The present invention relates to pneumatically operated guns and projection devices, where the launching apparatus uses non-explosive compressed gas as a propulsion source. Specifically, the present invention relates to the chambering and propulsion mechanisms for use in paintball guns, i.e., “markers.”
The present invention is particularly suited to be used as a paintball marker. Paintball is a sport in which players attempt to mark their opponents by using a gun to shoot a frangible projectile. Upon contact with an opponent and sufficient trauma to rupture the frangible outer shell, paint or other marking material shall identify that the opponent player has been hit, and should be removed from the game.
Examples of paint ball marker guns are shown and described in U.S. Pat. No. 7,509,953 to Wood, and U.S. Publications Nos. 2007/0028909, 2007/0151549 and 2011/0088675 to Wood; and U.S. Publication No. 2009/0101129 to Wood et al., the entire contents of which are all incorporated full herein by reference.
Launchers are most commonly pneumatic launching devices fitted with a compressed air or liquid CO2 propellant source. Commonly, launchers generally meter out gas to the ball either by using a valve that is normally closed and contacted by a reciprocating assembly to open said valve for a very short duration. Alternately, launchers may meter out gas by only allowing a fixed volume to be exposed to the ball, removing the requirement of exchanging kinetic energy from a reciprocating assembly to the valve. Oftentimes, this strategy is employed with launchers that utilize a seal that slides open to expose the projectile to gas.
Reference is made to US Patent Publication 2007/0028909 to Wood which is directed to a paintball gun with a specific mechanism for controlling the velocity of a projectile or ball. In this disclosure, the gun has a rangefinder in communication with a microprocessor to calculate the distance between the gun and the target. When the trigger is pulled, the microprocessor notes the current range to the target and directs a solenoid to allow compressed gas to pass through it to a channel for a certain time corresponding to the distance of the target. The shorter duration at the solenoid drives the piston forward, the less compressed gas enters the firing chamber to file the ball. Less compressed gas results in a slower projectile velocity meaning that the projectile will only travel toward a closer target.
U.S. Pat. No. 7,509,953 to Wood is directed to a paintball gun configured to eliminate or reduce recoil by the bolt and firing plunger coaxially moving in opposite directions to minimize recoil. In addition, the pneumatic launching assembly is self-timed to avoid misfiring. The pneumatic launching assembly also provides isolation of gas to improve overall efficiency of the assembly. In operation, the trigger mechanism initiates the launch operation. Upon actuation, gas moves the bolt from its rearward position to a forward launching position after a projectile has been loaded. While the bolt is actuated forward, the projectile is moved into the launching position in the barrel. The bolt then moves forward under control of the gas by directing compressed gas to the rear of the bolt. The firing plunger moves rearward in a coaxially opposed direction of the bolt to minimize recoil. As the firing plunger continues to move rearward, the firing plunger controls the flow of gas. Once the plunger is sufficiently rearward, the front end of the first chamber is breached which allows gas to move from the first chamber into a second chamber in order to actuate the bolt and urge it forward. When the bolt is fully forward, the projectile feeding tube is blocked and the second chamber opens to release gas to propel the projectile forward and out of the barrel. Once the gas isolated in the chamber has been released through the bolt, the firing plunger returns to the forward position as the bolt returns to the rear position. This coaxial movement of the bolt and the firing plunger, i.e., moving in opposite directions, minimizes recoil.
Typically, launchers that include a valve opened by kinetic energy have very low propellant consumption (“high efficiency”), but create more noticeable recoil to players. Launchers that employ the alternative strategy of sliding open a valve and allowing a fixed volume of air to be exposed to the ball generally create a more stable platform for launching due to decreased felt recoil, but have higher consumption rates of propellant and are therefore not as efficient.
In addition to the desired features of a stable launching platform and high gas efficiency, launchers must be able to load and accelerate the most frangible possible marker projectiles to a consistent velocity. Because the indication of elimination in the game of paintball requires the marker projectile to fracture and distribute its contents onto the opposing players to be considered a hit, it is advantageous to subject the projectile to as little stress as possible during loading and acceleration.
The ability to accelerate the projectile to a consistent velocity is desirable, because shots will be measured for velocity before and after competitive games by a chronograph. Shots that are higher than a predetermined velocity limit, typically 300 feet per second, may incur penalties to the players using a launcher that shoots over the velocity limit. By providing a launcher that has a low standard deviation for velocity, players may adjust their mean velocity very close to the limit, providing more initial kinetic energy for the projectile to fracture upon contact with opponents at long range. Thus, the probability of marking success is contingent upon imparting the most possible kinetic energy into the most fragile projectile possible, without breaking the projectile within the launcher itself. Breakage inside the launcher is highly disadvantageous, because the liquid contents of the projectile coat the assembly and barrel inner surface, creating an increased possibility of more projectile breaks, as well as decreasing the accuracy and precision of the projectile due to aerodynamic effects from liquid paint on the projectile in flight.
