The present disclosure relates to a pneumatic air gun.
Conventional pneumatic air guns are of pre-compressed pneumatic (PCP) type and have the following disadvantages in terms of performance and structure:
It is one objective of the present disclosure to provide a pneumatic air gun that is capable of storing multi-stage compressed air energy and features good user experience.
To achieve the above objective, in accordance with one embodiment of the present disclosure, there is provided a pneumatic air gun comprising a gun support, a barrel disposed on the gun support, a valve body, a pressure gauge, an air compression assembly, an energy storage assembly, and a triggering assembly. The air compression assembly is connected to the energy storage assembly, and the energy storage assembly is connected to the valve body.
The triggering assembly comprises a trigger support fixed to the gun support and a pull-bolt assembly, a trigger, a trigger button, and a hammer disposed on the trigger support. A spring is attached to the hammer. The trigger is connected to the trigger button. A loading thimble in the pull-bolt assembly slides relatively on the gun support. The loading thimble is movably connected to the hammer to control the hammer to reset and be clamped on the trigger button. The energy storage assembly comprises an air pump and a check valve disposed at an end of the air pump. The air pump is a three-stage air pump. The valve body comprises an air release passage adapted to connect the check valve and the barrel. The air release passage is provided with an air release valve for controlling the opening and closing of an air channel. The air release passage between the air release valve and the barrel is further provided with a speed-regulation valve for regulating an air flow. The air release valve is provided with a slider for controlling the opening or closing of the air release passage. The slider is positioned at the end of a striking travel of the hammer.
The three-stage air pump further comprises a front fixed sheath, a rear fixed sheath, a front movable sheath, a rear movable sheath, a relatively large tube, a medium tube, a relatively small tube, and a piston rod. An intake sleeve on the check valve is sealed and fixedly connected in the rear fixed sheath.
Front and rear ends of the relatively large tube are sheathed tightly on the front fixed sheath and the rear fixed sheath respectively. The front fixed sheath and the rear fixed sheath are both fixedly connected to the gun body support through a connection portion that extends out of the relatively large tube. An O-ring of the relatively large tube seals between an inner wall of a rear end of the relatively large tube between an outer wall of the rear fixed sheath.
The front movable sheath is positioned at a front portion of the relatively large tube. A steel ball is provided on an outer circumference of the front movable sheath. The front movable sheath is slidably mated to the inner wall of the relatively large tube through the steel ball. The rear movable sheath is positioned at a rear portion of the relatively large tube. A first-stage piston cup is provided between the outer wall of the rear movable sheath and the inner wall of the relatively large tube. The first-stage piston cup, which is opened upon air admission and closed upon air compression, is fixed to the outer wall of the rear movable sheath.
The medium tube is coaxially disposed in the relatively large tube. The front and rear ends of the medium tube is tightly sheathed in the front movable sheath and rear movable sheath respectively. The relatively small tube is coaxially disposed in the medium tube. The rear end of the relatively small tube is sealed and fixedly connected in an intake sleeve on the check valve. A second-stage piston cup is provided between the inner wall of the rear movable sheath and the outer wall of the relatively small tube. The second-stage piston cup, which is closed upon air admission and opened upon air compression, is fixed to the inner wall of the rear movable sheath.
The piston rod is positioned in the relatively small tube. One end of the piston rod extends out of the relatively small tube and is hinged to the front movable sheath through a pin shaft of the front movable sheath. A third-stage piston cup is provided between the other end of the piston rod and the inner wall of the relatively small tube. The third-stage piston cup, which is opened upon air admission and closed upon air compression, is fixed to a piston head of the piston rod.
The air compression assembly comprises a connection bar and a compression bar. One end of the connection bar is rotatably connected to the front movable sheath through a pin shaft of the connection bar. The compression bar is rotatably connected to the front fixed sheath through a front pin shaft of the compression bar. The other end of the connection bar is rotatably connected to a middle portion of the compression bar through a rear pin shaft of the compression bar.
