Plurality of individually controlled inlet guide vanes in a turbofan engine and corresponding controlling method

Information

  • Patent Grant
  • 8641367
  • Patent Number
    8,641,367
  • Date Filed
    Wednesday, December 1, 2004
    20 years ago
  • Date Issued
    Tuesday, February 4, 2014
    11 years ago
Abstract
A tip turbine engine according to the present invention includes a plurality of independently variable inlet guide vanes for the fan and/or for the compressor. An actuator is operatively coupled to each of the flaps, such that each actuator can selectively vary the flap of its associated inlet guide vane. In one embodiment, the inlet guide vanes each include a pivotably mounted flap that is variable independently of the flaps of at least some of the other inlet guide vanes. In another embodiment, the inlet guide vanes each include at least one fluid outlet or nozzle directing pressurized air, as controlled by the associated actuator, to control inlet distortion.
Description
BACKGROUND OF THE INVENTION

The present invention relates to turbine engines, and more particularly to individually controlled inlet guide vanes for a tip turbine engine.


An aircraft gas turbine engine of the conventional turbofan type generally includes a forward bypass fan, a low pressure compressor, a middle core engine, and an aft low pressure turbine, all located along a common longitudinal axis. A high pressure compressor and a high pressure turbine of the core engine are interconnected by a high spool shaft. The high pressure compressor is rotatably driven to compress air entering the core engine to a relatively high pressure. This high pressure air is then mixed with fuel in a combustor, where it is ignited to form a high energy gas stream. The gas stream flows axially aft to rotatably drive the high pressure turbine, which rotatably drives the high pressure compressor via the high spool shaft. The gas stream leaving the high pressure turbine is expanded through the low pressure turbine, which rotatably drives the bypass fan and low pressure compressor via a low spool shaft.


Although highly efficient, conventional turbofan engines operate in an axial flow relationship. The axial flow relationship results in a relatively complicated elongated engine structure of considerable length relative to the engine diameter. This elongated shape may complicate or prevent packaging of the engine into particular applications.


A recent development in gas turbine engines is the tip turbine engine. Tip turbine engines include hollow fan blades that receive core airflow therethrough such that the hollow fan blades operate as a high pressure centrifugal compressor. Compressed core airflow from the hollow fan blades is mixed with fuel in an annular combustor, where it is ignited to form a high energy gas stream which drives the turbine that is integrated onto the tips of the hollow bypass fan blades for rotation therewith as generally disclosed in U.S. Patent Application Publication Nos.: 20030192303; 20030192304; and 20040025490. The tip turbine engine provides a thrust-to-weight ratio equivalent to or greater than conventional turbofan engines of the same class, but within a package of significantly shorter length.


In some applications, there may be a significant component of the airflow that is normal to the inlet to the turbine engine. This normal component may cause distortion of the airflow and cause stability problems. This would be particularly true where the turbine engine is mounted vertically in the aircraft and another engine provides forward thrust. The aircraft would often be moving in a direction normal to the inlet to the vertically-oriented turbine engine. It should be noted that even engines that are not completely vertical may also have a significant component of the airflow that is normal to the turbine engine axis.


SUMMARY OF THE INVENTION

A tip turbine engine according to the present invention includes a plurality of independently variable inlet guide vanes for the fan and/or for the compressor. An actuator is operatively coupled to each of the flaps, such that each actuator can selectively vary the flap of its associated inlet guide vane. In one embodiment, the inlet guide vanes each include a pivotably mounted flap that is variable independently of the flaps of at least some of the other inlet guide vanes. In another embodiment, the inlet guide vanes each include at least one fluid outlet or nozzle directing pressurized air, as controlled by the associated actuator, to control inlet distortion.


With independent control of the variable inlet guide vanes, distortion at the inlet to the bypass fan and/or the inlet to the compressor is reduced, thereby improving the stability of the turbine engine. The independently variable inlet guide vanes can be used in tip turbine engines and other turbine engines. Although potentially useful for horizontal installations as well, this feature is particularly suited for non-horizontal installations, especially vertical installations, where there is a substantial airflow component normal to the inlet to the turbine engine.





BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention can be understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a longitudinal sectional view along an engine centerline of a tip turbine according to the present invention.



FIG. 2 schematically illustrates three of the fan inlet guide vanes and three of the compressor inlet guide vanes of the tip turbine engine of FIG. 1.



