Plural component systems provide a number of different liquid materials that are combined or mixed at a particular ratio to generate a composition that is delivered for coating a surface, for example. Some plural component applications include, but are not limited to, building construction and various applications within automotive, agricultural, marine, and industrial environments. More specifically, some particular applications include, but are not limited to, spraying foam insulation and spraying protective coatings on pipes and tanks, structural steel, and marine vessels, to name a few.
A spray gun for a plural component system is provided. The spray gun includes a first component delivery line and a second component delivery line. The spray gun also includes a nozzle, configured to receive and mix a first component received from the first component delivery line with a second component received from the second component delivery line. The spray gun also includes an air purge system configured to, when the spray gun is in a non-actuated position, purge the nozzle of the first and second components and, when the spray gun is in an actuated position, aid in atomization of the mixture of the first and second components.
Plural component systems are a mechanism for simultaneous mixing and atomization of two or more reactants or components, often used to create a foam product, for example insulation. Plural component spraying systems present a number of design challenges. For example, once mixed, some components should be quickly applied as the curing process begins immediately. Any backflow can clog an applicator and potentially make it unusable. Additionally, the components must undergo enough mixing prior to dispersal to have sufficient yields when atomized. Each of the components has its own delivery line to a mixing chamber within the applicator nozzle. However, for at least some components, being left within the mixing chamber or nozzle for a short period of time can cause the components to harden, causing the applicator to experience reduced performance between each trigger depression. For some components, it can take only a minute of down time between spray operations to cause component hardening within the mixing chamber or nozzle. This can cause operators of a plural component applicator to have to use multiple nozzles per spraying operation, changing a used nozzle for a fresh nozzle with each trigger pull.
A plural component applicator is desired, therefore, that experiences enough atomization to increase yields, and also keeps delivery lines free from reactant in between trigger pulls. This may allow for a nozzle to be used for an entire spraying operation, without significant performance degradation.
Component supply line 102, component supply line 104 and air supply line 106 are operably coupled to valve 120. Valve 120 has inputs and outputs that correspond to each component and air supply line. When actuated, valve 120 adjusts the flow of components and air through plural component applicator 100. Valve 120 is housed in rotating valve housing 112 and is coupled to valve housing 112 and trigger 114 by valve fastener 113. As shown, valve fastener 113 is a screw, however in other examples valve fastener 113 can be other types of fasteners as well.
Trigger 114, when actuated, rotates valve 120 within valve housing 112. For example, since trigger 114 is coupled to valve 120, when trigger 114 is actuated, valve 120 is rotated and hence actuated. Valve 120 rotates to adjust flow of components and air from component supply line 102, component supply line 104 and air supply line 106. For instance, when valve 120 is in an open position, components from component supply line 102 and component supply line 104 flow to nozzle 108 where they are mixed prior to being expelled out outlet 109.
Trigger spring 116 biases trigger 114 and valve 120 towards a closed position, (i.e., a closed position where components and/or air are not allowed out of nozzle 108). Trigger 114 can interact with trigger lock 118 to prevent actuation of trigger 114. For example, trigger 114 cannot be actuated unless trigger lock 118 is also actuated or actuated first. Trigger lock 118 can prevent accidental emissions of components through outlet 109. For example, if a user dropped plural component applicator 100 onto trigger 114, trigger lock 118 could prevent trigger actuation and component emission as it is unlikely the drop would cause actuation of trigger lock 118. Trigger lock 118 can also include a spring or other biasing member to bias trigger lock 118 into an unactuated position.
Nozzle 108 is where the components from component supply line 102 and component supply line 104 are mixed before being expelled through outlet 109. Nozzle 108 can be attached to plural component applicator 100 by nozzle lock 110. Nozzle lock 110, as shown, has a channel that receives pins of nozzle 108 and the rotation of nozzle lock 110 locks nozzle 108 onto plural component applicator 100, by capturing the pins of nozzle 108. In one example, forward rotation of nozzle lock 110 provides a locking force on nozzle 108 in a direction towards plural component applicator 100. For instance, this force seats and seals nozzle 108 to applicator 100. Similarly, reverse rotation of nozzle lock 110 could provide an ejection force on nozzle 108 in a direction away from plural component applicator 100. This conversion of rotational force to linear force could be accomplished by a sloped channel formed in nozzle lock 110. The ejection force may be especially useful if the components begin to harden which can create a bonding force between the nozzle 108 and applicator 100.
As shown in
In
In previous designs, nozzle 108, specifically component nozzle inlet 142 and nozzle component inlet 144, were susceptible to retaining some portion of first and second components after trigger 114 is returned to a non-spraying position. First and second components retained in nozzle 108 can reduce a spraying efficacy of plural component applicator 100 during a next trigger actuation. For this reason, many operators of plural component applicators not only use disposable nozzles but have to replace the nozzle multiple times during a spray operation, for example each time an operator ceases spraying and the nozzle rests. Some components can form layers within a nozzle in less than a minute of downtime. Therefore, if an operator had to take a break from spraying for more than a minute (for example to relocate, etc.), a new nozzle may have been required before spraying could resume.
Additionally, removing and replacing the nozzle can cause reactants to build up within the spray gun nozzle attachment portion as well, making it more difficult, over time, to attach a new nozzle over the hardened layers of reactant.
By automatically purging air through nozzle 108 and like components after trigger release, a majority of the above-mentioned problems can be solved.
