The invention relates to a pneumatic manifold for controlling a fluid level in an arterial and/or venous drip chamber of a dialysis system. The pneumatic manifold includes pneumatic valves fluidly connected to conduits and one or more pumps. Selectively activating the pneumatic valves can result in pressure changes for raising or lowering a fluid level in the arterial and/or venous drip chambers.
Venous and arterial drip chambers are sometimes used by known systems and methods to separate entrained air bubbles from blood before blood enters a dialyzer or is returned to a patient. The effective removal of air bubbles usually requires specific fluid levels in the drip chambers. However, known systems oftentimes fail to provide for control of fluid levels. Moreover, a required fluid level can depend on a flow rate of the blood, which can be changed during a dialysis session, and may not be monitored or controlled by known systems and methods. Changes in pressure in an extracorporeal circuit can also cause fluid levels in the drip chambers to raise or lower wherein the fluid levels in the drip chambers must be actively raised or lowered in response to changes in the blood flow rate as well as changes in the fluid pressure in the extracorporeal circuit. However, known systems and methods do not 1) actively control fluid levels or 2) effectively control such fluid levels.
Hence, there is a need for systems and related methods that can effectively raise or lower the fluid levels in each of the drip chambers. To increase manufacturability and reduce costs, there is a further need for the systems and methods to use a single manifold containing valves and a pump capable of controlling the fluid level in both the arterial and venous drip chamber, rather than one or more separate sets of tubing and valves.
The first aspect of the invention relates to a pneumatic manifold. In any embodiment, the pneumatic manifold can comprise an internal conduit; a first fluid line fluidly connected to the internal conduit; the first fluid line fluidly connectable to a venous drip chamber in an extracorporeal circuit of a dialysis system; a second fluid line fluidly connected to the internal conduit; the second fluid line fluidly connectable to an arterial drip chamber in an extracorporeal circuit of a dialysis system; a venous valve fluidly connecting the first fluid line to the internal conduit; an arterial valve fluidly connecting the second fluid line to the internal conduit; a negative valve fluidly connecting the internal conduit to an outlet; a positive valve fluidly connecting the internal conduit to an inlet; the inlet and outlet fluidly connectable by a third fluid line containing a pump; and a controller selectively activating or deactivating the venous valve, arterial valve, positive valve, and negative valve; the controller controlling a fluid level in the venous drip chamber and arterial drip chamber by activating or deactivating the valves.
In any embodiment, the pneumatic manifold can comprise a line clamp valve; the line clamp valve fluidly connecting the internal conduit and a second outlet; the second outlet fluidly connectable to a line clamp in the extracorporeal circuit.
In any embodiment, the pneumatic manifold can comprise a vent fluidly connected to the positive valve.
In any embodiment, the pneumatic manifold can comprise a vent fluidly connected to the line clamp valve.
In any embodiment, the pneumatic manifold can comprise a line clamp check valve positioned between the positive valve and the line clamp valve; the line clamp check valve allowing fluid to move only in a direction from the positive valve to the line clamp valve.
In any embodiment, the pneumatic manifold can comprise a first flow restrictor positioned between the venous valve and the first fluid line; and a second flow restrictor positioned between the arterial valve and the second fluid line.
In any embodiment, the pneumatic manifold can comprise a venous pressure sensor positioned between the venous valve and the first fluid line; and an arterial pressure sensor positioned between the arterial valve and the second fluid line.
In any embodiment, the pneumatic manifold can comprise a pressure sensor positioned in the internal conduit.
In any embodiment, the pneumatic manifold can comprise a line clamp filter; the line clamp filter fluidly connected to the negative valve and a second inlet of the pneumatic manifold; wherein the internal conduit is fluidly connected to the outlet when the negative valve is activated and fluidly connected to the line clamp filter when the negative valve is deactivated.
In any embodiment, the pneumatic manifold can comprise a vent fluidly connected to the line clamp valve; wherein the internal conduit is fluidly connected to the second outlet when the line clamp valve is activated and fluidly connected to the vent when the line clamp valve is deactivated.
The features disclosed as being part of the first aspect of the invention can be in the first aspect of the invention, either alone or in combination.
The second aspect of the invention relates to a method of controlling a fluid level in an arterial drip chamber and/or venous drip chamber. In any embodiment, the method can comprise selectively activating or deactivating one or more valves in the pneumatic manifold of the first aspect of the invention.
In any embodiment, the step of controlling the fluid level in the arterial drip chamber can comprise the step of raising the fluid level in the arterial drip chamber by selectively activating the negative valve and the arterial valve.
In any embodiment, the step of controlling the fluid level in the arterial drip chamber can comprise the step of lowering the fluid level in the arterial drip chamber by selectively activating the positive valve and the arterial valve.
In any embodiment, the step of controlling the fluid level in the venous drip chamber can comprise the step of raising the fluid level in the venous drip chamber by selectively activating the negative valve and the venous valve.
In any embodiment, the step of controlling the fluid level in the venous drip chamber can comprise the step of lowering the fluid level in the venous drip chamber by selectively activating the positive valve and the venous valve.
In any embodiment, the method can comprise the step of stopping blood flow in a venous line of the extracorporeal circuit by selectively activating the positive valve and a line clamp valve in the pneumatic manifold; the line clamp valve fluidly connecting the internal conduit and a second outlet; the second outlet fluidly connected to a venous line clamp.
In any embodiment, the step of stopping blood flow in the venous line of the extracorporeal circuit can be performed in response to air detected in the venous line.
In any embodiment, the step of controlling the fluid level in the venous drip chamber can comprise first opening the venous line clamp and then activating the venous valve and either the positive valve or negative valve.
In any embodiment, the step of controlling the fluid level in the arterial drip chamber can comprise first opening the venous line clamp and then activating the arterial valve and either the positive valve or negative valve.
In any embodiment, the controller can be programmed to maintain a set fluid level in the arterial drip chamber and/or venous drip chamber by selectively activating the one or more valves.
In any embodiment, the method can comprise the steps of monitoring a pressure in the pneumatic manifold in the first fluid line, the second fluid line, or both; and generating an alarm indicating an occlusion if a pressure in the first fluid line, the second fluid line, or both does not show a pulsatile response.
The features disclosed as being part of the second aspect of the invention can be in the second aspect of the invention, either alone or in combination.
Unless defined otherwise, all technical and scientific terms used generally have the same meaning as commonly understood by one of ordinary skill in the art.
The articles “a” and “an” are used to refer to one or to over one (i.e., to at least one) of the grammatical object of the article. For example, “an element” means one element or over one element.
“Activating” or “activated” can refer to connecting or providing power to flow or be electrically conveyed to any component. One non-limiting example can be a valve that can require electrical power to stay in either a closed or an open state.