FIG. 3 schematically illustrates the tip turbine engine of FIG. 1 installed vertically in an aircraft.



FIG. 4 illustrates an alternative variable fan inlet guide vane for the turbine engine of FIGS. 1-3.



FIG. 5 illustrates an alternative variable compressor inlet guide vane for the turbine engine of FIGS. 1-3.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 is a partial sectional view of a tip turbine engine (TTE) type gas turbine engine 10 taken along an engine centerline A. Although the turbine engine 10 is shown horizontally, the turbine engine 10 could be mounted at any orientation, and as explained above, vertical orientations would experience particular benefits from the present invention. The turbine engine 10 includes an outer housing 12, a rotationally fixed static outer support structure 14 and a rotationally fixed static inner support structure 16. A plurality of fan inlet guide vanes 18 are mounted between the static outer support structure 14 and the static inner support structure 16. Each fan inlet guide vane 18 includes a variable flap 18A.


A nosecone 20 may be located along the engine centerline A to improve airflow into an axial compressor 22, which is mounted about the engine centerline A behind the nosecone 20. The nosecone 20 might not be used in vertical installations.


A fan-turbine rotor assembly 24 is mounted for rotation about the engine centerline A aft of the axial compressor 22. The fan-turbine rotor assembly 24 includes a plurality of hollow fan blades 28 including at least one hollow fan blade 28, to provide internal, centrifugal compression of the compressed airflow from the axial compressor 22 for distribution to an annular combustor 30 located within the rotationally fixed static outer support structure 14.


A turbine 32 includes a plurality of tip turbine blades 34 (two stages shown) which rotatably drive the hollow fan blades 28 relative a plurality of tip turbine stators 36 which extend radially inwardly from the rotationally fixed static outer support structure 14. The annular combustor 30 is disposed axially forward of the turbine 32 and communicates with the turbine 32. The rotationally fixed static inner support structure 16 includes a splitter 40, a static inner support housing 42 and a static outer support housing 44 located coaxial to said engine centerline A.


The axial compressor 22 includes an axial compressor rotor 46, which is mounted for rotation upon the static inner support housing 42 through an aft bearing assembly 47 and a forward bearing assembly 48. A plurality of stages of compressor blades 52 extend radially outwardly from the axial compressor rotor 46, A fixed compressor case 50 is mounted within the splitter 40. A plurality of compressor vanes 54 extend radially inwardly from the compressor case 50 between stages of the compressor blades 52. The compressor blades 52 and compressor vanes 54 are arranged circumferentially about the axial compressor rotor 46 in stages (three stages of compressor blades 52 and compressor vanes 54 are shown in this example).


A plurality of independently variable compressor inlet guide vanes 53 having pivotably mounted flaps 53A are positioned at the inlet to the axial compressor 22, such that the plurality of independently variable compressor inlet guide vanes 52 are mounted upstream of at least one of the axial compressor 22 and the fan-turbine rotor assembly 24. Each compressor inlet guide vane includes a variable flap 53A. The flap 53A of each compressor inlet guide vane 53 is variable, i.e. it is selectively pivotable about an axis P1 that is transverse to the engine centerline. Additionally, the flap 53A of each compressor inlet guide vane 53 is pivotable independently of the flaps 53A of the other inlet guide vanes 53 or is pivotable in groups of two or more such that every flap in a group rotates together the same amount.


The rotational position of the flap 53A of each compressor inlet guide vane 53 is controlled by an independent actuator 55. The actuators 55 may be hydraulic, electric motors or any other type of suitable actuator. In the embodiment shown, the actuator 55 is located within the housing 12, radially outward of the bypass airflow path. Each actuator 55 is operatively connected to a corresponding flap 53A of an inlet guide vane via linkage, including a torque rod 56 that is routed through one of the inlet guide vanes 53. Within the splitter 40, the torque rod 56 is coupled to a trailing edge of the flap 53A via a torque rod lever 58. Within the housing 12, the actuator 55 is connected to the torque rod 56 via an actuator lever 60. Alternatively, the actuators may be directly mounted to the inner or outer end of the flap thus eliminating the linkages and torque rods.


