The present invention relates to a pneumatic tire, and more specifically, to a pneumatic tire by which uneven wear resistance can be improved.
In recent years, pneumatic tires have been provided with a circumferential reinforcing layer in a belt layer in order to suppress radial growth of tires and suppress uneven wear (in particular, step wear in a shoulder land portion). The technology described in Japanese Unexamined Patent Application Publication No. 2009-73337A is known as a conventional pneumatic tire that is configured in this manner.
On the other hand, in pneumatic tires with a block pattern, there is also the issue that heel and toe wear in the blocks should be suppressed. Also, in pneumatic tires with a rib pattern, there is the issue that railway wear in the ribs should be suppressed.
The present technology provides a pneumatic tire whereby uneven wear resistance can be enhanced. The pneumatic tire according to the present invention comprises: a belt layer that includes a circumferential reinforcing layer; a plurality of circumferential main grooves; and a plurality of land portions partitioned by the circumferential main grooves. In such a pneumatic tire, the land portions above the circumferential reinforcing layer have at least one sipe, the sipes have a bent shape with two flex points P1, P2 in a plan view, and have a closed structure with two end points Q1, Q2 that terminate within the land portion, an angle α between a line that connects the flex points P1, P2 and the tire circumferential direction is within a range such that 0°≦α≦10°, and an angle β1 between a line that connects the flex point P1 and an end point Q1 and the tire circumferential direction, and an angle β2 between a line that connects the flex point P2 and an end point Q2 and the tire circumferential direction are within a range such that 35°≦β1≦55° and 35°≦β2≦55°.
In the pneumatic tire according to the present invention, the land portions above the circumferential reinforcing layer have the sipe, so the ground contact pressure of the land portions is reduced, and uneven wear of the land portions (heel and toe wear of blocks, railway wear of the rib) is suppressed. This has the advantage that the uneven wear resistance performance of the tire is improved. Also, the sipe has a bent shape, and the angles of inclination α, β1, and β2 with respect to the tire circumferential direction of the center portion and the end portions thereof are made appropriate, so when turning or when braking/driving, the stress concentrations at the end points Q1, Q2 of the sipe are reduced. As a result, the occurrence of cracking originating at the end points Q1, Q2 of the sipe is suppressed, and this has the advantage that the sipe edge cracking resistance performance of the tire is improved.
a-8c include a table showing the results of performance testing of pneumatic tires according to the embodiment of the present invention.
The present invention is described below in detail with reference to the accompanying drawing. However, the present invention is not limited to these embodiments. Moreover, constituents of the embodiment which can possibly or obviously be substituted while maintaining consistency with the present invention are included. Furthermore, the multiple modified examples described in the embodiment can be combined as desired within a scope apparent to a person skilled in the art.
Pneumatic Tire
The pneumatic tire 1 includes a pair of bead cores 11,11, a pair of bead fillers 12,12, a carcass layer 13, a belt layer 14, tread rubber 15, and a pair of side wall rubbers 16,16 (see
In this embodiment, the pneumatic tire 1 has a left-right symmetric internal structure centered on the tire equatorial plane CL.
The pneumatic tire 1 includes a plurality of circumferential main grooves 21 to 23 extending in the tire circumferential direction; and a plurality of land portions 31 to 34 partitioned by the circumferential main grooves 21 to 23 in the tread portion. Additionally, each of the land portions 31 to 34 has a plurality of lug grooves 41 to 44, respectively, extending in the tire width direction. As a result of the lug grooves 41 to 44, each of the land portions 31 to 34 is partitioned in the tire circumferential direction, to form a block pattern.
In the configuration illustrated in
Also, in the configuration illustrated in
Also, the carcass layer 13 is constituted by a plurality of carcass cords formed from steel or organic fibers (e.g. nylon, polyester, rayon, or the like) covered by a coating rubber and subjected to a rolling process, and has a carcass angle (inclination angle of the carcass cord in a fiber direction with respect to the tire circumferential direction), as an absolute value, of not less than 85° and not more than 95°.