The terms “allowing fluid to move only in a direction” or to “allow fluid to move only in a direction” can refer to preventing fluid movement through a fluid line or conduit in a first direction while permitting fluid movement through the fluid line or conduit in a second direction.
The terms “air detected” or to “detect air” can refer to making a determination that air, an air bubble, or combinations thereof being present in a liquid or fluid.
An “arterial drip chamber” can refer to a device that separates and captures air mixed with blood. In one non-limiting example, the arterial drip chamber can be placed in an arterial line of an extracorporeal flow path.
An “arterial pressure sensor” can be a pressure sensor positioned to measure the pressure of gas in a fluid line. The pressure to be measured can be between an arterial valve and an arterial drip chamber.
The term “arterial valve” can refer to a pneumatic valve controlling air movement to and from an arterial drip chamber.
The term “comprising” includes, but is not limited to, whatever follows the word “comprising.” Use of the term indicates the listed elements are required or mandatory but that other elements are optional and may be present.
The term “consisting of” includes and is limited to whatever follows the phrase “consisting of” The phrase indicates the limited elements are required or mandatory and that no other elements may be present.
The term “consisting essentially of” includes whatever follows the term “consisting essentially of” and additional elements, structures, acts or features that do not affect the basic operation of the apparatus, structure or method described.
A “controller” can refer to a device which monitors and affects the operational conditions of a given system. The operational conditions are typically referred to as output variables of the system wherein the output variables can be affected by adjusting certain input variables.
The terms “control,” “controlling,” or “controls” can refer to the ability of one component to direct the actions of a second component.
“Deactivating” or “deactivated” can refer to disconnecting or preventing power from flowing or being electrically conveyed to any component. One non-limiting example can be a valve that can require electrical power to stay in either a closed or an open state.
The term “dialysis system” can refer to a set of components configured to carry out dialysis therapy of any type including peritoneal dialysis, hemodialysis, hemofiltration, hemodiafiltration, or ultrafiltration.
An “extracorporeal circuit” can refer to a path through which blood or fluid will travel during dialysis.
A “flow restrictor” can refer to an element or grouping of elements that resist the flow of fluid through the element or grouping of elements such that the fluid pressure within a flow stream that passes through the element or grouping of elements is greater upstream of the element or grouping of elements than downstream of the element or grouping of elements. A flow restrictor may be an active or passive device. Non-limiting examples of passive flow restriction devices are orifices, venturis, spray nozzles, a narrowing, or a simple length of tubing with flow cross section that produces the desired pressure drop when the fluid flows through the flow restrictor, such tubing being essentially rigid or compliant. Non-limiting examples of active flow restrictors are pinch valves, gate valves and variable orifice valves.
The term “fluid level” can refer to a height of a fluid within a component. For example, the component can be an arterial or venous drip chamber.
A “fluid line” can refer to a tubing or conduit through which a fluid or fluid containing gas can pass. The fluid line can also contain air during different modes of operation such as cleaning or purging of a line.
The term “fluidly connectable,” “fluidly connect,” “for fluid connection,” and the like, can refer to the ability of providing for the passage of fluid, gas, or a combination thereof, from one point to another point. The two points can be within or between any one or more of compartments, modules, systems, components, and rechargers, all of any type. The connection can optionally be disconnected and then reconnected. The term “fluidly connected” refers to a state of fluid connection, which can be distinguished from the described term of “fluid connectable,” which refers to the ability of providing for the passage of fluid, gas, or a combination thereof, and not the state of fluid connection, in fact.
The term “generating an alarm” or to “generate an alarm” can refer to generating or signaling to a user a state or condition of a system.
The term “inlet” can refer to a portion of a component through which air can be drawn into the component through a fluid line. In one non-limiting example, the component can be a manifold.
An “internal conduit” can refer to a fluid pathway partially or entirely inside a manifold.
A “line clamp” can refer to a component that can obstruct or otherwise impede fluid flow through a fluid line.
A “line clamp check valve” can refer to a valve that only allows fluid movement through a fluid line in a single direction.
A “line clamp filter” can refer to an air filter that removes particulate matter of any size or shape from air, fluid, or combinations thereof.
A “line clamp valve” can refer to a valve that controls air movement to and from a line clamp. One non-limiting type of valve can be a pneumatic valve.
The term “lowering the fluid level” or to “lower the fluid level” can refer to a decrease in a height or level of a fluid in a chamber or component of any type.
The term “maintain a set fluid level” means to keep a fluid level in a chamber or component at a specific height, or within a specific height range.
The term “monitoring” or to “monitor” refers to determining a state of a system or variable.
The term “negative valve” can refer to a valve in a component that allows a pump to cause a pressure decrease in an internal conduit of a component when activated. In one non-limiting example, the component can be a pneumatic manifold.
An “occlusion” can be a blockage, either partial or full, of a component, conduit, or flow passage of any type.
The terms “opening” or to “open” a line clamp can refer to causing a line clamp to allow fluid or air movement through a fluid line.
The term “outlet” refers to a portion of a component through which fluid or air can be pulled out of the component in a fluid line, conduit, or fluid passageway of any type. In one non-limiting embodiment, the component can be a manifold.
The term “perform” refers to one or more actions that a component, processer, algorithm, or method carries out. The actions can be set by instructions implemented by a component, processer, algorithm, or method of any type.
A “pneumatic manifold” can refer to a component containing one or more fluid pathways that uses air pressure to control one or more components. The pneumatic manifold can be used as part of a dialysis system.
The term “positive valve” can refer to a valve that allows a component to cause an increase in pressure in another component. In one non-limiting example, a positive valve can refer to a valve that allows a pump to increase pressure in an internal conduit of a manifold.
The term “pressure” refers to a force exerted by a gas on the walls of a component, container, or conduit.
The term “pressure sensor” can refer to a device or any suitable component for measuring the pressure of a gas or fluid in a vessel, container, or fluid line.
The term “programmed,” when referring to a controller, can mean a series of instructions that cause a controller to perform certain steps.
The term “pulsatile response” refers to a change in pressure that rhythmically increases and decreases.
The term “pump” can refers to any device that causes the movement of fluids, gases, or combinations thereof, by applying force of any type including suction or pressure.
The terms “raising the fluid level” or to “raise the fluid level” can refer to increasing a height of a fluid in a chamber or component of any type.
