This U.S. National stage application claims priority under 35 U.S.C. §119(a) to Japanese Patent Application No. 2010-263482, filed in Japan on Nov. 26, 2010, the entire contents of Japanese Patent Application No. 2010-263482 are hereby incorporated herein by reference.
1. Field of the Invention
The present invention relates to a pneumatic fender and a method for transporting the same, in particular, a pneumatic fender and a method for transporting the same in which convenience in the transportation is maintained and the reduction in durability is suppressed.
2. Background Information
In general, a pneumatic fender is arranged with a bag including a cylindrical torso body section and dome-shaped minor body sections connected to both ends thereof. When the outer diameter of the torso body section of such the pneumatic fender is 2.5 m or more, the transportation of the inflated pneumatic fender will be restricted by the vehicle restriction under the Road Traffic Law (width: 2.5 m, length: 12 m, height: 3.8 m in Japan, for example). Thus, there is a problem that the inflated pneumatic fender cannot be transported by a vehicle.
For countermeasure to the problem, conventionally, the pneumatic fender has been transported by discharging the air from the pneumatic fender to collapse it flat and folding it so that it corresponds to the width of a container of the vehicle, and then loading the folded pneumatic fender into the container.
However, since the bag of this type of pneumatic fender is made up of a rubber layer reinforced with steel cables, organic fiber cables, and the like, the bag itself is rigid and thus is difficult to be folded into a desired shape. Further, since the weight of the largest class pneumatic fender reaches 4.8 tons and therefore a heavy machinery such as a crane is needed for the folding operation, which requires sufficient consideration for safety and takes much time and thus there is a problem of extremely poor operability. Further, since an unnecessary force is locally applied to the bag, the outer surface of the bag is likely to be damaged. Furthermore, there is a problem that the folds caused by the folding result in the decrease in the strength and reduction in the durability.
In order to overcome these problems, it has been proposed to improve the durability by providing some additional member to the outer circumferential surface of the rubber film of the bag to reduce the local bending distortion caused by the folding (for example, refer to JP-A-2006-291628). However, this proposal does not directly result in the improvement of the operability of the folding, and therefore further improvement has been demanded.
An object of the present invention is to overcome the problems as described above and provide a pneumatic fender and a method for transporting the same in which the operability in the folding to maintain convenience in the transportation and suppress the reduction in durability.
In order to achieve the above object, provided is a pneumatic fender of the present invention having a bag including a cylindrical torso body section and dome-shaped mirror body sections connected to both ends of the torso body section, and characterized in that at least one crease extended in a longitudinal direction is formed in an outer surface of the torso body section.
Further, when the pneumatic fender having a bag including a cylindrical torso body section and dome-shaped mirror body sections connected to both ends of the torso body section, in which a crease extended in a longitudinal direction is formed in an outer surface of the torso body section, is loaded into a container and transported, a method for transporting a pneumatic fender of the present invention is characterized in the processes of collapsing the bag flat with the mirror body sections facing upward after air is discharged from the bag; subsequently, folding the bag along the crease as a border onto an upper surface of the bag; and loading the folded bag into a container to transport it.
According to the present invention, at least one crease extended in the longitudinal direction is formed in the outer surface of the torso body section constituting the pneumatic fender. The folding operation can be performed along the crease as the border, which can improve the operability in the folding while allowing for the folding into a desired shape. In addition, the reduction in durability due to the folding can be suppressed.
Further, the formation of the crease allows the shape of the folded bag to be stabilized, which prevents the external damage from occurring during the transportation such as in the loading into the container and thus can suppress the reduction in durability due to the transportation.
A pneumatic fender of the present invention will be described below in detail by referring to embodiments illustrated in the drawings.
In the embodiment of the present invention illustrated in
It is noted that
The bag 2 is arranged with a reinforcement layer 4 interposed between an inner layer rubber 5a and an outer layer rubber 5b, as illustrated in
Then, in the pneumatic fender 1 of the present invention, as illustrated in
As such, in the pneumatic fender 1 of the present invention, the creases 3, 3 extended straight in the longitudinal direction are formed in the outer surface of the torso body section 2b, so that the bag 2 can be folded along the creases 3, 3 as the borders. This allows for the improved operability in the folding while allowing for the folding into the desired shape. In addition, the unnecessary external force at the folding is reduced, which can suppress the reduction in durability of the bag 2 due to the folding.