In
Additionally, when the fluids reach fourth portion 176 of tortuous structure 158 they encounter airflow being expelled out of air nozzle outlet 159. Air nozzle outlet 159 receives airflow from nozzle air inlet 146. This airflow from air nozzle outlet 159 can help atomize the mixed components as they are expelled from outlet 109. The airflow can also encourage more mixing of the components before their expelled through outlet 109.
Tortuous structure 158 includes center post 167. Walls 169, 171, 173, 175 and 177 couple to, and are disposed around center post 167. As shown walls 171, 173 and 175 are perpendicular to the length of center post 167. However, in another example walls 171, 173 and 175 can be helical or spiral. Similarly, walls 169 and 177 can be oriented other than parallel to the length of center post 167.
Component path 128, once installed, aligns with component supply line 102 of plural component applicator 100. Component path 130 aligns with component supply line 104 when valve 120 is in an opened position. As shown in
Some previous plural component spray gun designs require a nozzle to snap into place within corresponding features of a spray gun. However, as noted previously, chemical buildup between the nozzle and the corresponding connection features on the spray gun can make connections difficult as the gun is used with more and more nozzles. This can eventually lead to a spray gun being unusable. Therefore, it is desired to have a nozzle connection mechanism that can still be easily coupled after repeated uses.
It should also be noted that the different embodiments described herein can be combined in different ways. That is, parts of one or more embodiments can be combined with parts of one or more other embodiments. All of this is contemplated herein. Additionally, at least some embodiments used at low pressure, e.g. under 250 psi.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
The present application is a divisional of and claims priority of U.S. patent application Ser. No. 16/157,694, filed Oct. 11, 2018, and which is based on and claims the benefit of U.S. provisional patent application Ser. No. 62/589,141, filed Nov. 21, 2017, and U.S. provisional patent application Ser. No. 62/589,145, filed Nov. 21, 2017, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3437273 | Hagfors | Apr 1969 | A |
4117551 | Brooks | Sep 1978 | A |
4263166 | Adams | Apr 1981 | A |
5462204 | Finn | Oct 1995 | A |
5529245 | Brown | Jun 1996 | A |
5639024 | Mueller | Jun 1997 | A |
5851067 | Fleischli | Dec 1998 | A |
6021961 | Brown | Feb 2000 | A |
6062492 | Tudor et al. | May 2000 | A |
6158624 | Grigg et al. | Dec 2000 | A |
20040124268 | Frazier et al. | Jul 2004 | A1 |
20080144426 | Janssen et al. | Jun 2008 | A1 |
20110011950 | Walter | Jan 2011 | A1 |
20130015262 | Monchamp et al. | Jan 2013 | A1 |
20130119158 | Hiemer | May 2013 | A1 |
20150367360 | Ingebrand et al. | Dec 2015 | A1 |
20170281869 | Kai et al. | Oct 2017 | A1 |
20180126396 | Ellis et al. | May 2018 | A1 |
20180243767 | Stewart et al. | Aug 2018 | A1 |
20190022693 | Calaman et al. | Jan 2019 | A1 |
20190039086 | Kim | Feb 2019 | A1 |
20190151871 | Jerdee et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1139415 | Jan 1997 | CN |
2743589 | Mar 1979 | DE |
05-007356 | Feb 1993 | JP |
2006-511343 | Apr 2006 | JP |
1407839 | Jul 1988 | SU |
WO 2017053105 | Mar 2017 | WO |
Entry |
---|
Rejection Decision for Chinese Patent Application No. 201880073595.X dated Feb. 23, 2022, 13 pages with English Translation. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/030130 dated Aug. 14, 2018, 17 pages. |
Application and Drawings for U.S. Appl. No. 15/963,390, filed Apr. 26, 2018, 33 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/056017 date of mailing: Feb. 8, 2019, date of filing: Oct. 16, 2018, 13 pages. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2018/056017, mailing date of Jun. 4, 2020, filing date of Oct. 16, 2018, 10 pages. |
First Office Action for Chinese Patent Application No. 201880073595.X dated Dec. 28, 2020, 13 pages with English Translation. |
Extended Search Report for European Patent Application No. 18881510.4 dated Jul. 6, 2021, 9 pages. |
Second Office Action for Chinese Patent Application No. 201880073595.X dated Aug. 16, 2021, 17 pages with English Translation. |
Prosecution History for U.S. Appl. No. 16/157,694 including: Notice of Allowance dated Dec. 8, 2021, Amendment dated Oct. 20, 2021, Non-Final Office Action dated Jul. 28, 2021, Amendment with RCE dated May 4, 2021, Final Office Action dated Feb. 9, 2021, Amendment dated Jan. 19, 2021, Examiner Interview Summary dated Dec. 28, 2020, Non-Final Office Action dated Oct. 28, 2020, Amendment with RCE dated Oct. 19, 2020, Final Office Action dated Jul. 17, 2020, Part 1 of 2. |
Prosecution History for U.S. Appl. No. 16/157,694 including: Amendment dated Jun. 16, 2020, Non-Final Office Action dated Mar. 30, 2020, Response to Notice to File Corrected Application Papers dated Nov. 13, 2018, Notice to File Corrected Application Papers dated Nov. 1, 2018, and Application and Drawings filed Oct. 11, 2018, Part 2 of 2, 172 pages. |
Number | Date | Country | |
---|---|---|---|
20220152636 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62589141 | Nov 2017 | US | |
62589145 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16157694 | Oct 2018 | US |
Child | 17665852 | US |