The term “selectively activating or deactivating” can refer to providing power, e.g., electrical power, to one or more components. The selective activating or deactivating can lead to a set of components in an activated state and another set of components in a deactivated state to result in a discriminate activated configuration. In one non-limiting example, the components can be valves activated into a closed or open state. Alternatively, the valves can be deactivated into a closed or open state. In one non-limiting example of a discriminate activated configuration based on “selectively activating or deactivating” one or more valve, a fluid, gas, or combinations thereof, can be directed to a specific flow path based on the activated and deactivated state of the valves.
The term “stopping blood flow” or to “stop blood flow” can refer to preventing blood from moving through a fluid flow path.
A “venous drip chamber” can refer to a device that separates and captures air mixed with blood. In one non-limiting example, the venous drip chamber can be placed in a venous line of an extracorporeal flow path.
A “venous pressure sensor” can refer to a pressure sensor positioned to measure the pressure of gas in a fluid line. In one non-limiting example, the pressure of the gas to be measured can be between a venous valve and a venous drip chamber.
The term “venous valve” refers to a pneumatic valve controlling air movement to and from a venous drip chamber.
A “vent” can be an opening in a component through which air can escape the component. In one non-limiting embodiment, the vent can be in fluid connection with a fluid line in a manifold.
Pneumatic Manifold
The pneumatic manifold 101 can contain components for controlling the fluid level in both the arterial drip chamber 123 and venous drip chamber 125. The pneumatic manifold 101 contains several valves for controlling the fluid levels in the arterial drip chamber 123 and venous drip chamber 125, including a negative valve 106, a positive valve 105, a venous valve 104, and an arterial valve 103. The valves can be electrically powered such that an open or closed state can either be an activated or deactivated state. For example, activating a valve can result in a closed state whereupon deactivating the valve returns into an open state. Conversely, deactivating a valve can result in closed state whereupon activating, the valve is an open state. In certain embodiments, the valves can be activated by applying an electrical current to a solenoid valve. However, any type of valve can be used, and the valve can be activated by any means known in the art.
An internal conduit 102 connects the valves. Optionally, the pneumatic manifold 101 can contain a line clamp valve 107 for controlling a venous line clamp 137, which can stop blood flow through the venous line 126. Stopping blood flow through the venous line 126 may be performed in response to air detected in the venous line 126, or for any other reason necessitating stopping the blood flow. Lowering the fluid level in the arterial drip chamber 123 and venous drip chamber 125 can require an increase in pressure, which may introduce air into the extracorporeal circuit. If air is detected in the extracorporeal circuit, a controller (not shown) can automatically close the venous line clamp 137, stopping blood flow through the extracorporeal circuit. A pneumatic pump 108 provides the force necessary for raising and lowering the fluid levels in the arterial drip chamber 123 and venous drip chamber 125. The fluid levels in the arterial drip chamber 123 and venous drip chamber 125 depends on a pressure within each drip chamber. By selectively activating and deactivating the valves in the pneumatic manifold 101 while operating pneumatic pump 108, the pressure in the arterial drip chamber 123 and venous drip chamber 125 can be selectively controlled and/or modulated by raising or lowering the fluid level.
The pneumatic pump 108 can be positioned either inside or outside of the pneumatic manifold 101. If positioned outside of the pneumatic manifold 101, the pneumatic pump 108 can be positioned in a fluid line fluidly connected to an outlet 109 and an inlet 110 of the pneumatic manifold 101. The arterial valve 103 is fluidly connected to the internal conduit 102 and a fluid line 120, which fluidly connects to the arterial drip chamber 123. When activated, the arterial valve 103 creates a fluid pathway between the arterial drip chamber 123 and the internal conduit 102. Similarly, the venous valve 104 is fluidly connected to the internal conduit 102 and a fluid line 121, which fluidly connects to the venous drip chamber 125. When activated, the venous valve 104 creates a fluid pathway between the venous drip chamber 125 and the internal conduit 102. Depending on which of the positive valve 105 and negative valve 106 are activated, the pneumatic pump 108 will either pump air into the internal conduit 102, raising the pressure, or pump air out of the internal conduit 102, lowering the pressure. A pressure sensor 112 in the internal conduit 102 can determine the pressure. When activated, the arterial valve 103 or venous valve 104 form a pathway from the internal conduit 102 to the respective drip chambers, causing the fluid level to raise or lower depending on the pressure in the internal conduit 102. An arterial pressure sensor 111 and venous pressure sensor 114 can determine the pressure in the fluid lines 120 and 121, respectively. A flow restrictor 113 downstream of the arterial valve 103 and a flow restrictor 115 downstream of the venous valve 104 can prevent the pressure from changing too quickly. A vent 116 fluidly connected to the positive valve 105 can allow air to escape the pneumatic manifold 101 when the positive valve 105 is deactivated. A line clamp filter 117 filters air pulled into the pneumatic manifold 101 when the negative valve 106 is deactivated. A line clamp valve 107, fluidly connected to a venous line clamp 137 through fluid line 122 can also be included in the pneumatic manifold 101. Low pressure in the fluid line 122 will cause the venous line clamp 137 to close, blocking fluid flow through the venous line 126 when the line clamp valve 107 is activated. When deactivated, line clamp valve 107 forms a fluid pathway with vent 118, allowing a decrease in pressure in the fluid line 122, closing the venous line clamp 137. A line clamp check valve 119, which can be positioned either inside or outside of the pneumatic manifold 101, allows fluid to move only in a direction through the line clamp valve 107 from the positive valve 105 to the line clamp valve 107, while prevent fluid movement in the opposite direction.
In
In
In
In
In
In order to adjust the level of either drip chamber, a fluid reservoir is needed to either supply the fluid when raising the drip chamber fluid level or to accept the fluid when lowering a drip chamber fluid level. If the blood pump is not operating when a post-blood pump arterial drip chamber 234 or venous drip chamber 226 fluid level is adjusted, the patient can serve as the fluid reservoir. As such, the venous line clamp should be open to allow the patient to serve as a fluid source for raising the fluid level or to allow the patient to accept fluid when lowering the drip chamber fluid level. In certain embodiments, the ability to adjust the fluid level may be disabled when no fluid reservoir is available because operating the level adjust with no fluid reservoir may result in drip chamber pressure changes without any fluid level changes, triggering a pressure alarm.
Raising or lowering the fluid level in the venous drip chamber 226 and arterial drip chamber 234 can result in changes in pressure in the extracorporeal circuit. The changes in pressure could cause a transmembrane pressure across the dialyzer to increase beyond a safe limit. Pressure sensors can measure the transmembrane pressure and prevent changes to drip chamber fluid levels if the transmembrane pressure is within a set range of the maximum allowable transmembrane pressure for the dialyzer.