The belt layer 14 is formed by laminating a large angle belt 141, a pair of cross belts 142, 143, a belt cover 144, and a circumferential reinforcing layer 145, wound around the periphery of the carcass layer 13 (see
The large angle belt 141 is constituted by a plurality of belt cords formed from steel or organic fibers covered by a coating rubber and subjected to a rolling process, and has a belt angle (inclination angle of the belt cords in a fiber direction with respect to the tire circumferential direction), as an absolute value, of not less than 40° and not more than 60°. Also, the large angle belt 141 is disposed laminated on the outer side in the tire radial direction of the carcass layer 13.
The pair of cross belts 142, 143 is constituted by a plurality of belt cords formed from steel or organic fibers covered by a coating rubber and subjected to a rolling process, and has a belt angle, as an absolute value, of not less than 10° and not more than 30°. Further, each of the pair of cross belts 142, 143 has a belt angle denoted with a mutually different symbol, and the belts are laminated so as to intersect each other in the belt cord fiber directions (crossply structure). In the following description, the cross belt 142 positioned on the inner side in the tire radial direction is referred to as “inner-side cross belt”, and the cross belt 143 positioned on the outer side in the tire radial direction is referred to as “outer-side cross belt”. Three or more cross belts may be provided laminated (not illustrated on the drawings). Also, the pair of cross belts 142, 143 is disposed laminated on the outer side in the tire radial direction of the large angle belt 141.
The belt cover 144 is constituted by a plurality of belt cords formed from steel or organic fibers covered by a coating rubber and subjected to a rolling process, and has a belt angle, as an absolute value, of not less than 10° and not more than 45°. Also, the belt cover 144 is disposed laminated on the outer side in the tire radial direction of the cross belts 142, 143. In this embodiment, the belt cover 144 has the same belt angle as the outer-side cross belt 143, and is disposed in the outermost layer of the belt layer 14.
The circumferential reinforcing layer 145 is constituted by belt cords formed from a rubber coated steel wire wound spirally at an angle with respect to the tire circumferential direction within a range of ±5°. Also, the circumferential reinforcing layer 145 is interposed between the pair of cross belts 142, 143. Also, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edges of the pair of cross belts 142, 143. Specifically, the circumferential reinforcing layer 145 is formed by winding one or a plurality of wires in a spiral manner around the outer periphery of the inner-side cross belt 142. The circumferential reinforcing layer 145 improves the tire durability by strengthening the stiffness in the tire circumferential direction.
In the pneumatic tire 1, the belt layer 14 may have an edge cover (not illustrated on the drawings). Normally, the edge cover is constituted by a plurality of belt cords formed from steel or organic fibers covered by a coating rubber and subjected to a rolling process, and has a belt angle, as an absolute value, of not less than 0° and not more than 5°. Also, the edge cover is disposed on the outer side in the tire radial direction of the left and right edges of the outer-side cross belt 143 (or the inner-side cross belt 142). The edge covers improve the uneven wear resistance performance of the tire by reducing the difference in radial growth between the center area and the shoulder area of the tread portion, by exhibiting a band effect.
Circumferential Reinforcing Layer
Also, in the pneumatic tire 1, the belt cords from which the circumferential reinforcing layer 145 is configured are steel wire, and preferably, the number of ends of the circumferential reinforcing layer 145 is not less than 17 ends/50 mm and not more than 30 ends/50 mm. Also, preferably, the diameter of the belt cord is not less than 1.2 mm and not more than 2.2 mm. In a configuration in which the belt cords are formed from a plurality of cords twisted together, the belt cord diameter is measured as the diameter of a circle that circumscribes the belt cord. Also, in the pneumatic tire 1, the circumferential reinforcing layer 145 is configured by winding a single steel wire in a spiral manner. However, the configuration is not limited thereto, and the circumferential reinforcing layer 145 may be configured from a plurality of wires wound spirally around side-by-side to each other (multiple winding structure). In this case, preferably, the number of wires is 5 or less. Also, preferably, the width of winding per unit when 5 wires are wound in multiple layers is 12 mm or less. In this way, a plurality (not less than 2 and not more than 5) of wires can be wound properly while inclined with respect to the tire circumferential direction in the range of ±5°.