A plurality of independently variable fan inlet guide vanes 18 having pivotably mounted flaps 18A are positioned in front of the fan blades 28. Each fan inlet guide vane 18 extends between the between the static outer support structure 14 and the static inner support structure 16 and includes a variable flap 18A. The flap 18A of each fan inlet guide vane 18 is variable, i.e. it is selectively pivotable about an axis P2 that is transverse to the engine centerline. Additionally, the flap 18A of each fan inlet guide vane 18 is pivotable independently of the flaps 18A of the other fan inlet guide vanes 18.


The rotational position of the flap 18A of each inlet guide vane is controlled by an independent actuator 115. The actuators 115 may be hydraulic, electric motors or any other type of suitable actuator. In the embodiment shown, the actuator 115 is located within the housing 12, radially outward of the bypass airflow path. Each actuator 115 is operatively connected to its corresponding flap 18A of an inlet guide vane via linkage, including a torque rod 116 that is routed through one of the fan inlet guide vanes 18. Within the splitter 40, the torque rod 116 is coupled to an outer end of the flap 18A via a torque rod lever 118. Within the housing 12, the actuator 115 is connected to the torque rod 116 via an actuator lever 120.


The fan-turbine rotor assembly 24 includes a fan hub 64 that supports a plurality of the hollow fan blades 28. Each fan blade 28 includes an inducer section 66, a hollow fan blade section 72 and a diffuser section 74. The inducer section 66 receives airflow from the axial compressor 22 generally parallel to the engine centerline A and turns the airflow from an axial airflow direction toward a radial airflow direction. The airflow is radially communicated through a core airflow passage 80 within the fan blade section 72 where the airflow is centrifugally compressed. From the core airflow passage 80, the airflow is diffused and turned once again toward an axial airflow direction toward the annular combustor 30. Preferably, the airflow is diffused axially forward in the turbine engine 10, however, the airflow may alternatively be communicated in another direction.


The tip turbine engine 10 may optionally include a gearbox assembly 90 aft of the fan-turbine rotor assembly 24, such that the fan-turbine rotor assembly 24 rotatably drives the axial compressor 22 via the gearbox assembly 90. In the embodiment shown, the gearbox assembly 90 provides a speed increase at a 3.34-to-one ratio. The gearbox assembly 90 may be an epicyclic gearbox, such as a planetary gearbox as shown, that is mounted for rotation between the static inner support housing 42 and the static outer support housing 44. The gearbox assembly 90 includes a sun gear 92, which rotates the axial compressor 22, and a planet carrier 94, which rotates with the fan-turbine rotor assembly 24. A plurality of planet gears 93 each engage the sun gear 92 and a rotationally fixed ring gear 95. The planet gears 93 are mounted to the planet carrier 94. The gearbox assembly 90 is mounted for rotation between the sun gear 92 and the static outer support housing 44 through a gearbox forward bearing 96 and a gearbox rear bearing 98. The gearbox assembly 90 may alternatively, or additionally, reverse the direction of rotation and/or may provide a decrease in rotation speed.



FIG. 2 is a schematic of three of the fan inlet guide vane flaps 18A, 18A′,18A″ and three of the compressor inlet guide vane flaps 53A, 53A′, 53A″. The rotational position of the flap 18A, 18A′, 18A″ of each fan inlet guide vane 18, 18′, 18″ is controlled by an independent actuator 115, 115′, 115″, respectively. As is shown in FIG. 2, the torque rod 116, 116′, 116″ is connected to the flap 18A, 18A′, 18A″ via torque rod lever 118, 118′, 118″. The linkage is shown schematically in FIG. 2, but various configurations could be utilized. The actuators 115, 115′, 115″ are independently controlled by a controller or CPU 112 to selectively pivot the flaps 18A, 18A′, 18A″ to desired positions independently. For example, in FIG. 2, as controlled by the CPU 112, the first flap 18A is pivoted by actuator 115 to an angle a relative to a plane extending radially through the first flap 18A and the engine centerline A, while the second flap 18A′ is pivoted by actuator 115′ to an angle b relative to a plane through the second flap 18A′ and the engine centerline A and while the third flap 18A″ is pivoted by actuator 115″ to an angle c relative to a plane through the third flap 18A″ and the engine centerline A. Each of the angles a, b and c is varied independently of the others and can be set to different angles.