The valves of the pneumatic manifold 201 can be operated by a programmable controller (not shown). The controller can automatically adjust the fluid levels in the venous drip chamber 226 and arterial drip chamber 234 as necessary by activating and deactivating the valves as described to maintain a desired fluid level during treatment. The controller can be programmed to maintain a set fluid level in the venous drip chamber 226 and arterial drip chamber 234 and to prevent unwanted fluid level changes.
Connectors 210-211 of line clamp valve 202, connectors 218-219 of negative valve 203, connectors 223-224 of positive valve 204, connectors 232-233 of venous valve 205, and connectors 240-241 of arterial valve 206 are unused portions of the valves, and in certain embodiments can be eliminated.
The pump 312 can enabled or disabled by either of the control processor 301 and protective processor 302, allowing the pump to be started or shut down as needed during therapy or if required for safety. However, both the control processor 301 and protective processor 302 must send an enable signal to the pump 312 for the pump 312 to run. A field effect transistor 305 can be included to supply power to the pump 312. Connector board 318 can be included for communication between the pump 312, control processor 301, and protective processor 302. A light emitting diode 326 can be included to indicate the application of power to the pump 312.
Pressure sensors, illustrated as pressure sensor set 314 can include an arterial pressure sensor, a venous pressure sensor, and an internal conduit pressure sensor. The pressure sensors are in communication with the control processor 301 and protective processor 302 through differential amplifier 304. A multiplexer 306 can be included for communication with the pressure sensors of pressure sensor set 314.
Level sensors 313 can monitor the fluid level in the arterial drip chamber and venous drip chamber. The level sensors 313 are in communication with both the control processor 301 and protective processor 302 to control the fluid level in each drip chamber. Connector board 319 can be included for communication between the level sensors 313, control processor 301, and protective processor 302. The venous line clamp, and an arterial line clamp can be monitored by a venous line clamp sensor 315 and an arterial line clamp sensor 316. The line clamp sensors can monitor the state of the line clamps to ensure the line clamps are functioning properly.
The arrows shown in
During pre-treatment, the system can verify the functionality and operational status of the venous line clamp. When the operator initiates the start of treatment preparation, before installation of the tubing set, the system commands the venous line clamp to the open state in position 401, and verifies that the venous line clamp sensor detects the venous line clamp to be in the open range. The system then commands the venous line clamp to the closed state in position 406, and verifies that the venous line clamp sensor detects the venous line clamp to be in the closed range. The venous line clamp sensor can be monitored to ensure the venous line clamp closes within a pre-determined time window. If any part of venous line clamp test fails, the system can generate an alarm. The operator may be allowed to reset the alarm, and retry the test.
After a first subset of tests are successfully completed, the venous line clamp is opened and the operator is prompted to install the blood disposables, which includes the blood tubing set. Once the user confirms that the disposables are installed, the system commands the venous line clamp to the closed state, and verifies that the venous line clamp sensor detects the venous line clamp to be in the closed on line range in position 404. The venous line clamp sensor will be monitored to ensure the venous line clamp closes on the tube within a pre-determined time window. Finally the system tests that the clamp can be commanded to the open state in position 401, and verifies that the venous line clamp sensor detects the clamp to be in the open range. If any part of the venous line clamp test fails, the system can generate an alarm. The operator may be allowed to reset the alarm, and retry the test.
The monitoring of the venous line clamp can be initiated in parallel with the activation of the remaining blood set monitors (i.e., blood pump, blood line pressures, and heparin pump) as illustrated in
Too frequent inflations of the venous line clamp from the recharge position 402 to the open position 401 can be indicative of an air leak in the venous line clamp apparatus. If an air leak is detected before the system is in a hemodialysis patient connection state, a blood side malfunction alarm can be raised and the system can disallow further processing. If the leak is detected after the system enters hemodialysis patient connection state, the treatment can be allowed to continue. The operator may choose to reset an instance of the alarm, or may chose for the machine to pause the audio component of the alarm until the end of the treatment.
During the venous line clamp tests, both the control processor and protective processor check the position of the venous line clamp, as reported by the venous line clamp sensor. If the venous line clamp sensor does not detect the correct position, or the position is not reached within the expected time, either the control or protective processors can generate an alarm. The control processor can responsible for reporting the venous line clamp test results to a user interface, which can be responsible for logging the T1 test results. The control processor can be responsible for monitoring for alarm conditions and reporting the alarm conditions to the user interface. The user interface is responsible for reporting the alarm conditions to the user and allowing the user to reset alarms if appropriate.
In test 506, the blood pump is shut down to ensure proper control of the blood pump. If a heparin pump is being used, the heparin pump is fully opened in test 507. In test 508, optical sensors in the arterial and venous lines are read to ensure no tubing is installed.
The series of steps illustrated as 510 can be carried out to activate the blood side of the dialysis system for installation of consumables. In step 511, the venous line clamp is opened. In step 512 the pre-treatment blood set monitors are activated. In step 513, the blood pump is enabled in a reverse direction. In step 514, the drip chamber level adjust is activated. In step 515, the heparin pump is activated, if a heparin pump is being used. After the steps in 510, the user can be notified that the system is ready to install blood disposable components in step 516. In step 517 the system can verify the pump door as a background task.
The series of steps illustrated as 518 can be carried out to install disposables and perform pre-prime tasks. In step 519, the operator can configure the extracorporeal circuit, install the blood tubing, and as applicable, install the dialyzer, saline, saline administration set, waste bag, and heparin. The venous line is primed in step 520, and the venous line connected to the dialyzer in step 521. The venous drip chamber level is adjusted in step 522. The arterial line is connected to the dialyzer in step 523. If heparin is being used, the user can initialize the heparin pump in step 524. After the blood installation process is completed, the user can be asked to confirm. The user confirms the blood consumables are installed in step 525 and obtains the extracorporeal circuit configuration in step 526. In step 526, the user is prompted to confirm or enter the dialyzer and blood set configurations. The user can be asked whether the dialyzer is being used for the first time, or whether the dialyzer is being reused with peracetic acid or formalin. The user can be asked whether the blood set is 6 or 8 mm, or any other size. The user can be asked whether the arterial drip chamber is upstream or downstream of the blood pump. The user can also be asked whether the priming method is saline or transmembrane. Steps 525 and 526 can be done in parallel or sequentially.
Test 527 includes any open tasks, including verification that the pump door is closed, that the venous line clamp is closed on tube, reading the optical sensors to confirm tubing is installed, and activation of monitoring the optical sensors. Each step in test 527 can have a retry or stop treatment option. In step 528, the disposable preparation can continue.
After preparing the disposables in step 528, the extracorporeal circuit can be flushed and primed in step 529, shown as series 530. After flushing the extracorporeal circuit, an additional test to verify the response of the arterial pressure sensor and venous pressure sensor can be conducted as part of series 530. The blood pump can be activated in reverse, which will generate changes in the static blood line pressures as measured by the arterial and venous pressure sensors.