It is noted that, in the above embodiment of
In another embodiment as illustrated in
It is noted that, when the creases 3, 3 are formed in the torso body section 2b and the mirror body sections 2a, 2a, respectively, as described in the above embodiment, respective positions of the creases 3, 3 are adjusted in the torso body section 2b and the mirror body sections 2a, 2a so that respective creases 3, 3 are continuous in the longitudinal direction when the bag 2 has been collapsed flat, as illustrated in
In the case described above, the width of the creases 3 formed in the mirror body sections 2a, 2a is preferably wider than the width of the creases 3 formed in the torso body section 2b in order that the creases 3, 3 of the torso body section 2b and the creases 3, 3 of the minor body sections 2a, 2a can be continuous after the bag 2 has been collapsed flat. This allows for a smooth folding operation of the mirror body sections 2a, 2a along the creases 3 formed in the torso body section 2b, so that the operability in the folding can be further improved.
In the present invention, the folding operation of the bag 2 is performed according to the following procedure. It is noted that, in the following description, the procedure will be described for the folding operation in the embodiment of the pneumatic fender 1 illustrated in
First, after the air is discharged from the bag 2, the bag 2 is collapsed flat with the mirror body sections 2a, 2a facing upward, respectively, as illustrated in
Then, as illustrated in
It is noted that, when it has been collapsed flat with the mirror body sections 2a, 2a facing upward as illustrated in
It is noted that, although the number of the concentric creases 3 formed in the outer surfaces of the mirror body sections 2a, 2a is two in the embodiment of
In the embodiment as described above, in addition to the concentric or radial creases 3, the creases 3 extended in the width direction as illustrated in
In the present invention, the creases 3 formed in the outer surfaces of the bag 2 is preferably arranged with the concave groove 3a as illustrated in
In the present invention, the depth d of the concave groove 3a is preferably set to one-third to two-thirds of the thickness t of the outer layer rubber 5b, preferably, 5 to 25 mm. Further, the opening width w of the concave groove 3a is preferably set to one to ten times the depth d of the concave groove 3a, preferably, 10 to 200 mm. This allows for the improved operability of the folding without degenerating the durability of the bag 2.
Here, if the depth d of the concave groove 3a is less than one-third of the thickness t of the outer layer rubber 5b or less than 5 mm, the operability of the folding will be reduced. If the depth d of the concave groove 3a is greater than two-thirds of the thickness t of the outer layer rubber 5b or greater than 25 mm, the protection effect of the outer layer rubber 5b to the reinforcement layer 4 will be reduced causing the reduction in durability of the bag 2.
Further, if the opening width w of the concave groove 3a is less than the depth d of the concave groove 3a or less than 10 mm, the operability of the folding will be reduced. If the opening width w of the concave groove 3a is greater than ten times the depth d of the concave groove 3a or greater than 200 mm, the protection effect of the outer layer rubber 5b to the reinforcement layer 4 will be reduced causing the reduction in durability of the bag 2.
In the present invention, more preferably, the concave line 3b or convex line 3c may be formed inside the bag 2 opposing to the concave groove 3a, as illustrated in
Further, in the bag 2 of the present invention, the creases 3 extended in the longitudinal direction may be formed in the opposing positions 2bx, 2by in the torso body section 2b, respectively, as illustrated in
Furthermore, the creases 3 extended in the longitudinal direction may be formed in the fold positions 2bz, 2bz (the positions of the backside corresponding to the creases 3, 3 of
As described above, in the pneumatic fender 1 of the present invention, the width W of the folded bag 2 (see
It is noted that the above embodiment has been described on the assumption that at least one crease 3 extended in the longitudinal direction is formed in the outer surface of the torso body section 2b and the bag 2 is folded along the crease 3 as a border and that the width of the folded bag 2 is narrower than the width of the container. However, in the pneumatic fender 1 of the present invention, when the length of the folded bag 2 illustrated in
Further, the above embodiment has been described on the assumption that the creases 3 formed in the longitudinal direction of the torso body section 2b and in the width direction of the minor body sections 2a, 2a are extended in a continuous manner, respectively. In the pneumatic fender 1 of the present invention, however, it is acceptable that these creases 3 are extended in a discontinues manner, respectively, as long as the operability of the folding is not affected. That is, the creases 3 are not limited to the continuous type and may be the discontinuous type. For example, a crease extended in a dotted-line manner may be employed. Further, the concave line 3b and the convex line 3c described above are also not limited to the continuously extended type and may be the discontinuously extended type. For example, a concave line 3b and a convex line 3c extended in a dotted-line manner may be employed.