Similarly, the rotational position of the flap 53A, 53A′, 53A″ of each compressor inlet guide vane 53, 53′, 53″ is controlled by an independent actuator 55, 55′, 55″, respectively. The actuators 55, 55′, 55″ are independently controlled by CPU 112 to selectively pivot the flaps 53A, 53A′, 53A″ to desired positions independently. For example, in FIG. 2, as controlled by the CPU 112, the first flap 53A is pivoted by actuator 55 to an angle d relative to a plane through the first flap 53A and the engine centerline A, while the second flap 53A′ is pivoted by actuator 55′ to an angle e relative to a plane through the second flap 53A′ and the engine centerline A and while the third flap 53A″ is pivoted by actuator 55″ to an angle f relative to a plane through the third flap 53A″ and the engine centerline A. Each of the angles d, e and f is varied independently of the others and can be set to different angles.


In operation, referring to FIG. 1, core airflow entering the axial compressor 22 is redirected by the compressor inlet guide vanes 53 and flaps 53A before being compressed by the compressor blades 52. Selective, individual, independent variation of the compressor inlet guide vane flaps 53A control inlet distortion and increase the stability of the axial compressor 22 and the turbine engine 10. The compressed air from the axial compressor 22 enters the inducer section 66 in a direction generally parallel to the engine centerline A, and is then turned by the inducer section 66 radially outwardly through the core airflow passage 80 of the hollow fan blades 28. The airflow is further compressed centrifugally in the hollow fan blades 28 by rotation of the hollow fan blades 28. From the core airflow passage 80, the airflow is turned and diffused axially forward in the turbine engine 10 into the annular combustor 30. The compressed core airflow from the hollow fan blades 28 is mixed with fuel in the annular combustor 30 and ignited to form a high-energy gas stream.


The high-energy gas stream is expanded over the plurality of tip turbine blades 34 mounted about the outer periphery of the fan-turbine rotor assembly 24 to drive the fan-turbine rotor assembly 24, which in turn rotatably drives the axial compressor 22 either directly or via the optional gearbox assembly 90. The fan-turbine rotor assembly 24 discharges fan bypass air axially aft to merge with the core airflow from the turbine 32 in an exhaust case 106. Incoming bypass airflow is redirected by fan inlet guide vanes 18 and flaps 18A before being drawn through the fan blades 28. Selective, individual, independent variation of the fan inlet guide vane flaps 18A control inlet distortion and increase the stability of the turbine engine 10.


A plurality of exit guide vanes 108 are located between the static outer support housing 44 and the rotationally fixed static outer support structure 14 to guide the combined airflow out of the turbine engine 10 and provide forward thrust. An exhaust mixer 110 mixes the airflow from the turbine blades 34 with the bypass airflow through the fan blades 28.



FIG. 3 illustrates the turbine engine 10 of FIGS. 1-2 installed vertically in an aircraft 200. The aircraft 200 includes a conventional turbine engine 210 for primarily providing forward thrust and the turbine engine 10 for primarily providing vertical thrust. As explained above, the vertical orientation would obtain particular benefits from the individual control of the fan inlet guide vane flaps 18A and compressor inlet guide vane flaps 53A (flaps 18A and 53A are shown in FIGS. 1 and 2).



FIG. 4 illustrates an alternative variable fan inlet guide vane 218 that could be used in the turbine engine of FIGS. 1-3. The fan inlet guide vane 218 includes an interior cavity 220 leading to a plurality of fluid outlets or nozzles 222 disposed along a trailing edge and directed transversely to the surface of the fan inlet guide vane 218. Compressed air, such as bleed air from the axial compressor 22 or from the inlet to the combustor 30 (FIG. 1), is selectively supplied to each fan inlet guide vane 218, 218′, 218″ independently of at least one other inlet guide vane 218, 218′, 218″ as controlled by an at least one associated valve actuator 215, 215′, 215″ of a plurality of valve actuators 215, 215′, 215″. In this case, the linkage between the actuator 215, 215′, 215″ and the variable inlet guide vane 218 is a conduit 216, 216′, 216″. The fluid flow through the nozzles 222 redirects the incoming airflow and reduces inlet distortion, thereby improving the stability of the turbine engine 10.