Also, in the pneumatic tire 1, (a) the elongation of the belt cords from which the circumferential reinforcing layer 145 is configured when they are components (when they are material prior to forming the green tire) when subjected to a tensile load of 100 N to 300 N is preferably not less than 1.0% and not more than 2.5%. Also, (b) the elongation of the belt cords of the circumferential reinforcing layer 145 when in the tire (the state when taken from the tire product) when subjected to a tensile load of 500 N to 1000 N is preferably not less than 0.5% and not more than 2.0%. The belt cords (high elongation steel wire) have a good elongation ratio when a low load is applied compared with normal steel wire, so they have the property that they can withstand the loads that are applied. Therefore, in the case of (a) above, it is possible to improve the durability of the circumferential reinforcing layer 145 during manufacture, and in the case of (b) above, it is possible to improve the durability of the circumferential reinforcing layer 145 when the tire is used, and these points are desirable.
The elongation of the belt cords is measured in accordance with JIS G3510.
Also, preferably, a width Ws of the circumferential reinforcing layer 145 is within the range such that 0.6≦Ws/W. The width Ws of the circumferential reinforcing layer 145 when the circumferential reinforcing layer 145 has a divided structure (not illustrated on the drawings) is the sum of the widths of each divided portion.
Also, in the configuration illustrated in
Also, preferably, the width Ws of the circumferential reinforcing layer 145 relative to the tire developed width TDW (not illustrated on the drawings) is in the range such that 0.65≦Ws/TDW≦0.80. The tire developed width TDW is the linear distance in a development view between the two ends of the tread-patterned portion of the tire assembled on a standard rim to which a regular inner pressure is applied and no load is applied.
Also, in the configuration illustrated in
Sipes of the Blocks
In recent years, pneumatic tires have been provided with a circumferential reinforcing layer in a belt layer in order to suppress radial growth of tires and suppress uneven wear (in particular, step wear) in shoulder land portions.
In this configuration, the stiffness in the tire circumferential direction is increased at the land portions above the circumferential reinforcing layer, so the deformation is reduced. Therefore, the ground contact pressure of the land portions is increased, so the load acting on the land portions is increased during turning and braking/driving. Therefore, there is the issue that uneven wear can easily occur in the land portions. This uneven wear in blocks is, for example, heel and toe wear, and in ribs is, for example, railway wear.
Therefore, in the pneumatic tire 1, the following configuration is adopted in order to suppress uneven wear in the land portions.
In the pneumatic tire 1, the land portions 31 to 33 above the circumferential reinforcing layer 145 have at least one sipe 6 (see
For example, in the configuration illustrated in
If the end portion of the circumferential reinforcing layer 145 is below the land portion 33, and the width W2 of the road contact surface of the land portion 33 and the lap width W3 of the circumferential reinforcing layer 145 with respect to the road contact surface of the land portion 33 have a relationship such that 0.50≦W3/W2 when viewed as a cross-section from the tire meridian direction, the land portion 33 can be said to be above the circumferential reinforcing layer 145 (see
Also, in the pneumatic tire 1, the sipe 6 of each land portion 31 to 33 has a closed structure having a bent shape with two flex points P1 and P2 in a plan view of the land portions 31 to 33, in which the two end points Q1, Q2 terminate within the land portions 31 to 33 (see
For example, in the configuration illustrated in
In this case, the angle α between the line that connects the flex points P1, P2 (the center portion 61) and the tire circumferential direction is within the range such that 0°≦α≦10°. Also, the angle β1 between the line connecting the flex point P1 and the end point Q1 (first end portion 62) and the tire circumferential direction, and the angle β2 between the line connecting the flex point P2 and the end point Q2 (second end portion 63) and the tire circumferential direction are within the range such that 35°≦β1≦55° and 35°≦β2≦55°.
In this configuration, the land portions 31 to 33 above the circumferential reinforcing layer 145 have the sipe 6, so the ground contact pressure of the land portions 31 to 33 is reduced, and uneven wear of the land portions 31 to 33 is suppressed. Specifically, in the case that the land portions 31 to 33 are rows of blocks, heel and toe wear of the block 5 is suppressed, and in the case that the land portions 31 to 33 are ribs, railway wear is suppressed.