An example of the response with drip chambers upstream of the blood pump is shown in
As illustrated in
One skilled in the art will understand that various combinations and/or modifications and variations can be made in the described systems and methods depending upon the specific needs for operation. Moreover features illustrated or described as being part of an aspect of the invention may be used in the aspect of the invention, either alone or in combination.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/595,859 filed Dec. 7, 2017, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3091098 | Bowers | May 1963 | A |
3370710 | Bluemle | Feb 1968 | A |
3506126 | Lindsay, Jr. | Apr 1970 | A |
3608729 | Haselden | Sep 1971 | A |
3669878 | Marantz | Jun 1972 | A |
3669880 | Marantz | Jun 1972 | A |
3692648 | Matloff | Sep 1972 | A |
3776819 | Williams | Dec 1973 | A |
3809241 | Alvine | May 1974 | A |
3850835 | Marantz | Nov 1974 | A |
3884808 | Scott | May 1975 | A |
3902490 | Jacobsen | Sep 1975 | A |
3939069 | Granger | Feb 1976 | A |
3989622 | Marantz | Nov 1976 | A |
4060485 | Eaton | Nov 1977 | A |
4094775 | Mueller | Jun 1978 | A |
4136708 | Cosentino | Jan 1979 | A |
4142845 | Lepp | Mar 1979 | A |
4201555 | Tkach | May 1980 | A |
4209392 | Wallace | Jun 1980 | A |
4269708 | Bonomini | May 1981 | A |
4316725 | Hovind | Feb 1982 | A |
4371385 | Johnson | Feb 1983 | A |
4374382 | Markowitz | Feb 1983 | A |
4376707 | Lehmann | Mar 1983 | A |
4381999 | Boucher | May 1983 | A |
4430098 | Bowman | Feb 1984 | A |
4460555 | Thompson | Jul 1984 | A |
4490135 | Troutner | Dec 1984 | A |
4556063 | Thompson | Dec 1985 | A |
4562751 | Nason | Jan 1986 | A |
4581141 | Ash | Apr 1986 | A |
4612122 | Ambrus | Sep 1986 | A |
4650587 | Polak | Mar 1987 | A |
4678408 | Mason | Jul 1987 | A |
4685903 | Cable | Aug 1987 | A |
4695385 | Boag | Sep 1987 | A |
4715398 | Shouldice | Dec 1987 | A |
4747822 | Peabody | May 1988 | A |
4750494 | King | Jun 1988 | A |
4816162 | Rosskopf et al. | Mar 1989 | A |
4826663 | Alberti | May 1989 | A |
4828693 | Lindsay | May 1989 | A |
4885001 | Leppert | Dec 1989 | A |
4900308 | Verkaart | Feb 1990 | A |
4915713 | Buzza | Apr 1990 | A |
4950230 | Kendell | Aug 1990 | A |
4977888 | Rietter | Dec 1990 | A |
5015388 | Pusineri | May 1991 | A |
5032265 | Jha | Jul 1991 | A |
5080653 | Voss | Jan 1992 | A |
5092886 | Dobos-Hardy | Mar 1992 | A |
5097122 | Coiman | Mar 1992 | A |
5114580 | Ahmad | May 1992 | A |
5127404 | Wyborny | Jul 1992 | A |
5141493 | Jacobsen | Aug 1992 | A |
5180403 | Kogure | Jan 1993 | A |
5192132 | Pelensky | Mar 1993 | A |
5230702 | Lindsay | Jul 1993 | A |
5284470 | Beltz | Feb 1994 | A |
5302288 | Meidl | Apr 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5308315 | Khuri | May 1994 | A |
5318750 | Lascombes | Jun 1994 | A |
5399157 | Goux | Mar 1995 | A |
5419347 | Carruth | May 1995 | A |
5441049 | Masano | Aug 1995 | A |
5442969 | Troutner | Aug 1995 | A |
5468388 | Goddard | Nov 1995 | A |
5507723 | Keshaviah | Apr 1996 | A |
5591344 | Kenley | Jan 1997 | A |
5643201 | Peabody | Jul 1997 | A |
5662806 | Keshaviah et al. | Sep 1997 | A |
5683432 | Goedeke | Nov 1997 | A |
5685835 | Brugger | Nov 1997 | A |
5685988 | Malchesky | Nov 1997 | A |
5702536 | Carruth | Dec 1997 | A |
5744031 | Bene | Apr 1998 | A |
5762782 | Kenley | Jun 1998 | A |
5849179 | Emerson | Dec 1998 | A |
5858186 | Glass | Jan 1999 | A |
5863421 | Peter | Jan 1999 | A |
5938938 | Bosetto | Aug 1999 | A |
5944684 | Roberts | Aug 1999 | A |
5948251 | Brugger | Sep 1999 | A |
6048732 | Anslyn | Apr 2000 | A |
6052622 | Holmstrom | Apr 2000 | A |
6058331 | King | May 2000 | A |
6114176 | Edgson et al. | Sep 2000 | A |
6126831 | Goldau | Oct 2000 | A |
6171480 | Lee | Jan 2001 | B1 |
6230059 | Duffin | May 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6251167 | Berson | Jun 2001 | B1 |
6254567 | Treu | Jul 2001 | B1 |
6264680 | Ash | Jul 2001 | B1 |
6315707 | Smith | Nov 2001 | B1 |
6321101 | Holmstrom | Nov 2001 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6363279 | Ben-Haim | Mar 2002 | B1 |
6521184 | Edgson et al. | Feb 2003 | B1 |
6554798 | Mann | Apr 2003 | B1 |
6555986 | Moberg | Apr 2003 | B2 |
6589229 | Connelly | Jul 2003 | B1 |
6593747 | Puskas | Jul 2003 | B2 |
6602399 | Fromherz | Aug 2003 | B1 |
6627164 | Wong | Sep 2003 | B1 |
6666840 | Falkvall et al. | Dec 2003 | B1 |
6676608 | Keren | Jan 2004 | B1 |
6711439 | Bradley | Mar 2004 | B1 |