In a class of this embodiment, the air release valve comprises a valve core shaft, an air release valve spring, and a valve cover. The valve core shaft is sheathed in the valve cover to be axially slidable and is controlled by the air release valve spring to reset. The valve cover comprises an axial airflow through hole and a circumferential outlet port that is in communication with the airflow through hole. A step is circumferentially arranged on and protrudes from the inner wall of the airflow through hole. One end of the valve cover is an inlet port and the other end of the valve cover is connected with the slider that has a hat shape. The slider is positioned in the valve cover and axially slidably mated to the valve cover. The valve core shaft is axially slidably mated to the step. An inner end of the valve core shaft extends into the slider to be fixedly connected with the slider. A first O-ring is provided between the valve core shaft and the valve cover. The first O-ring is fitted tightly on the valve core shaft and can abut on the stage face of the step. The other side of the O-ring is also provided with a gasket which is fitted tightly on the valve core shaft and abuts against the first O-ring. The gasket is slidably mated to the inner wall of the valve cover. One end of the air release valve spring is pressed against the gasket and the other end of the air release valve spring is pressed against the slider. The outer end of the valve core shaft has a large tip which can be snugly fitted to the inlet port of the valve cover. A second O-ring is provided between the large tip and an end face of the intake port for sealing the intake port. The second O-ring is provided on the end face of the intake port or the large tip.
In a class of this embodiment, the speed-regulation valve comprises a speed-regulation valve core which is pivotally mounted in the air release passage and can be rotated about the center thereof. The speed-regulation valve core is arranged perpendicularly to the air release passage. The speed-regulation valve core is provided with a plurality of air guide holes. The air guide holes are arranged along the outer circumference of the speed-regulation valve core at an angle with respect to one another and pass through the speed-regulation valve core radially. Each of the air guide holes has a diameter different from one another. An end of the speed-regulation valve core extends out of the valve body. The outer end of the speed-regulation valve core is provided with a speed-regulation knob which can drive the speed-regulation valve core to rotate so as to switch between various air guide holes and the air release passage.
In a class of this embodiment, a rotary positioning steel ball is provided between the speed-regulation valve core and the valve body. A counterbore is provided on the side of the speed-regulation knob that faces the valve body. A spring for rotary positioning is provided in the counterbore. The rotary positioning steel ball is positioned in the counterbore and is pressed against an outer end of the spring for rotary positioning. The rotary positioning steel ball is always pressed against an outer surface of the valve body to slide thereon under the tension of the spring for rotary positioning.
In a class of this embodiment, the pull-bolt assembly comprises a pull-bolt pull bar and a pull-bolt thimble. The portion of the pull-bolt pull bar that extends out of the gun support is provided with a pull-bolt handle. The pull-bolt thimble has a top end capable of magnetically attracting a steel pellet.
In a class of this embodiment, the top end of the pull-bolt thimble is formed with a bore in which a magnetic shaft capable of magnetically attracting a steel pellet is provided.
In a class of this embodiment, the valve body is provided with a tube for mounting a barrel. An inner end of the barrel extends into the tube. The air release passage comprises two or more inlet holes in communication with the tube. Each inlet hole has an inner diameter smaller than an outer diameter of the pellet.
In a class of this embodiment, a magazine comprising a pellet clip seat, a pellet clip lid, a pellet clip closure, and a magnetic shaft is detachably connected to the air gun support. The pellet clip seat and the pellet clip lid are connected to constitute a magazine case that comprises a pellet inlet on its upper end. The pellet clip closure is rotatably connected to the magazine case for opening or closing of the pellet inlet. The bottom side wall of the pellet clip seat is provided with a loading sleeve that extends to the pellet clip lid. A center hole of the loading sleeve is perpendicularly penetrated through the pellet clip seat. The pellet clip lid comprises a loading channel for the pull-bolt thimble to pass through. The loading sleeve comprises an opening at the end thereof close to an exit side of the loading channel through which a single pellet can slip autonomously into the loading channel. The bottom of the loading channel comprises a shaft bore close to the opening that is in communication with the loading channel. The magnetic shaft is tightly fitted in the shaft bore. The magnetic shaft is a magnet shaft capable of magnetically attracting a steel pellet that enters the loading channel through the opening to the top end thereof. An upper end of the magnetic shaft is flush with an upper edge of the shaft bore or hidden inside the shaft bore.