Also, the sipe 6 has a bent shape, and the angles of inclination α, β1, and β2 with respect to the tire circumferential direction of the center portion 61 and the end portions 62, 63 thereof are made appropriate, so, when turning or when braking/driving, the stress concentrations at the end points Q1, Q2 of the sipe 6 are reduced. As a result, the occurrence of cracking that originates at the end points Q1, Q2 of the sipe 6 is suppressed.
Specifically, the angle α is set to be within the range such that 0°≦α≦10°, so the ground contact pressure can be made uniform while maintaining the stiffness of the land portions 31 to 33. Also, the angles β1, β2 are set to be within the range such that 35°≦β1 and 35°≦β2, so the stress concentrations at the end points Q1, Q2 of the sipe 6 when turning are reduced, and the angles β1, β2 are set to be within the range such that β1≦55° and β2≦55°, so the stress concentrations at the end points Q1, Q2 of the sipe 6 when braking/driving are reduced.
In the configuration illustrated in
However, the configuration is not limited thereto, and the two end portions 62, 63 of the sipe 6 may be inclined in different directions (see
Also, the two end portions 62, 63 and the center portion 61 of the sipe 6 may be bent in mutually different directions (not illustrated on the drawings). For example, in the configuration illustrated in
Also, in the configuration illustrated in
Also, in the pneumatic tire 1, the length S1 of the line connecting the flex point P1 and the end point Q1 and the length S2 of the line connecting the flex point P2 and the end point Q2 preferably are in the ranges such that 2.5 mm≦S1≦6.0 mm and 2.5 mm≦S2≦6.0 mm (see
Also, in the pneumatic tire 1, preferably the width W1 in the tire width direction of the sipe 6 and the width W2 in the tire width direction of the land portions 31 to 33 have a relationship such that W1/W2≦0.20 (see
The lower limit of W1/W2 is 0≦W1/W2, but it is restricted by, for example, the lengths S1, S2 of the end portions 62, 63 of the sipe 6 and the inclination angles β1, β2, and the like.
Also, in the pneumatic tire 1, in the configuration in which the land portions 31 to 33 are formed from rows of blocks 5 aligned in the tire circumferential direction (see
Also, in the configuration described above, preferably the lengths S1, S2 and the length L1 in the tire circumferential direction of the line connecting the flex points P1, P2 have a relationship such that 0.50≦S1/L1≦0.70 and 0.50≦S2/L1≦0.70.
Also, in the pneumatic tire 1, preferably the angle γ1 between the line that connects the flex points P1, P2 and the line that connects the flex point P1 and the end point Q1, and the angle γ2 between the line that connects the flex points P1, P2 and the line that connects the flex point P2 and the end point Q2 are within the ranges such that 145°≦γ1≦155° and 145°≦γ1≦155°.
Also, in the pneumatic tire 1, preferably the maximum depth D1 of the sipe 6 and the maximum depth D2 of the circumferential main grooves (not illustrated on the drawings) have a relationship such that 0.15≦D1/D2≦0.85 (see
Each of the dimensions α, β1, β2, γ1, γ2, L1, L2, W1, W2, S1, S2 of the block 5 and the sipe 6 are measured with the tire assembled on a regular rim with the regular inner pressure applied, under no load conditions.
Here, “regular rim” refers to a “standard rim” defined by the Japan Automobile Tyre Manufacturers Association Inc. (JATMA), a “design rim” defined by the Tire and Rim Association, Inc. (TRA), or a “measuring rim” defined by the
European Tyre and Rim Technical Organisation (ETRTO). “Regular inner pressure” refers to “maximum air pressure” stipulated by JATMA, a maximum value in “tire load limits at various cold inflation pressures” defined by TRA, and “inflation pressures” stipulated by ETRTO. Note that “regular load” refers to “maximum load capacity” stipulated by JATMA, a maximum value in “tire load limits at various cold inflation pressures” defined by TRA, and “load capacity” stipulated by ETRTO. However, with JATMA, in the case of passenger car tires, the regular internal pressure is an air pressure of 180 kPa, and the regular load is 88% of the maximum load capacity.
