (1990); pp. 1-18 to 1-28, 3-7 to 3-13, 14-1 to 14-4.
Supplementary ESR from EP 01949108 dated Apr. 13, 2007.
Supplementary ESR from EP 01949108 dated Apr. 25, 2007.
Supplementary Partial European Search Report for EP 01949108 dated Apr. 13, 2007.
Supplementary Partial European Search Report for EP 01949108 dated Apr. 25, 2007.
The European Search Report dated Apr. 27, 2015 from corresponding EP Application No. EP14174725.
The International Preliminary Report on Patentability dated Apr. 9, 2015 from corresponding PCT Application No. PCT/US2013/061384.
The International Search Report from corresponding PCT Application PCT/US2013/061384 dated Feb. 20, 2014.
Medtron; Ag., “Injektron CT 2, Computer Tomography”, 2004.
Extended European Search Report dated Mar 17, 2018 from EP Application No. EP17206333.
“International Search Report and Written Opinion from PCT Application No. PCT/US2016/059246”, dated Dec. 1, 2016.
“Extended European Search Report and Opinion from EP15823049”, dated Feb. 1, 2017.
Supplementary European Search Report dated Apr. 14, 2016 from EP13842045.
International Preliminary Report of Patentability dated Jan. 12, 2016 from PCT/US2014/045923.
“International Search Report and Written Opinion from PCT Application No. PCT/US2016/059245”, dated Mar. 10, 2017.
Related Publications (1)
Number Date Country
20180117258 A1 May 2018 US
Provisional Applications (1)
Number Date Country
60782623 Mar 2006 US
Divisions (1)
Number Date Country
Parent 11686000 Mar 2007 US
Child 14576354 US
Continuations (1)
Number Date Country
Parent 14576354 Dec 2014 US
Child 15851860 US