The present invention is directed to a pneumatic projectile launcher for launching a projectile, comprising a barrel having a bore therein; a trigger mechanism; a projectile feed port; a breech for positioning the projectile that communicates with the projectile feed port and the barrel; and a pneumatic valve assembly containing a pneumatic control valve, a pneumatic gas pressure regulator, a pneumatic gas supply chamber, wherein the pneumatic gas supply chamber receives gas at a fixed pressure from the regulator, a bolt coaxial to the bore of the barrel wherein the bolt slidably communicates with the bore in a forward and rearward positions, the bolt comprising a first forward end and a second rearward end and an internal channel, wherein the bolt is initially secured within the pneumatic control valve in a rearward position by gas from the pneumatic gas supply chamber and wherein the pneumatic gas supply chamber comprises sufficient gas to generate a rearward gas force pressure on the bolt to enable the breech to receive the projectile, wherein the bolt includes a bolt sail to generate rearward force from this gas pressure, a valve member in communication with the bolt, wherein the valve member comprises a compliant stop for engaging the internal channel of the bolt to create a seal, wherein the forward force acting on the bolt exceeds the maximum holding force of the compliant stop, wherein the trigger mechanism is in communication with the bolt and the valve member and wherein the trigger mechanism communicates with the second rearward end of the bolt through an electronic control board; and an infeed tube for feeding projectiles into the breech.
The present invention is also directed to a method of operating a pneumatic projectile launcher, described in the previous paragraph, the method comprising activating the triggering mechanism to generate a pneumatic bias to the bolt and the valve member, thereby causing valve member and the bolt to move toward the breech, wherein the bolt and valve member are sealed together by means of their coaxial arrangement, and wherein the movement of the valve member enables a flow a gas to communicate with the second end of the bolt, thereby increasing the velocity of bolt actuation; and sealing the projectile infeed tube by the movement of the bolt and valve member, wherein second rearward end of the bolt is dislodged from of the valve member placing the second rearward end of the bolt in pneumatic communication with the pneumatic gas supply chamber to enable the gas to flow in a direct path from the pneumatic supply chamber to the projectile in the barrel thereby projecting the projectile through the bore of the barrel.
The present invention provides a method of loading and accelerating a marker projectile with minimum stress placed on the projectile. In addition, it provides a very stable, i.e., low recoil, launching platform with excellent gas efficiency and excellent velocity consistency.
Without wishing to be restrained to one reason or theory for the advantages of the present invention it is believed that in the most preferred embodiment, the bolt of the launcher is made to be very lightweight, constructed from materials such as aluminum, magnesium and machined polymers. In addition, the pneumatic bias is applied gradually. This limits both the speed and momentum with which the bolt contacts the marker projectile, limiting the stress to the projectile 21 and allowing the most fragile projectiles available to be employed.
The same pulse of air propelling the projectile 21 in the forward direction also acts on the valve member 53 in the rearward direction. This action is advantageous because a large force can be applied to quickly close the valve member 53 before excess gas can be consumed. The magnitude of this force is dependent upon the pressure behind the projectile 21, creating a feedback mechanism which aids consistency in the velocity of the projectile 21 upon subsequent actuations. An improved seal will retain additional pressure behind the projectile 21, causing the valve member 53 to experience a larger acceleration, releasing less air. This compensates for imperfect seals between the projectile 21 and the barrel 16, and therefore improves consistency.
Additionally because the force is directly opposite to the acceleration of the projectile 21, a portion of the recoil caused by imparting momentum to the projectile 21 is delayed, reducing the peak of the impulse imparted to the marker by the projectile 21. This action provides the “low recoil” launching platform previously described. In many embodiments of this invention, the parts required to create the actuation method can be manufactured out of very lightweight materials, which decreases the momentum of the internal pieces, and allows for additional recoil reduction.
The closure of the valve member 53 in response to the rise in pressure its own opening creates also has advantages in the area of gas efficiency. Because the closing force is generated by the pressure resulting from the launching of the projectile 21, it can be of very large magnitude, and applied only after the bolt 50 has de-seated from the valve member 53. This means that the initial rise in pressure at the projectile 21 can be controlled directly by the speed of the bolt 50 de-seating, with the valve member 53 in the fully open position and providing little pneumatic restriction. As the valve member 53 closes, the effective flow path widens as the gap between the bolt 50 and valve member 53 grows. This allows for a very high flow rate, even at low driving pressures, while still closing the valve member 53 very quickly.