Effect
As described above, the pneumatic tire 1 includes the belt layer 14 that includes the circumferential reinforcing layer 145 (see
In this configuration, the land portions 31 to 33 above the circumferential reinforcing layer 145 have the sipe 6 (see
Also, in the pneumatic tire 1, the maximum depth D1 of the sipe 6 and the maximum depth D2 (not illustrated on the drawings) of the left and right circumferential main grooves of the land portion having the sipe 6 (circumferential main grooves 22, 23 in
Also, in the pneumatic tire 1, the length 51 of the line connecting the flex point P1 and the end point Q1 and the length S2 of the line connecting the flex point P2 and the end point Q2 are in the ranges such that 2.5 mm≦S1≦6.0 mm and 2.5 mm≦S2≦6.0 mm (see
Also, in the pneumatic tire 1, the lengths S1, S2 and the length L1 in the tire circumferential direction of the line connecting the flex points P1, P2 have a relationship such that 0.50≦S1/L1≦0.70 and 0.50≦S2/L1≦0.70 (see
Also, in the pneumatic tire 1, the width W1 in the tire width direction of the sipe 6 and the width W2 in the tire width direction of the land portions 31 to 33 having the sipe 6 have a relationship such that W1/W2≦0.20 (see
Also, in the pneumatic tire 1, the land portions 31 to 33 are formed from rows of blocks 5 aligned in the tire circumferential direction (see
Also, in the pneumatic tire 1, the angle γ1 between the line that connects the flex points P1, P2 and the line that connects the flex point P1 and the end point Q1, and the angle γ2 between the line that connects the flex points P1, P2 and the line that connects the flex point P2 and the end point Q2 are within the ranges such that 145°≦γ1≦155° and 145°≦γ2≦155° (see
Also, in the pneumatic tire 1, the depth D1 of the sipe 6 gradually decreases towards the end points Q1, Q2 (see
Also, in the pneumatic tire 1, the two end portions 62, 63 of the sipe 6 are inclined in the same direction as the center portion 61 of the sipe 6 with respect to the tire circumferential direction (see
Also, in the pneumatic tire 1, the belt layer 14 includes the large angle belt 141, the pair of cross belts 142, 143 disposed on the outer side in the tire radial direction of the large angle belt 141, the belt cover 144 disposed on the outer side in the tire radial direction of the pair of cross belts 142, 143, and the circumferential reinforcing layer 145 disposed between the pair of cross belts 142, 143, on the inner side in the tire radial direction of the pair of cross belts 142, 143, or on the inner side in the tire radial direction of the large angle belt 141 (see
Also, in the pneumatic tire 1, the belt cords from which the circumferential reinforcing layer 145 is configured are steel wire, and the number of ends of the circumferential reinforcing layer 145 is not less than 17 ends/50 mm and not more than 30 ends/50 mm.
Also, in the pneumatic tire 1, the elongation of the belt cords from which the circumferential reinforcing layer 145 is configured when they are components when subjected to a tensile load of 100 N to 300 N is not less than 1.0% and not more than 2.5%.
Also, in the pneumatic tire 1, the elongation of the belt cords from which the circumferential reinforcing layer 145 is configured when they are in the tire when subjected to a tensile load of 500 N to 1000 N is not less than 0.5% and not more than 2.0%.
Also, in the pneumatic tire 1, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrower cross belt 143 of the pair of cross belts 142, 143 (see
Also, in the pneumatic tire 1, the width W of the narrower cross belt 143 and the width Ws of the circumferential reinforcing layer 145 are within the range such that 0.60≦Ws/W.
Also, in the pneumatic tire 1, the width Ws of the circumferential reinforcing layer 145 relative to the tire developed width TDW (not illustrated on the drawings) is in the range such that 0.65≦Ws/TDW≦0.80. In this configuration, the width Ws and the tire developed width TDW are in the range such that Ws/TDW≦0.80, so the width Ws of the circumferential reinforcing layer 145 is made appropriate. This has the advantage that fatigue failure of the belt cords is suppressed at the end portion of the circumferential reinforcing layer 145. Also, the width Ws and the tire developed width TDW are in the range such that 0.65≦Ws/TDW, this has the advantage that the ground contact shape of the tire is made appropriate, and the tire uneven wear resistance performance is increased.