The upper end of the valve body is provided with a groove for inserting the magazine case into the valve body. The magazine case is inserted in the groove. The bottom of the magazine case is provided with an inverted T shaped connector. The connector comprises a clamping edge protruding outward on both sides of its bottom and a positioning block protruding downward at one side of its bottom end. The bottom of the groove is provided with a connector slot capable of mating to the connector, the bottom of the connector slot is provided with a positioning counterbore capable of mating to the positioning block. Both side walls of the connector slot are provided with a concave bayonet. One of the side clamping edges of the connector can be inserted into one of the side bayonets at an angle. The other side clamping edge of the connector can be folded down to be clamped in the other bayonet to achieve a clamping connection of the magazine. The positioning block protrudes into the positioning counterbore when the magazine case is fully clamped in the connector slot.
In a class of this embodiment, the lower end face of the connector is provided with a counterbore. A pillar is provided at the center of the counterbore. The pillar is hidden inside the counterbore. An O-shaped rubber ring is positioned in the counterbore and tightly fitted on the pillar. The O-shaped rubber ring protrudes from the lower end face of the connector.
Advantages of the pneumatic air gun according to embodiments of the invention are as follows.
As shown in
The triggering assembly 106 comprises a trigger support 21 fixed to the gun support 100 and a pull-bolt assembly 22, a trigger 23, a trigger button 24, and a hammer 25 disposed on the trigger support 21. A spring is fastened to the hammer 25. The trigger 23 is connected to the trigger button 24. A loading thimble in the pull-bolt assembly 22 slides relatively on the gun support 100. The loading thimble is movably connected to the hammer 25 to control the hammer 25 to reset and be clamped on the trigger button 24.
The energy storage assembly 105 comprises an air pump 301 and a check valve 302 disposed at an end of the air pump 301. The valve body 102 comprises an air release passage 303 adapted to connect the check valve 302 and the barrel 101. The air release passage 303 is provided with an air release valve 304 capable of controlling the opening and closing of an air channel. The air release passage 303 between the air release valve 304 and the barrel 101 is further provided with a speed-regulation valve 305 for regulating an air flow. The air release valve 304 is provided with a slider for controlling the opening or closing of the air release passage 303. The slider is positioned at the end of the striking travel of the hammer 25.
When the air compression assembly compresses air to the check valve 302, the high pressure air presses and opens the check valve 302 and is enclosed in an inlet port of the air release valve 304. When the triggering assembly 106 is pulled, the hammer 25 strikes the slider at the end of its travel to open the air release valve 304. Then high pressure air enters the barrel 101 via the air release valve 304 and the speed-regulation valve 305 to propel the pellet.
As shown in
The front movable sheath 511 is positioned in a front portion of the relatively large tube 521. A steel ball 508 is provided at an outer circumference of the front movable sheath 511. The front movable sheath 511 is slidably mated to an inner wall of the relatively large tube 521 through the steel ball 508. The rear movable sheath 512 is positioned in a rear portion of the relatively large tube 521. A first-stage piston cup 561 is provided between the outer wall of the rear movable sheath 512 and the inner wall of the relatively large tube 521. The first-stage piston cup 561, which is opened upon air admission and closed upon air compression, is fixed to an outer wall of the rear movable sheath 512.