Similarly, FIG. 5 illustrates an alternative variable compressor inlet guide vane 253 that could be used in the turbine engine of FIGS. 1-3. The compressor inlet guide vane 253 includes an interior cavity 254 leading to a plurality of fluid outlets or nozzles 256 aligned along a trailing edge and directed transversely to the surface of the compressor inlet guide vane 253. Compressed air, such as bleed air from the axial compressor 22 or from the inlet to the combustor 30 (FIG. 1), is selectively supplied to each compressor inlet guide vane 253, 253′, 253″ independently of at least one other inlet guide vane 253, 253′, 253″ as controlled by an at least one associated valve actuator 255, 255′, 255″ of a plurality of valve actuators 255, 255′, 255″. In this case, the linkage between the actuator 255, 255′, 255″ and the variable inlet guide vane 253, 253′, 253″ is a conduit 258, 258′, 258″. The fluid flow through the nozzles 256 redirects the incoming airflow and reduces inlet distortion, thereby improving the stability of the axial compressor 22 and the turbine engine 10.


In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope. For example, there are many configurations of linkages, rigid and/or flexible, that could be used to connect the actuator 115 to the inlet guide vane flaps 18A. Also, although the actuator 115 has been shown in connection with a tip turbine engine 10, it could also be used in conventional or other turbine engines. Although the invention has been shown with a single actuator 115 for each inlet guide vane flap 18A, it is also possible that one actuator 115 could control more than one inlet guide vane flap 18A.

