In downhole completion systems using Electric Submersible Pumps (ESPs), there is sometimes the need to retrieve the ESP to surface for repair or replacement. The ESP will be a part of an upper completion that will be retrieved as a unit when retrieval of the ESP is required. This will leave a lower completion in the borehole and hence require that a barrier be actuable to seal off the lower completion. Commonly, a valve is positioned near an uphole extent of the lower completion for this purpose. The valve is actuated usually hydraulically. When replacing the most recently installed completion it is necessary to use a wet connect arrangement to reconnect to the hydraulic control lines of the original barrier valve. While wet connect arrangements are well known and often used in the downhole environment, they are also potentially finicky and hence may not always be favored by operators. The art would therefore well receive alternate systems that increase the ease with which post retrieval valve actuation is achieved.
Disclosed herein is a barrier valve system which includes one or more barrier valves, a connection sub having a first portion and a second portion connecting one or more control lines to each other, and a replacement portion of the connection sub connectable to the first portion subsequent to retrieval of the second portion. The replacement portion has a port from an outside diameter of the replacement portion to an inside diameter of the replacement portion and seals disposed to define an annular space between the replacement portion and the first portion encompassing only valve opening ports in the first portion.
Also disclosed herein is a barrier valve system which includes one or more barrier valves and a connection sub having a first portion and a second portion connecting one or more control lines to each other. A replacement portion of the connection sub is connectable to the first portion subsequent to retrieval of the second portion, and the replacement portion is configured to convey applied tubing pressure to the one or more valves such that the one or more valves actuate to an open condition.
Further disclosed is a method for retrieving and reconnecting an upper completion which includes closing one or more barrier valves in a lower completion proximate a downholemost end of the upper completion, retrieving the upper completion, reconnecting one of the original upper completion or a new upper completion to the lower completion by stabbing a replacement portion into a first portion of a connection sub connected to the lower completion, and applying tubing pressure through the replacement portion to the first portion of the connection sub and to the one or more barrier valves thereby opening the one or more barrier valves.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
It will be appreciated in
Upon retrieval of an ESP 52 along with the upper completion 36, the barrier valves 16 will need to be closed to prevent downhole fluids escaping the completion through an open upper extent of the lower completion 12. This will be accomplished by pressuring the common control line 18 for closure of the valves 16. The upper completion 36 may then be withdrawn from the borehole. Upon reintroducing a new upper completion 36 or the original one, the barrier valves 16 must be reopened to reestablish flow potential through the borehole completion system 10. Wet connection as noted above can be problematic and hence the inventor hereof has devised a way to simplify reconnection using a much easier to connect configuration and applied tubing pressure for actuation of the valves 16.
More specifically, and referring to
It was noted above that as an exemplary embodiment, the illustrated configuration has two open lines and a common close line. The ports for these lines are in portion 24 and are labeled 62, 64 and 66. The replacement portion 54 does not use the common close line port 66 as can be seen in the drawing, as it is not within the annular space defined by the seals 56 and 58. The ports 62 and 64 are however located between the seals 56 and 58 on replacement portion 54 when the replacement portion is landed in portion 24. This allows the system to provide tubing pressure to the two “open” ports 62 and 64 and through those open the barrier valves 16 that had been closed prior to retrieving the ESP 52 and the upper completion 36. These barrier valves 16 are to remain permanently open at this point. And the original (or previous) portion 24 is not again used to control the now permanently open valves 16.
As can be seen in
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
5465787 | Roth | Nov 1995 | A |
5831156 | Mullins | Nov 1998 | A |
5875852 | Floyd et al. | Mar 1999 | A |
6302216 | Patel | Oct 2001 | B1 |
7228914 | Chavers et al. | Jun 2007 | B2 |
7487830 | Wolters et al. | Feb 2009 | B2 |
7640977 | Jonas | Jan 2010 | B2 |
8056628 | Whitsitt et al. | Nov 2011 | B2 |
8286713 | Broussard | Oct 2012 | B2 |
20030211768 | Cameron et al. | Nov 2003 | A1 |
20040159444 | Wolters et al. | Aug 2004 | A1 |
20070295504 | Patel et al. | Dec 2007 | A1 |
20080223585 | Patel et al. | Sep 2008 | A1 |
20100206579 | Guven et al. | Aug 2010 | A1 |
20100300702 | Andrews et al. | Dec 2010 | A1 |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/063519; Mailed Jul. 30, 2012; Korean Intellecutal Property Office; 8 pages. |
K. Munday et al., “Want to Make Tree Operations Safer? Why Not Use the DHSV as a Barrier?”; Society of Petroleum Engineers, SPE Paper No. 96337; Sep. 24, 2006. |
T.A. Nassereddin et al., Electromagnetic Surface-Controlled Sub-Surface Safety Valve: An Immediate Soluation to Secure Wells with Damaged Control Line; Society of Petroleum Engineers, SPE Paper No. 138356; Nov. 1, 2010. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/060168; Mailed Jun. 29, 2012; Korean Intellectual Property Office; 10 pages. |
Number | Date | Country | |
---|---|---|---|
20120152569 A1 | Jun 2012 | US |