In a typical embodiment, the valve member 53 should see enough force to be fully closed before the projectile 21 has accelerated out of the barrel 16, such that all air released by the valve member 53 is sufficiently expanded by such time the projectile 21 leaves the barrel 16. In this way, the marker projectile 21 converts potential energy from the propellant gas to projectile kinetic energy with very high efficiency.
The closure of the valve member 53 controls the total amount of gas that flows to the projectile 21, which creates a feedback mechanism between the pressure accelerating the projectile 21 and the pressure closing the valve member 53. Higher pressures on the projectile 21 due to external factors, such as an improved seal between projectile 21 and barrel 16, normally create a higher velocity due to a higher average pressure on the projectile 21.
However, the pneumatic valve assembly 30 counteracts this natural inclination by closing the valve member 53 more quickly in response to the increased pressure, therefore releasing less gas. The end result of this feedback is excellent velocity consistency, due to this compensation for external variability.
Once the valve member 53 has returned to its closed position, meaning the pneumatic supply chamber 68 is isolated from the projectile 21, the bolt 50 is subsequently driven rearward to its resting position allowing another projectile 21 to be loaded for subsequent activation of the pneumatic valve assembly 30.
The accompanying drawings illustrate the construction of a preferred embodiment of this invention. Like elements in the drawings are represented by like numbers. “Rearward” or “backward” shall indicate the left of the page, whereas “forward” or “front” shall indicate the right side of the page.
Referring to
Referring to
Upon activation of the triggering mechanism 18 as illustrated in
Referring now to
The drop in attractive magnet force as the valve member 53 moves forward also ensures that the opening of the valve member 53, which increases the pressure on the bolt 50, does not cause the bolt's internal ridge 80 to fully slip over the compliant stop 82. For the system to function reliably, the forward force acting on the bolt 50 must exceed the maximum holding force of the compliant stop 82, in order to allow the bolt 50 to complete a full forward cycle. The maximum holding force of the compliant stop 82 must exceed the net rearward force on the valve member 53 in order to allow the bolt 50 to pull the valve member 53 forward until the valve member 53 engages with the valve forward stop 86.
Referring now to
Referring now to
Referring now to
Referring to
Referring to
In operation and upon trigger 18 activation, the control board 64 sends an electrical signal to the solenoid-driven pilot valve (not illustrated) provided that the control board 64 determines a firing event is warranted. This shifts the solenoid operated pneumatic valve spool 74. The solenoid operated pneumatic control valve 62 puts the pneumatic sear volume 72 in pneumatic communication with the rear face of the bolt 50, simultaneously reducing rearward force and applying forward force to the bolt 50. The application of force to the pneumatic valve spool 74 may be accomplished by means of an electromechanical actuator or through pneumatic means. Upon deactivation of the motivating force on the pneumatic valve spool 74, the rest position is restored and air flows from the tank source through the regulator 54 to the pneumatic sear volume 72 located in front of the bolt 50. The rear of the bolt 50 is placed in pneumatic communication with atmosphere to allow the bolt 50 to return to the rearward position, allowing the breech 60 to receive a new projectile 21.
The new configuration of the solenoid operated pneumatic control valve 62 puts the pneumatic sear volume 72 in pneumatic communication with the rear face 76 of the bolt 50, simultaneously reducing rearward force and applying forward force to the bolt 50. The communication between the pneumatic supply chamber 68 and the pneumatic sear volume 72 is eliminated. The ratio between the forward facing area of the bolt sail 70 and the rearward facing area of the bolt sail 70 defines the ratio of pressure at which the bolt 50 begins to move forward. The bolt 50 will move forward only as quickly as the solenoid operated pneumatic control valve 62 can flow gas to maintain the requisite pressure ratio.
In a preferred arrangement, the bolt 50 is held in the rearward position by pneumatic pressure. The weight of bolt 50 is minimal through use of lightweight materials such as aluminum, magnesium, or machined polymer. When the trigger 18 switch is activated, the pressure is routed to the rearward end 50b of the bolt 50, simultaneously decreasing the rearward holding force acting on the bolt 50 and increasing the forward force on the bolt 50, driving the bolt 50 forward. The valve member 53 is actuated by a compliant stop 82 between the bolt 50 and valve member 53 that allows the force of the bolt 50 to be transmitted to the valve member 53. The weight of valve member 53 may be adjusted by the use of materials and the change in total valve member 53 volume, as the valve member 53 mass will affect how the momentum imparted backwards to cancel the momentum of the projectile 21. In the most preferred embodiment the valve member 53 is stainless steel. The bolt 50 seals the breech 60 only after the valve member 53 de-seats from the valve body 57. The valve member 53 may travel forward a small distance without de-seating, in order to prevent misfires caused by the bolt 50 becoming jammed on the projectile 21. The valve member 53 de-seats, exposing a path from the pneumatic supply chamber 68 to the rear of the bolt 50, increasing the pressure behind the bolt 50 to a maximum of the pneumatic supply chamber 68 pressure. Upon reaching the full forward travel of the valve member 53, the bolt 50 force is sufficient to cause the bolt 50 to pass over the compliant stop 82 and open a flow path to the projectile 21 by de-seating from the valve member 53. Upon closure of the valve member 53, the bolt 50 is subsequently driven rearward by controlled pneumatic pressure.