The medium tube 522 is coaxially disposed in the relatively large tube 521. The front and rear ends of the medium tube 522 are sheathed tightly in the front movable sheath 511 and the rear movable sheath 512 respectively. The rear movable sheath 512 is tightened to the medium tube 522 through a nut 506. A rear joint bushing in the form of an O-ring 505 is provided between the rear movable sheath 512 and the medium tube 522. A joint bushing 507 is provided in the medium tube 522 and the inner wall of the front movable sheath 511 and is sheathed on the front end of the medium tube. An inner joint bushing in the form of an O-ring 504 and an outer joint bushing in the form of an O-ring 503 are provided respectively between the inner wall of the medium tube 522 and an outer wall of the joint bushing 507 and between the outer wall of the medium tube 522 and the inner wall of the front movable sheath 511. The relatively small tube 523 is disposed coaxially in the medium tube 522. The relatively small tube 523 is sealed at its rear end and is fixedly connected in the intake sleeve on the check valve 302. A second-stage piston cup 562 is provided between the inner wall of the rear movable sheath 512 and the outer wall of the relatively small tube 523. The second-stage piston cup 562, which is closed upon air admission and opened upon air compression, is fixed to the inner wall of the rear movable sheath 512.
The piston rod 541 is positioned in the relatively small tube 523. One end of the piston rod 541 extends out of the relatively small tube 523 and is hinged to the front movable sheath 511 through a pin shaft 571 of the front movable sheath. A third-stage piston cup 563 is provided between the other end of the piston rod 541 and the inner wall of the relatively small tube 523. The third-stage piston cup 563, which is opened upon air admission and closed upon air compression, is fixed to the piston head of the piston rod 541.
In this embodiment, the air compression assembly 104 comprises a connection bar 401 and a compression bar 402. One end of the connection bar 401 is rotatably connected to the front movable sheath 511 through a pin shaft 403 of the connection bar. The compression bar 402 is rotatably connected to the front fixed sheath 501 through the front pin shaft 404 of the compression bar. The other end of the connection bar 401 is rotatably connected to a middle portion of the compression bar 402 through a rear pin shaft 405 of the compression bar. The compression bar 402 is provided with a handle 406. For air compression, the air compression assembly 104 drives the piston rod 541 to perform air compression. The air admission and compression process of the piston rod 541 is as follows.
In a first step of air admission, the connection bar 401 drives the piston rod 541 to move forward for air admission. In this process, the first-stage piston cup 561 opens under an external air pressure to allow air into the relatively large tube 521. In this process, the second-stage piston cup 562 closes under the air pressure between the medium tube 522 and the relatively small tube 523. In this process, the third-stage piston cup 563 opens under the air pressure between the medium tube 522 and the relatively small tube 523 to allow the air into the relatively small tube 523.
In a second step of air compression, the connection bar 401 drives the piston rod 541 to move backward for air compression. In this process, the first-stage piston cup 561 closes under the air pressure enclosed in the relatively large tube 521 to be isolated from the external environment. In this process, the second-stage piston cup 562 opens under the air pressure between the medium tube 522 and the relatively small tube 523 to allow the first-stage compressed air in the relatively large tube 521 to enter in between the medium tube 522 and the relatively small tube 523 for preparation of a second-stage air compression for the next air admission. In this process, the third-stage piston cup 563 closes under the air pressure enclosed in the relatively small tube 523. The compressed air enters the air release passage 303 via the check valve 302 and is enclosed in the air release passage 303 between the check valve 302 and the air release valve 304.
In a third step, the operation in the first and second steps are repeated to perform repeated air compression until the pressure gauge 103 has reached the required pressure value and then the gun is ready to shoot.
As shown in
According to a first embodiment shown in
According to a second embodiment shown in
The air release valve 304 is operated as follows:
To shoot the gun, the hammer 25 strikes the slider 608 to allow the slider 608 to slide axially along with the valve core shaft 601, so that the air release valve spring 602 is compressed and the inlet port 607 is opened. High pressure air enters the air release passage 303 via the inlet port 607, the airflow through hole 604, and the circumferential outlet port 605 for preparation of shooting. Once the shooting is done, the hammer is returned to allow the slider 608 and the valve core shaft 601 to reset by sliding together reversely under the tension of the air release valve spring 602. Then the inlet port 607 is closed.