6719745 | Taylor | Apr 2004 | B1 |
6726647 | Sternby | Apr 2004 | B1 |
6780322 | Bissler | Aug 2004 | B1 |
6814724 | Taylor | Nov 2004 | B2 |
6818196 | Wong | Nov 2004 | B2 |
6824524 | Favre | Nov 2004 | B1 |
6861266 | Sternby | Mar 2005 | B1 |
6878283 | Thompson | Apr 2005 | B2 |
6960179 | Gura | Nov 2005 | B2 |
7023359 | Goetz | Apr 2006 | B2 |
7033498 | Wong | Apr 2006 | B2 |
7074332 | Summerton | Jul 2006 | B2 |
7077819 | Goldau | Jul 2006 | B1 |
7097630 | Gotch | Aug 2006 | B2 |
7101519 | Wong | Sep 2006 | B2 |
7153693 | Tajiri | Dec 2006 | B2 |
7169303 | Sullivan | Jan 2007 | B2 |
7208092 | Micheli | Apr 2007 | B2 |
7241272 | Karoor | Jul 2007 | B2 |
7276042 | Polaschegg | Oct 2007 | B2 |
7279031 | Wright | Oct 2007 | B1 |
7318892 | Connell | Jan 2008 | B2 |
7326576 | Womble et al. | Feb 2008 | B2 |
7435342 | Tsukamoto | Oct 2008 | B2 |
7488447 | Sternby | Feb 2009 | B2 |
7500958 | Asbrink | Mar 2009 | B2 |
7537688 | Tarumi | May 2009 | B2 |
7544300 | Brugger | Jun 2009 | B2 |
7544737 | Poss | Jun 2009 | B2 |
7563240 | Gross | Jul 2009 | B2 |
7566432 | Wong | Jul 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7597806 | Uchi | Oct 2009 | B2 |
7674231 | McCombie | Mar 2010 | B2 |
7704361 | Garde | Apr 2010 | B2 |
7736507 | Wong | Jun 2010 | B2 |
7744553 | Kelly | Jun 2010 | B2 |
7754852 | Burnett | Jul 2010 | B2 |
7756572 | Fard | Jul 2010 | B1 |
7776210 | Rosenbaum | Aug 2010 | B2 |
7785463 | Bissler | Aug 2010 | B2 |
7790103 | Shah | Sep 2010 | B2 |
7794141 | Perry | Sep 2010 | B2 |
7794419 | Paolini | Sep 2010 | B2 |
7850635 | Polaschegg | Dec 2010 | B2 |
7857976 | Bissler | Dec 2010 | B2 |
7867214 | Childers | Jan 2011 | B2 |
7896831 | Sternby | Mar 2011 | B2 |
7922686 | Childers | Apr 2011 | B2 |
7922911 | Micheli | Apr 2011 | B2 |
7947179 | Rosenbaum | May 2011 | B2 |
7955290 | Karoor | Jun 2011 | B2 |
7955291 | Sternby | Jun 2011 | B2 |
7967022 | Grant | Jun 2011 | B2 |
7981082 | Wang | Jul 2011 | B2 |
7988854 | Tsukamoto | Aug 2011 | B2 |
8002726 | Karoor | Aug 2011 | B2 |
8029454 | Kelly | Oct 2011 | B2 |
8034161 | Gura | Oct 2011 | B2 |
8066658 | Karoor | Nov 2011 | B2 |
8070709 | Childers | Dec 2011 | B2 |
8080161 | Ding et al. | Dec 2011 | B2 |
8087303 | Beavis | Jan 2012 | B2 |
8096969 | Roberts | Jan 2012 | B2 |
8105265 | Demers | Jan 2012 | B2 |
8137553 | Fulkerson | Mar 2012 | B2 |
8180574 | Lo | May 2012 | B2 |
8183046 | Lu | May 2012 | B2 |
8187250 | Roberts | May 2012 | B2 |
8197439 | Wang | Jun 2012 | B2 |
8202241 | Karakama | Jun 2012 | B2 |
8246826 | Wilt | Aug 2012 | B2 |
8273049 | Demers | Sep 2012 | B2 |
8292594 | Tracey | Oct 2012 | B2 |
8303532 | Hamada | Nov 2012 | B2 |
8313642 | Yu | Nov 2012 | B2 |
8317492 | Demers | Nov 2012 | B2 |
8357113 | Childers | Jan 2013 | B2 |
8366316 | Kamen | Feb 2013 | B2 |
8366655 | Kamen | Feb 2013 | B2 |
8404491 | Li | Mar 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8409444 | Wong | Apr 2013 | B2 |
8449487 | Hovland | May 2013 | B2 |
8491517 | Karoor | Jul 2013 | B2 |
8496809 | Roger | Jul 2013 | B2 |
8499780 | Wilt | Aug 2013 | B2 |
8500672 | Caleffi | Aug 2013 | B2 |
8500676 | Jansson | Aug 2013 | B2 |
8500994 | Weaver | Aug 2013 | B2 |
8512271 | Moissl | Aug 2013 | B2 |
8518258 | Balschat | Aug 2013 | B2 |
8518260 | Raimann | Aug 2013 | B2 |
8521482 | Akonur | Aug 2013 | B2 |
8535525 | Heyes | Sep 2013 | B2 |
8560510 | Brueggerhoff | Oct 2013 | B2 |
8562822 | Roger | Oct 2013 | B2 |
8580112 | Updyke | Nov 2013 | B2 |
8597227 | Childers | Dec 2013 | B2 |
8696626 | Kirsch | Apr 2014 | B2 |
8777892 | Sandford | Jul 2014 | B2 |
8903492 | Soykan | Dec 2014 | B2 |
8906240 | Crnkovich | Dec 2014 | B2 |
9144640 | Pudil | Sep 2015 | B2 |
9173987 | Meyer | Nov 2015 | B2 |
20020027106 | Smith | Mar 2002 | A1 |
20020042561 | Schulman | Apr 2002 | A1 |
20020045851 | Suzuki | Apr 2002 | A1 |
20020104800 | Collins | Aug 2002 | A1 |
20020112609 | Wong | Aug 2002 | A1 |
20030010717 | Brugger | Jan 2003 | A1 |
20030080059 | Peterson | May 2003 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030105424 | Karoor | Jun 2003 | A1 |
20030105435 | Taylor | Jun 2003 | A1 |
20030114787 | Gura | Jun 2003 | A1 |
20040019312 | Childers | Jan 2004 | A1 |
20040019320 | Childers | Jan 2004 | A1 |
20040068219 | Summerton | Apr 2004 | A1 |
20040082903 | Micheli | Apr 2004 | A1 |
20040099593 | DePaolis | May 2004 | A1 |
20040102732 | Naghavi | May 2004 | A1 |
20040143173 | Reghabi | Jul 2004 | A1 |
