Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates generally to a pneumatic grinder, and more particularly to an innovative pneumatic grinder with exhaust holes on an air chamber stand.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
The operation of a pneumatic grinder is mainly implemented through a rotor in an air chamber stand. Since inlet holes and exhaust holes are separately set onto the wall of the air chamber stand, the rotor is driven by air that is guided into the air chamber stand from the inlet hole. When the rotor is rotated to a preset angle, air is discharged from the exhaust hole, so that the rotor can continuously drive the eccentric seat of the pneumatic grinder to generate vibration.
During operation of the aforementioned pneumatic grinder's rotor, the torque relies a lot on the performance of the exhaust process. However, since the exhaust holes of the typical air chamber stand are only set on the wall in a fine-mesh pattern, a poor exhaust effect is often observed, leading to turbulence within air chamber stand and lower rotational speed and torque of the rotor. If the rotor vibrates strongly, the users may find it uncomfortable to hold firmly, bringing about depressed working behavior and poor performance and quality.
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement in the art to provide an improved structure that can significantly improve efficacy.
Therefore, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The enhanced efficacy of the present invention is that the present invention provides an improved structure of a pneumatic grinder with an innovation of lateral exhaust holes assembled onto an upper cover and/or lower cover, thus increasing air exhaust capacity of the air chamber stand via the lateral exhaust holes. The turbulence in air-chamber stand are markedly reduced, and the rotational speed and strength of rotor are improved. Meanwhile, the vibration of the rotor can be reduced efficiently for the benefit of the users, thereby significantly improving the torque, performance and quality of pneumatic grinder with better applicability.
The improvements brought about by the pneumatic grinder of the present invention include a unique structure that has a waveform gasket assembled between the loop coil and the lower cover of the air chamber stand. This waveform gasket under pressure yields an elastic force, enabling the loop coil and air chamber stand to be positioned more stably against any air leakage.
Moreover, the upper cover and lower cover are connected to the cylinder by a waveform gasket, so as to strengthen the airtight condition between the cylinder and upper and lower covers. The elastic upper and lower airtight cylinders can create an elastic and airtight state for the upper and lower cover surfaces that are connected, so that the upper and lower cover surfaces can be maintained as airtight even when slight loosening occurs.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The features and the advantages of the present invention will be more readily understood upon a thoughtful deliberation of the following detailed description of a preferred embodiment of the present invention with reference to the accompanying drawings.
The housing 10 of the pneumatic grinder comprises an air chamber stand 20 assembled with a rotor 30 and brake rod 41 of eccentric seat 40. The air-chamber stand 20 comprises a cylinder 21, an upper cover 22 and lower cover 23. The cylinder 21 is fitted with inlet holes 211 (shown in
A feature of the present invention includes a lateral exhaust hole 50 assembled on the upper cover 22 or lower cover 23 or both. The lateral exhaust hole 50 is provided with a vertical internal borehole section 51 linking air chamber 201 within air chamber stand 20. The lateral exhaust hole 50 is also provided with a transverse external borehole section 52 protruding from the edge of upper cover 22 or lower cover 23 or both.
Referring to
Referring to
Referring to
Referring to
Referring to
The housing 10 of the pneumatic grinder is fitted with a loop coil 70, which is locked onto a bottom of lower cover 23 of air chamber stand 20. A waveform gasket 80 is assembled between the loop coil 70 and lower cover 23 of air chamber stand 20. This waveform gasket 80 under pressure could yield elastic force, enabling the loop coil 70 to be positioned more stably.
As shown in
Number | Name | Date | Kind |
---|---|---|---|
2251329 | Ekstrom | Aug 1941 | A |
3108409 | Hendrickson | Oct 1963 | A |
3274895 | Hendrickson | Sep 1966 | A |
5218790 | Huang | Jun 1993 | A |
5706996 | Lee | Jan 1998 | A |
5919085 | Izumisawa | Jul 1999 | A |
5993305 | Chu | Nov 1999 | A |
6190245 | Heidelberger et al. | Feb 2001 | B1 |
6969311 | Chen et al. | Nov 2005 | B2 |
7238095 | Sun et al. | Jul 2007 | B1 |
20050020196 | Chen et al. | Jan 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090023365 A1 | Jan 2009 | US |