The present disclosure relates to actuation mechanisms, and more specifically to actuation mechanisms for vehicle validation.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Electronic throttle control (ETC) systems may replace the mechanical pedal assemblies that have been used in vehicles. ETC systems enhance overall engine management while reducing the cost of the vehicle. Traditional engine controls rely on direct input from drivers and numerous valves and linkages to manage the engine.
ETC sensors and remote throttle actuators may eliminate the linkage that is used to connect the accelerator pedal to the throttle body. ETC sensors take input from the driver's foot through a determined accelerator pedal position and send it to an engine control system in real time. The engine control system modulates the air/fuel flow to the engine. Direct control of the engine is shifted from the driver to the engine control system to improve efficiency.
Due to the elimination of the traditional linkages in ETC systems, throttle position is evaluated based on accelerator pedal position during vehicle validation. Accuracy and repeatability of accelerator position provides for proper evaluation of ETC system accuracy.
Accordingly, a vehicle accelerator pedal actuator may include a pressurized fluid source, a mounting mechanism configured to fix the accelerator pedal actuator relative to a vehicle accelerator pedal, and an actuating mechanism in fluid communication with the pressurized fluid source and configured to displace the vehicle accelerator pedal. The vehicle accelerator pedal actuator may further include a valve providing selective communication between the pressurized fluid source and the actuating mechanism.
A method of actuating a vehicle accelerator pedal may include locating a vehicle accelerator pedal actuator proximate the vehicle accelerator pedal, securing the vehicle accelerator pedal actuator relative to the vehicle accelerator pedal, and providing a source of pressurized fluid to the vehicle accelerator pedal actuator to displace the vehicle accelerator pedal.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality.
Referring now to
Vehicle 10 may further include an accelerator pedal 26, a brake pedal 28, a control module 30, and an electronic throttle control (ETC) 32. Accelerator pedal 26 may be in communication with an accelerator pedal sensor 34. Accelerator pedal sensor 34 may be in communication with control module 30 and provide a signal indicative of accelerator pedal position.
Control module 30 may be in communication with ETC 32 and provide a signal indicative of the position of accelerator pedal 26. ETC 32 may be in communication with throttle 24 and may control operation thereof based on the accelerator pedal position. During validation of vehicle 10, an accelerator pedal actuator 38 may be fixed to vehicle 10 relative to accelerator pedal 26. More specifically, accelerator pedal actuator 38 may be fixed to brake pedal 28, as discussed below.
With additional reference to
A first valve member 52 may be disposed in second fluid passage 48 and a second valve member 54 may be disposed in third fluid passage 49. Fourth and fifth fluid passages 50, 51 may be in communication with first and second valve members 52, 54 and the atmosphere. First and second valve members 52, 54 may selectively allow or block fluid communication between first fluid passage 46 and first and second chambers 42, 44. First and second valve members 52, 54 may also selectively provide fluid communication between fourth and fifth fluid passages 50, 51 and first and second chambers 42, 44.
First and second valve members 52, 54 may be activated independently from one another. First and second valve members 52, 54 may be manually actuated or may be actuated automatically, such as through the use of a solenoid valve. First and second chambers 42, 44 may be vented to atmosphere when fourth and fifth fluid passages 50, 51 are placed in communication with second and third fluid passages 48, 49, respectively.
First and second actuating members 56, 58 may be slidably disposed within first and second chambers 42, 44 and may be normally biased into disengaged positions (as seen in
A fluid supply 60 may be in communication with first passage 46. Fluid supply 60 may provide a pressurized fluid to first fluid passage 46. More specifically, fluid supply 60 may include a pressurized air supply. Pressurized air from fluid supply 60 may be used to displace first actuating member 56 for displacement of accelerator pedal 26. Pressurized air from fluid supply 60 may also be used to displace second actuating member 58 for mounting accelerator pedal actuator 38 to brake pedal 28.
With additional reference to
Securing accelerator pedal actuator 38 may include fixing accelerator pedal actuator 38 at a location relative to accelerator pedal 26. Securing may include fixing accelerator pedal actuator 38 to a vehicle structure such as brake pedal 28 (as seen in
As indicated at step 106, accelerator pedal 26 may then be displaced a predetermined distance. The predetermined distance for displacement of first actuating member 56 may be provided by the stroke of first actuating member 56. The stroke of first actuating member 56 may generally be defined by first and second stops 43, 45. Alternatively, the stroke of first actuating member 56 may be defined by using stops or other displacement limiting devices outside of main body structure 40.
In the disengaged position (seen in
Once first actuating member 56 is displaced by a distance generally equal to the spaced relation from accelerator pedal 26, accelerator pedal 26 may be displaced therewith. Therefore, the displacement of accelerator pedal 26 may generally be defined as the stroke of first actuating member 56 less the initial spaced relation between first actuating member 56 and accelerator pedal 26. More specifically, accelerator pedal 26 may be displaced by pneumatic pressure supplied to first chamber 42 and applied to first actuating member 56 by opening first valve member 52 to a first position providing fluid communication between first and second fluid passages 46, 48. The pneumatic pressure may force first actuating member 56 axially outwardly against the biasing force of spring 57 to displace accelerator pedal 26. First actuating member 56 may be displaced axially outwardly until first actuating member 56 engages second stop 45.
As indicated at step 108, accelerator pedal actuator 38 may then disengage accelerator pedal 26. Accelerator pedal actuator 38 may release accelerator pedal 26 by venting first chamber 42. First chamber 42 may be vented by opening first valve member 52 to a second position. In the second position, first valve member 52 may provide fluid communication between second and fourth fluid passages 48, 50, venting first chamber 42 to the atmosphere. Spring 57 may then bias first actuating member 56 back to the disengaged position (seen in
As indicated at step 110, accelerator pedal actuator 38 may then be released from engagement with vehicle 10. Accelerator pedal actuator 38 may be removed from brake pedal 28 by venting second chamber 44. Second chamber 44 may be vented by opening second valve member 54 to a second position. In the second position, second valve member 54 may provide fluid communication between third and fifth fluid passages 49, 51, venting second chamber 44 to the atmosphere. Spring 59 may then bias second actuating member 58 back to the disengaged position (seen in
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present disclosure can be implemented in a variety of forms. Therefore, while this disclosure has been described in connection with particular examples thereof, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/919,954, filed on Mar. 23, 2007. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60919954 | Mar 2007 | US |