Claims
  • 1. A turbine engine comprising: a fan having a plurality of fan blades, at least one of the fan blades defines a compressor chamber extending radially therein; anda plurality of individually-controlled inlet guide vanes (IGVs) mounted at an inlet to the turbine engine, further including a plurality of actuators, each of the plurality of actuators independently controlling only one of the plurality of IGVs, wherein the plurality of actuators are radially outward of a bypass airflow path for bypass air generated by the fan.
  • 2. The turbine engine of claim 1 further including an axial compressor, the plurality of IGVs mounted in front of the axial compressor.
  • 3. The turbine engine of claim 1 wherein each of the plurality of IGVs includes a pivotably mounted flap portion.
  • 4. The turbine engine of claim 3 wherein the plurality of IGVs include a first IGV and a second IGV, a first actuator selectively pivoting the flap portion of the first IGV, a second actuator selectively pivoting the flap portion of the second IGV independently of the flap portion of the first IGV.
  • 5. The turbine engine of claim 3, wherein each of the plurality of actuators is operatively connected to a corresponding pivotably mounted flap portion of each IGV via linkage.
  • 6. The turbine engine of claim 5, wherein the linkage includes a torque rod routed through a fan inlet guide vane to a compressor inlet guide vane.
  • 7. The turbine engine of claim 6, wherein the torque rod is coupled to a trailing edge of the flap via a torque rod lever within a splitter.
  • 8. The turbine engine of claim 3, wherein the pivotably mounted flap portions of each of the plurality of IGVs are pivotable in groups of two or more such that each flap of a group rotates the same amount.
  • 9. The turbine engine of claim 1 further including an axial compressor radially inward of the plurality of IGVs, the plurality of IGVs mounted upstream of at least one of the axial compressor and the fan.
  • 10. The turbine engine of claim 9 wherein the IGVs are fan IGVs mounted upstream of the fan blades, the turbine engine further including a plurality of independently variable compressor IGVs upstream of a plurality of compressor blades in the axial compressor.
  • 11. The turbine engine of claim 1 wherein each of the IGVs includes at least one fluid outlet, the turbine engine further including at least one actuator controlling a flow of fluid from the at least one fluid outlet of each IGV to independently control air flow past the IGV, wherein each IGV has a pivotable portion.
  • 12. The turbine engine of claim 11 wherein the at least one actuator includes a plurality of actuators, each controlling fluid flow from the at least one fluid outlet of one of the plurality of IGVs.
  • 13. The turbine engine of claim 1, further including a rotationally fixed static inner support structure including a splitter, a static inner support housing and a static outer support housing located coaxial to an engine centerline.
  • 14. The turbine engine of claim 1, further including a gearbox assembly arranged to provide a speed increase at a ratio of 3.34-to-one.
  • 15. The turbine engine of claim 1 wherein the plurality of IGVs includes a first IGV and a pair of immediately adjacent IGVs, wherein the first IGV and the pair of immediately adjacent IGVs are each independently controlled by separate actuators of the plurality of actuators.
  • 16. A plurality of inlet guide vane assemblies for a turbine engine comprising: a plurality of variable inlet guide vanes (IGVs), each IGV including at least one fluid outlet for controlling inlet airflow distortion; anda plurality of independent actuators, each of the plurality of independent actuators associated with only one of the IGVs, each actuator capable of varying a supply of pressurized fluid to its associated IGV independently of at least one other IGV, further including an axial compressor further including a plurality of compressor blades, the plurality of IGVs mounted upstream of the plurality of compressor blades.
  • 17. The plurality of inlet guide vane assemblies of claim 16, wherein the plurality of IGVs include a plurality of fan IGVs and a plurality of compressor IGVs.
  • 18. The turbine engine of claim 16 wherein the plurality of IGVs includes a first IGV and a pair of immediately adjacent IGVs, wherein the first IGV and the pair of immediately adjacent IGVs are each independently supplied with pressurized fluid by separate actuators of the plurality of independent actuators.
  • 19. The assembly of claim 16, wherein a linkage for each IGV supplies a pressurized fluid to the at least one fluid outlet.
  • 20. A turbine engine comprising: a fan having a plurality of fan blades, at least one of the fan blades defines a compressor chamber extending radially therein; anda plurality of individually-controlled inlet guide vanes (IGVs) mounted at an inlet to the turbine engine, further including a plurality of actuators, each independently controlling one of the plurality of IGVs, wherein the plurality of actuators are radially outward of a bypass airflow path for bypass air generated by the fan, wherein a linkage for each IGV supplies a pressurized fluid and wherein each IGV includes at least one fluid outlet for controlling inlet airflow distortion, each of the plurality of actuators controlling a flow of fluid through the at least one fluid outlet of its associated IGV.