20040147900 | Polaschegg | Jul 2004 | A1 |
20040168969 | Sternby | Sep 2004 | A1 |
20040215090 | Erkkila | Oct 2004 | A1 |
20050006296 | Sullivan | Jan 2005 | A1 |
20050065760 | Murtfeldt | Mar 2005 | A1 |
20050101901 | Gura | May 2005 | A1 |
20050113796 | Taylor | May 2005 | A1 |
20050115898 | Sternby | Jun 2005 | A1 |
20050126961 | Bissler | Jun 2005 | A1 |
20050131331 | Kelly | Jun 2005 | A1 |
20050131332 | Kelly | Jun 2005 | A1 |
20050153904 | Fager | Jun 2005 | A1 |
20050126998 | Childers | Jul 2005 | A1 |
20050148923 | Sternby | Jul 2005 | A1 |
20050150832 | Tsukamoto | Jul 2005 | A1 |
20050234381 | Niemetz | Oct 2005 | A1 |
20050274658 | Rosenbaum | Dec 2005 | A1 |
20060025661 | Sweeney | Feb 2006 | A1 |
20060217771 | Soykan | Feb 2006 | A1 |
20060054489 | Denes | Mar 2006 | A1 |
20060076295 | Leonard | Apr 2006 | A1 |
20060157335 | Levine | Jul 2006 | A1 |
20060157413 | Bene | Jul 2006 | A1 |
20060186044 | Nalesso | Aug 2006 | A1 |
20060195064 | Plahey | Aug 2006 | A1 |
20060226079 | Mori | Oct 2006 | A1 |
20060241709 | Soykan | Oct 2006 | A1 |
20060264894 | Moberg | Nov 2006 | A1 |
20070007208 | Brugger | Jan 2007 | A1 |
20070066928 | Lannoy | Mar 2007 | A1 |
20070072285 | Barringer | Mar 2007 | A1 |
20070138011 | Hofmann | Jun 2007 | A1 |
20070175827 | Wariar | Aug 2007 | A1 |
20070179431 | Roberts | Aug 2007 | A1 |
20070213653 | Childers | Sep 2007 | A1 |
20070213665 | Curtin | Sep 2007 | A1 |
20070215545 | Bissler | Sep 2007 | A1 |
20070243113 | DiLeo | Oct 2007 | A1 |
20070255250 | Moberg | Nov 2007 | A1 |
20080006570 | Gura | Jan 2008 | A1 |
20080015493 | Childers et al. | Jan 2008 | A1 |
20080021337 | Li | Jan 2008 | A1 |
20080051696 | Curtin | Feb 2008 | A1 |
20080053905 | Brugger | Mar 2008 | A9 |
20080067132 | Ross | Mar 2008 | A1 |
20080093276 | Roger | Apr 2008 | A1 |
20080154543 | Rajagopal | Jun 2008 | A1 |
20080215247 | Tonelli | Sep 2008 | A1 |
20080217245 | Rambod | Sep 2008 | A1 |
20080230473 | Herbst | Sep 2008 | A1 |
20080253427 | Kamen | Oct 2008 | A1 |
20090012450 | Shah | Jan 2009 | A1 |
20090020471 | Tsukamoto | Jan 2009 | A1 |
20090078636 | Uchi | Mar 2009 | A1 |
20090084199 | Wright | Apr 2009 | A1 |
20090084721 | Yardimci | Apr 2009 | A1 |
20090101549 | Kamen | Apr 2009 | A1 |
20090101552 | Fulkerson | Apr 2009 | A1 |
20090101577 | Fulkerson | Apr 2009 | A1 |
20090105629 | Grant | Apr 2009 | A1 |
20090107335 | Wilt | Apr 2009 | A1 |
20090112151 | Chapman | Apr 2009 | A1 |
20090120864 | Fulkerson | May 2009 | A1 |
20090124963 | Hogard | May 2009 | A1 |
20090127193 | Updyke | May 2009 | A1 |
20090131858 | Fissell | May 2009 | A1 |
20090159527 | Mickols | Jun 2009 | A1 |
20090171261 | Sternby | Jul 2009 | A1 |
20090173682 | Robinson | Jul 2009 | A1 |
20090182263 | Burbank | Jul 2009 | A1 |
20090187138 | Lundtveit | Jul 2009 | A1 |
20090216045 | Singh | Aug 2009 | A1 |
20090223539 | Gibbel | Sep 2009 | A1 |
20090275849 | Stewart | Nov 2009 | A1 |
20090275883 | Chapman | Nov 2009 | A1 |
20090281484 | Childers | Nov 2009 | A1 |
20090282980 | Gura | Nov 2009 | A1 |
20090314063 | Sternby | Dec 2009 | A1 |
20100004588 | Yeh | Jan 2010 | A1 |
20100007838 | Fujimoto | Jan 2010 | A1 |
20100010027 | Chen et al. | Jan 2010 | A1 |
20100010429 | Childers | Jan 2010 | A1 |
20100022936 | Gura | Jan 2010 | A1 |
20100030151 | Kirsch | Feb 2010 | A1 |
20100042035 | Moissl | Feb 2010 | A1 |
20100051552 | Rohde | Mar 2010 | A1 |
20100078092 | Weilhoefer | Apr 2010 | A1 |
20100078381 | Merchant | Apr 2010 | A1 |
20100078387 | Wong | Apr 2010 | A1 |
20100084330 | Wong | Apr 2010 | A1 |
20100087771 | Karakama | Apr 2010 | A1 |
20100094158 | Solem | Apr 2010 | A1 |
20100100027 | Schilthuizen | Apr 2010 | A1 |
20100102190 | Zhu et al. | Apr 2010 | A1 |
20100106071 | Wallenberg | Apr 2010 | A1 |
20100114012 | Sandford | May 2010 | A1 |
20100130906 | Balschat | May 2010 | A1 |
20100137693 | Porras | Jun 2010 | A1 |
20100137782 | Jansson | Jun 2010 | A1 |
20100140149 | Fulkerson | Jun 2010 | A1 |
20100168546 | Kamath | Jul 2010 | A1 |
20100192686 | Kamen | Aug 2010 | A1 |
20100199670 | Robertson | Aug 2010 | A1 |
20100213127 | Castellarnau | Aug 2010 | A1 |
20100217180 | Akonur | Aug 2010 | A1 |
20100217181 | Roberts | Aug 2010 | A1 |
20100224492 | Ding | Sep 2010 | A1 |
20100234795 | Wallenas | Sep 2010 | A1 |
20100241045 | Kelly | Sep 2010 | A1 |
20100252490 | Fulkerson | Oct 2010 | A1 |
20100274171 | Caleffi | Oct 2010 | A1 |
20100282662 | Lee | Nov 2010 | A1 |
20100312172 | Hoffman | Dec 2010 | A1 |