Target of Application
It is preferable that the pneumatic tire 1 be applied for a heavy-duty tire. A heavy-duty tire has heavier loads during use compared with the tires for a passenger car. Also, the difference in diameter between the region where the circumferential reinforcing layer is disposed and the region on the outer side in the tire width direction increases, so uneven wear can easily occur in the shoulder land portion. Therefore, applying the present technology to heavy-duty tires leads to more significant uneven wear suppression effect.
Also, preferably, the pneumatic tire 1 is applied to a tire with an aspect ratio within the range not less than 40% and not more than 70%, in the state where the tire is assembled on a standard rim, the regular inner pressure is applied to the tire, and the regular load is applied. In addition, the pneumatic tire 1 as in this embodiment is preferably used as a pneumatic tire for heavy loads, such as buses or trucks and the like. In a tire having this aspect ratio (in particular, heavy-duty pneumatic tires for buses or trucks and the like), the ground contact shape can easily become hourglass shaped, so uneven wear can easily occur in the shoulder land portion. Therefore, by applying the pneumatic tire 1 to tires having this aspect ratio, it is possible to obtain a significant uneven wear suppression effect.
Also, preferably, the pneumatic tire 1 is applied to a tire having the tire ground contact edge T in the edge portion on the outer side in the tire width direction of the shoulder land portion 34, as illustrated in
a-8c include a table showing the results of performance testing of pneumatic tires according to embodiments of the present invention.
In the performance testing, a plurality of mutually differing pneumatic tires were evaluated for (1) uneven wear resistance performance and (2) sipe edge cracking resistance performance (see
(1) In the evaluation of uneven wear resistance performance, a test vehicle was driven on an ordinary paved road for 30,000 km, and thereafter the amount of heel and toe wear of the blocks was measured (the difference in the amount of wear between the area of greatest wear and the area of least wear within a block). Evaluations were performed by indexing the measurement results with the Conventional Example as the standard score (100). In this evaluation, higher scores were preferable.
(2) In the evaluation of sipe edge cracking resistance performance, a test vehicle was driven on an ordinary paved road for 30,000 km, and thereafter the rate of occurrence of cracking in the edges of the sipes was measured. Evaluations were performed by indexing the measurement results with the Conventional Example as the standard score (100). In this evaluation, higher scores were preferable.
The pneumatic tires 1 according to Working Examples 1 to 20 had the configuration of
The pneumatic tire of the Conventional Example had blocks with closed sipes with a linear form, in the configuration illustrated in
It is clear from test results that with the pneumatic tires 1 of Working Examples 1 to 20, the uneven wear resistance performance and the sipe edge cracking resistance performance were enhanced.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/071686 | 9/22/2011 | WO | 00 | 6/3/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/042257 | 3/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4676290 | Tansei et al. | Jun 1987 | A |
4884606 | Matsuda et al. | Dec 1989 | A |
20060016537 | Kuroda | Jan 2006 | A1 |
20060169381 | Radulescu et al. | Aug 2006 | A1 |
20100032072 | Isobe | Feb 2010 | A1 |
20100116402 | Isobe | May 2010 | A1 |
20100294410 | Yoshikawa | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
S61-108003 | May 1986 | JP |
04-087808 | Mar 1992 | JP |
2004-306872 | Nov 2004 | JP |
2004-306872 | Nov 2004 | JP |
2006-056502 | Mar 2006 | JP |
2006-069283 | Mar 2006 | JP |
2009-073337 | Apr 2009 | JP |
2010-052683 | Mar 2010 | JP |
2007-0097926 | Oct 2007 | KR |
Entry |
---|
Machine translation for Japan 2004-306872 (no date). |
Machine translation for Japan 2010-052683 (no date). |
Machine translation for Japan 2006-069283 (no date). |
Machine translation for Korea 2007-0097926 (no date). |
Machine translation for Japan 04-087808 (no date). |
Partial translation for Japan 04-087808 (no date). |
International Search Report dated Jan. 10, 2012, 3 pages, Japan. |
Number | Date | Country | |
---|---|---|---|
20140326381 A1 | Nov 2014 | US |