  • 21. The turbine engine of claim 20, wherein the pressurized fluid is bleed air from an axial compressor.
  • 22. The turbine engine of claim 20, wherein the pressurized fluid is bleed air from a combustor inlet.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2004/040151 12/1/2004 WO 00 5/22/2007
Publishing Document Publishing Date Country Kind
WO2006/059999 6/8/2006 WO A
US Referenced Citations (128)
Number Name Date Kind
1544318 Hodgkinson Jun 1925 A
2221685 Smith Nov 1940 A
2414410 Griffith Jan 1947 A
2499831 Palmatier Mar 1950 A
2548975 Hawthorne Apr 1951 A
2611241 Schulz Sep 1952 A
2620554 Mochel et al. Dec 1952 A
2698711 Newcomb Jan 1955 A
2801789 Moss Aug 1957 A
2830754 Stalker Apr 1958 A
2874926 Gaubatz Feb 1959 A
2989848 Paiement Jun 1961 A
3009630 Busquet Nov 1961 A
3037742 Dent et al. Jun 1962 A
3042349 Pirtle et al. Jul 1962 A
3081597 Kosin et al. Mar 1963 A
3132842 Tharp May 1964 A
3204401 Serriades Sep 1965 A
3216455 Cornell et al. Nov 1965 A
3267667 Erwin Aug 1966 A
3269120 Sabatiuk Aug 1966 A
3283509 Nitsch Nov 1966 A
3286461 Johnson Nov 1966 A
3302397 Davidovic Feb 1967 A
3363419 Wilde Jan 1968 A
3404831 Campbell Oct 1968 A
3465526 Emerick Sep 1969 A
3496725 Ferri et al. Feb 1970 A
3505819 Wilde Apr 1970 A
3616616 Flatt Nov 1971 A
3684857 Morley et al. Aug 1972 A
3703081 Krebs et al. Nov 1972 A
3705775 Rioux Dec 1972 A
3720060 Davies et al. Mar 1973 A
3729957 Petrie et al. May 1973 A
3735593 Howell May 1973 A
3811273 Martin May 1974 A
3818695 Rylewski Jun 1974 A
3836279 Lee Sep 1974 A
3861822 Wanger Jan 1975 A
3932813 Gallant Jan 1976 A
3979087 Boris et al. Sep 1976 A
4005575 Scott et al. Feb 1977 A
4043121 Thomas et al. Aug 1977 A
4130379 Partington Dec 1978 A
4147035 Moore et al. Apr 1979 A
4193738 Landis et al. Mar 1980 A
4251185 Karstensen Feb 1981 A
4251987 Adamson Feb 1981 A
4265646 Weinstein et al. May 1981 A
4271674 Marshall et al. Jun 1981 A
4298090 Chapman Nov 1981 A
4314791 Weiler Feb 1982 A
4326682 Nightingale Apr 1982 A
4452038 Soligny Jun 1984 A
4463553 Boudigues Aug 1984 A
4561257 Kwan et al. Dec 1985 A
4563875 Howald Jan 1986 A
4631092 Ruckle et al. Dec 1986 A
4751816 Perry Jun 1988 A
4785625 Stryker et al. Nov 1988 A
4817382 Rudolph et al. Apr 1989 A
4834614 Davids et al. May 1989 A
4883404 Sherman Nov 1989 A
4887424 Geidel et al. Dec 1989 A
4904160 Partington Feb 1990 A
4912927 Billington Apr 1990 A
4965994 Ciokajlo et al. Oct 1990 A
4999994 Rud et al. Mar 1991 A
5010729 Adamson et al. Apr 1991 A
5012640 Mirville May 1991 A
5014508 Lifka May 1991 A
5088742 Catlow Feb 1992 A
5107676 Hadaway et al. Apr 1992 A
5157915 Bart Oct 1992 A
5182906 Gilchrist et al. Feb 1993 A
5224339 Hayes Jul 1993 A
5232333 Girault Aug 1993 A
5267397 Wilcox Dec 1993 A
5269139 Klees Dec 1993 A
5275536 Stephens et al. Jan 1994 A
5315821 Dunbar et al. May 1994 A
5328324 Dodd Jul 1994 A
5443590 Ciokajlo et al. Aug 1995 A
5466198 McKibbin et al. Nov 1995 A
5472314 Delonge et al. Dec 1995 A
5497961 Newton Mar 1996 A
5501575 Eldredge et al. Mar 1996 A
5537814 Nastuk et al. Jul 1996 A
5584660 Carter et al. Dec 1996 A
5628621 Toborg May 1997 A
5746391 Rodgers et al. May 1998 A
5769317 Sokhey et al. Jun 1998 A
6004095 Waitz et al. Dec 1999 A
6095750 Ross et al. Aug 2000 A
6102361 Riikonen Aug 2000 A
6158207 Polenick et al. Dec 2000 A
6223616 Sheridan May 2001 B1
6244539 Liston et al. Jun 2001 B1
6254346 Fukuno et al. Jul 2001 B1
6364805 Stegherr Apr 2002 B1
6381948 Klingels May 2002 B1
6382915 Aschermann et al. May 2002 B1
6384494 Avidano et al. May 2002 B1
6430917 Platts Aug 2002 B1
6454535 Goshorn et al. Sep 2002 B1
6471474 Mielke et al. Oct 2002 B1
RE37900 Partington Nov 2002 E
6513334 Varney Feb 2003 B2
6619030 Seda et al. Sep 2003 B1
6851264 Kirtley et al. Feb 2005 B2
6883303 Seda Apr 2005 B1
6910854 Joslin Jun 2005 B2
7021042 Law Apr 2006 B2
7214157 Flamang et al. May 2007 B2
20020190139 Morrison Dec 2002 A1
20030031556 Mulcaire et al. Feb 2003 A1
20030131602 Ingistov Jul 2003 A1
20030131607 Daggett Jul 2003 A1
20030161724 Capozzi et al. Aug 2003 A1
20030192303 Paul Oct 2003 A1
20030192304 Paul Oct 2003 A1
20040025490 Paul Feb 2004 A1
20040070211 Franchet et al. Apr 2004 A1
20040189108 Dooley Sep 2004 A1
20040219024 Soupizon et al. Nov 2004 A1
20050008476 Eleftheriou Jan 2005 A1
20050127905 Proctor et al. Jun 2005 A1
Foreign Referenced Citations (23)
Number Date Country
19646601 Apr 1997 DE
2599086 Nov 1987 FR
907323 Oct 1962 GB
1287223 Aug 1972 GB
1351000 Apr 1974 GB
1357016 Jun 1974 GB
1466613 Mar 1977 GB
2026102 Jan 1980 GB
2095755 Oct 1982 GB
2191606 Dec 1987 GB
2265221 Sep 1993 GB
2410530 Aug 2005 GB
10184305 Jul 1998 JP
02081883 Oct 2002 WO
2004092567 Oct 2004 WO
2006059972 Jun 2006 WO
2006059982 Jun 2006 WO
2006059999 Jun 2006 WO
2006060000 Jun 2006 WO
2006060010 Jun 2006 WO
2006110122 Oct 2006 WO
2006110124 Nov 2006 WO
2006110123 Dec 2006 WO
Related Publications (1)
Number Date Country
20090232643 A1 Sep 2009 US