In the preferred embodiment of the present invention, the bolt 50 and valve member 53, as well as the launcher 10, can all be machined from aluminum. The valve forward stop 86 can be machined from polyoxymethylene or a similar polymer.
Other embodiments of bolt 50 or valve member 53 actuation are possible. For example, the bolt 50 may be exposed to a constant forward force from a slight imbalance of the valve member 53, and be actuated only by reducing a rearward holding force applied to the bolt 50. Another alternative embodiment would utilize a simple compression spring to reset the bolt 50, and rely only on the addition of pressure to the rear of the bolt 50 to drive the bolt 50 and valve member 53 forward. Another embodiment would initially apply a force to the valve member 53, driving both the valve member 53 and bolt 50 forward, until the pneumatic supply chamber 68 has been put in communication with the rear of the bolt 50. Another embodiment would utilize a constant forward force, either on the bolt 50 or on the valve member 53 as previously described, but utilize a sear plate to release the forward force to initiate the marker launching cycle.
Acting in the manner described has multiple benefits. These benefits include cancellation of momentum imparted to the projectile 21 with momentum simultaneously imparted to the valve member 53, and very low gas consumption rates enabled by the use of high flow valves with very fast opening and closing times. In this case, the valve member 53 opening speed is wholly determined by the speed of actuation of the bolt 50, which is controlled by flow out of the pneumatic sear volume 72. The valve member 53 closing speed is determined by the pressure pulse acting on the projectile 21 and the mass of the valve member 53. This method of actuation has the additional advantage of a feedback mechanism that closes the valve more quickly as more force is applied to the projectile 21 via the same launching force acting in an opposite direction on the valve member 53. This feedback mechanism reduces the influence of external perturbing forces on the velocity of the projectile 21 leaving the barrel 16. Launching assemblies with low deviations from a desired velocity are desirable, as the trajectory of consistently launched projectiles is more predictable and more energy can be imparted to a projectile without risk of exceeding predefined velocity limits on a given shot. With the projectile 21 having already been fired, the electronic control board 64 may arbitrarily end the firing cycle. This allows for the use of manually operated pilot switches, giving the operator direct control over the position of the bolt, a desirable quality in the relevant market of the invention.
All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise.
Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
All patents, patent publications, and peer-reviewed publications (i.e., “references”) cited herein are expressly incorporated by reference in their entirety to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.
The devices, methods, compounds and compositions of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations described herein, as well as any additional or optional steps, ingredients, components, or limitations described herein or otherwise useful in the art.
While this invention may be embodied in many forms, what is described in detail herein is a specific preferred embodiment of the invention. The present disclosure is an exemplification of the principles of the invention is not intended to limit the invention to the particular embodiments illustrated. It is to be understood that this invention is not limited to the particular examples, process steps, and materials disclosed herein as such process steps and materials may vary somewhat. It is also understood that the terminology used herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited to only the appended claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5634456 | Perrone | Jun 1997 | A |
7509953 | Wood | Mar 2009 | B2 |
7779826 | Lian | Aug 2010 | B2 |
7793644 | Lai | Sep 2010 | B2 |
7861703 | Liao | Jan 2011 | B2 |
7870852 | Halmone | Jan 2011 | B2 |
7931018 | Lai | Apr 2011 | B1 |
8074632 | Dobbins | Dec 2011 | B2 |
8104463 | Wood | Jan 2012 | B2 |
8109260 | Maeda | Feb 2012 | B2 |
8261728 | Tseng | Sep 2012 | B1 |
8286622 | Halmone | Oct 2012 | B2 |
8413644 | Masse | Apr 2013 | B2 |
8485172 | Tseng | Jul 2013 | B2 |
20070028909 | Wood | Feb 2007 | A1 |
20070151549 | Wood | Jul 2007 | A1 |
20070175465 | Quinn | Aug 2007 | A1 |
20090101129 | Wood et al. | Apr 2009 | A1 |
20110088675 | Wood | Apr 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
62119266 | Feb 2015 | US |