As described above, in the pneumatic fender 1 of the present invention, at least one crease 3 is formed in the longitudinal direction in the outer surface of the torso body section 2b, which improves the operability in the folding while allowing for the folding into a desired shape. In addition, the reduction in durability of the bag 2 due to the folding and the transportation is suppressed, so that the present invention can be preferably applied to, in particular, the large pneumatic fender 1 that is 2.5 m or more in outer diameter of the torso body section 2b.
In order to fabricate a pneumatic fender that is 3.3 m in diameter and 6.5 m in length and load it into a container 7 that is 2.2 m in width and 12 m in length for transportation, fabricated were a conventional pneumatic fender (example of the conventional art) in which no concave groove 3a was formed in the outer surfaces of the torso body section 2b and the mirror body sections 2a, 2a of the pneumatic fender, and pneumatic fenders of the present invention (Examples 1-6) in which the concave grooves 3a were formed in the outer surfaces of the torso body section 2b and the mirror body sections 2a, 2a as indicated in Table 1, respectively.
It is noted that, in Examples 1 and 2, the vertical gap between two concave grooves 3a formed in the torso body section 2b was set to 2 m (likewise in Examples 3-6). In Example 2, the vertical gap between two concave grooves 3a formed in the mirror body section 2a was set to 2.4 m (likewise in Example 4). In Example 5, the gap between two concave grooves 3a formed in the mirror body section 2a was set to 1 m. In Example 6, six concave grooves 3a formed in the mirror body section 2a were arranged in the same pitch in the circumferential direction. Further, in each fender, the thickness of the inner layer rubber 5a was set to 15 mm and the thickness of the outer layer rubber 5b was set to 30 mm.
Each of these seven pneumatic fenders was folded according to the procedure illustrated in
It can be understood from Table 1 that the fender of the present invention allows for a significant improvement in the operability of the folding compared to the fender of the conventional art in which no concave groove 3a is formed.
Number | Date | Country | Kind |
---|---|---|---|
2010-263482 | Nov 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/074716 | 10/26/2011 | WO | 00 | 5/24/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/070351 | 5/31/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3201111 | Afton | Aug 1965 | A |
3727825 | Troth | Apr 1973 | A |
3863589 | Guienne et al. | Feb 1975 | A |
4557956 | Volpert et al. | Dec 1985 | A |
4733992 | Dehlen | Mar 1988 | A |
4924796 | Duffy | May 1990 | A |
5685752 | Fulton, Jr. | Nov 1997 | A |
6357377 | Santelli, Jr. | Mar 2002 | B1 |
8087371 | Sadegh et al. | Jan 2012 | B1 |
20030200910 | Corlett | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
201376658 | Jan 2010 | CN |
60-051211 | Mar 1985 | JP |
60-203715 | Oct 1985 | JP |
05-278150 | Oct 1993 | JP |
2006-291628 | Oct 2006 | JP |
2005105564 | Nov 2005 | WO |
Entry |
---|
International Search Report of corresponding International Application No. PCT/JP2011/074716, dated on Jan. 31, 2012. |
Office Action issued in corresponding Korean Patent Application No. 10-2013-7015208, dated Oct. 15, 2013. |
Number | Date | Country | |
---|---|---|---|
20130251459 A1 | Sep 2013 | US |