As shown in
As shown in
According to an improvement, one end of the pull-bolt pull bar 801 is rotatably connected to the gun support through a rear shaft pin 808. The pull-bolt handle 803 is fixed to the other end of the pull-bolt pull bar 801. A pull-bolt connection bar 809 is rotatably connected to the middle portion of the pull-bolt pull bar 801. One end of the pull-bolt connection bar 809 is rotatably connected to the pull-bolt pull bar 801 through a rear shaft pin 810 of the connection bar. The other end of the pull-bolt connection bar 809 is rotatably connected to the pull-bolt thimble 802 through a front shaft pin 811 of the connection bar.
As shown in
As shown in
The bottom side wall of the pellet clip seat 200 is provided with a loading sleeve 206 that extends to the pellet clip lid. The center hole of the loading sleeve 206 passes perpendicularly through the pellet clip seat 200. The pellet clip lid 201 comprises a loading channel 207 for the pull-bolt thimble to pass through. The end of the loading sleeve 206 close to the exit side of the loading channel 207 comprises an opening 208 through which a single pellet can slip autonomously into the loading channel. The bottom of the loading channel 207 comprises a shaft bore 209 close to the opening 208 that is in communication with the loading channel 207. The magnetic shaft is fitted tightly inside the shaft bore 209. The magnetic shaft is a magnet shaft which can magnetically attract a steel pellet entering the loading channel 207 through the opening 208 to the top end thereof. An upper end of the magnetic shaft is flush with an upper edge of the shaft bore 209 or hidden inside the shaft bore 209.
In this embodiment, the magazine case 109 is inserted in a groove 113 of the valve body 102. The bottom of the magazine case 109 is provided with an inverted T shaped connector 110. The connector 110 comprises a clamping edge 111 protruding outward on both sides of its bottom and a positioning block 112 protruding downward at one side of its bottom end. The bottom of the groove 113 is provided with a connector slot 114 capable of mating to the connector 110, and the bottom of the connector slot 114 is provided with a positioning counterbore 116 capable of mating to the positioning block 112. Both side walls of the connector slot 114 are provided with a concave bayonet 115. One of the side clamping edges 111 of the connector 110 can be inserted into one of the side bayonets 115 at an angle. The other side clamping edge 111 of the connector 110 can be folded down to be clamped into the other bayonet 115 to achieve clamping connection of the magazine. The positioning block 112 protrudes into the positioning counterbore 116 when the connector 110 is fully clamped in the connector slot 114.
In this embodiment, the groove 113 has an internal space that matches the shape of the magazine. For ease of inclined clamping of the magazine, the groove 113 has an inclined side wall, so that the magazine inserted in the groove 113 can be inclined toward the inclined side wall and clamped in the slot 114 at the bottom of the groove 113.
In this embodiment, the lower end face of the connector 110 has a counterbore 117. A pillar 118 is provided at the center of the counterbore 117 and hidden inside the counterbore 117. An O-shaped rubber ring is positioned in the counterbore 117 and tightly fitted on the pillar 118, with its outer side protruding from the lower end face of the connector 110. When the magazine is clamped in the groove 113, the O-shaped rubber ring maintains an opposing thrust to the magazine to enable a tight engagement between the slot and the magazine, thereby achieving a secure connection between the groove 113 and the magazine.
Unless otherwise indicated, the numerical ranges involved in the invention include the end values. While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201620040534.1 | Jan 2016 | CN | national |
This application is a continuation-in-part of International Patent Application No. PCT/CN2016/077178 with an international filing date of Mar. 24, 2016, designating the United States, now pending, and further claims foreign priority to Chinese Patent Application No. 201620040534.1 filed Jan. 15, 2016. The contents of all of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P.C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, and Cambridge, Mass. 02142.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/077178 | Mar 2016 | US |
Child | 15795224 | US |