20100312174 | Hoffman | Dec 2010 | A1 |
20100326911 | Rosenbaum | Dec 2010 | A1 |
20100327586 | Mardirossian | Dec 2010 | A1 |
20110009798 | Kelly | Jan 2011 | A1 |
20110017665 | Updyke | Jan 2011 | A1 |
20110048949 | Ding et al. | Mar 2011 | A1 |
20110066043 | Banet | Mar 2011 | A1 |
20110071465 | Wang | Mar 2011 | A1 |
20110077574 | Sigg | Mar 2011 | A1 |
20110079558 | Raimann | Apr 2011 | A1 |
20110087187 | Beck | Apr 2011 | A1 |
20110100909 | Stange | May 2011 | A1 |
20110105983 | Kelly | May 2011 | A1 |
20110106003 | Childers | May 2011 | A1 |
20110120930 | Mishkin | May 2011 | A1 |
20110120946 | Levin | May 2011 | A1 |
20110130666 | Dong | Jun 2011 | A1 |
20110132838 | Curtis | Jun 2011 | A1 |
20110144570 | Childers | Jun 2011 | A1 |
20110160637 | Beiriger | Jun 2011 | A1 |
20110163030 | Weaver | Jul 2011 | A1 |
20110163034 | Castellarnau | Jul 2011 | A1 |
20110184340 | Tan | Jul 2011 | A1 |
20110189048 | Curtis | Aug 2011 | A1 |
20110220562 | Beiriger | Sep 2011 | A1 |
20110247973 | Sargand | Oct 2011 | A1 |
20110272337 | Palmer | Nov 2011 | A1 |
20110284377 | Rohde | Nov 2011 | A1 |
20110297593 | Kelly | Dec 2011 | A1 |
20110315611 | Fulkerson | Dec 2011 | A1 |
20110315632 | Freije | Dec 2011 | A1 |
20120006762 | McCabe | Jan 2012 | A1 |
20120016228 | Kroh | Jan 2012 | A1 |
20120031825 | Gura | Feb 2012 | A1 |
20120083729 | Childers | Apr 2012 | A1 |
20120085707 | Beiriger | Apr 2012 | A1 |
20120092025 | Volker | Apr 2012 | A1 |
20120115248 | Ansyln | May 2012 | A1 |
20120199205 | Eyrard | Aug 2012 | A1 |
20120220528 | VanAntwerp | Aug 2012 | A1 |
20120220926 | Soykan | Aug 2012 | A1 |
20120248017 | Beiriger | Oct 2012 | A1 |
20120258545 | Ash | Oct 2012 | A1 |
20120258546 | Marran | Oct 2012 | A1 |
20120259276 | Childers | Oct 2012 | A1 |
20120273354 | Orhan et al. | Nov 2012 | A1 |
20120273415 | Gerber | Nov 2012 | A1 |
20120273420 | Gerber | Nov 2012 | A1 |
20120277546 | Soykan | Nov 2012 | A1 |
20120277552 | Gerber | Nov 2012 | A1 |
20120277604 | Gerber | Nov 2012 | A1 |
20120277650 | Gerber | Nov 2012 | A1 |
20120277655 | Gerber | Nov 2012 | A1 |
20120277722 | Gerber | Nov 2012 | A1 |
20120302945 | Hedmann | Nov 2012 | A1 |
20130001165 | Pohlmeier | Jan 2013 | A1 |
20130015302 | Gkhan rter | Jan 2013 | A1 |
20130018301 | Weaver | Jan 2013 | A1 |
20130019994 | Schaer | Jan 2013 | A1 |
20130030356 | Ding | Jan 2013 | A1 |
20130037465 | Heyes | Feb 2013 | A1 |
20130062265 | Balschat | Mar 2013 | A1 |
20130193073 | Hogard | Aug 2013 | A1 |
20130199998 | Kelly | Aug 2013 | A1 |
20130211730 | Wolff | Aug 2013 | A1 |
20130213890 | Kelly | Aug 2013 | A1 |
20130228516 | Jonsson | Sep 2013 | A1 |
20130228517 | Roger | Sep 2013 | A1 |
20130231607 | Roger | Sep 2013 | A1 |
20130248426 | Pouchoulin | Sep 2013 | A1 |
20130256227 | Kelly | Oct 2013 | A1 |
20130274642 | Soykan | Oct 2013 | A1 |
20130304020 | Wilt | Nov 2013 | A1 |
20130324915 | (Krensky)Britton | Dec 2013 | A1 |
20130330208 | Ly | Dec 2013 | A1 |
20130331774 | Farrell | Dec 2013 | A1 |
20140001112 | Karoor | Jan 2014 | A1 |
20140018727 | Burbank | Jan 2014 | A1 |
20140018728 | Plahey | Jan 2014 | A1 |
20140042092 | Akonur | Feb 2014 | A1 |
20140065950 | Mendelsohn | Mar 2014 | A1 |
20140088442 | Soykan | Mar 2014 | A1 |
20140110340 | White | Apr 2014 | A1 |
20140110341 | White | Apr 2014 | A1 |
20140158538 | Collier | Jun 2014 | A1 |
20140158588 | Pudil | Jun 2014 | A1 |
20140158623 | Pudil | Jun 2014 | A1 |
20140190876 | Meyer | Jul 2014 | A1 |
20140190885 | Meyer | Jul 2014 | A1 |
20140190886 | Pudil | Jul 2014 | A1 |
20140190891 | Lura | Jul 2014 | A1 |
20140216250 | Meyer | Aug 2014 | A1 |
20140217020 | Meyer | Aug 2014 | A1 |
20140217027 | Meyer | Aug 2014 | A1 |
20140217028 | Pudil | Aug 2014 | A1 |
20140217029 | Meyer | Aug 2014 | A1 |
20140217030 | Meyer | Aug 2014 | A1 |
20140220699 | Pudil | Aug 2014 | A1 |
20140224736 | Heide | Aug 2014 | A1 |
20140251908 | Ding | Sep 2014 | A1 |
20150057602 | Mason | Feb 2015 | A1 |
20150083647 | Meyer | Mar 2015 | A1 |
20150114891 | Meyer | Apr 2015 | A1 |
20150144539 | Pudil | May 2015 | A1 |
20150144542 | Pudil | May 2015 | A1 |
20150157960 | Pudil | Jun 2015 | A1 |
20150238673 | Gerber | Aug 2015 | A1 |
20150250937 | Pudil | Sep 2015 | A1 |
20150258268 | Collier | Sep 2015 | A1 |
20150352270 | Pudil | Dec 2015 | A1 |
20160038666 | Kelly | Feb 2016 | A1 |
20160166748 | Meyer | Jun 2016 | A1 |
20160166751 | Meyer | Jun 2016 | A1 |
20160166752 | Meyer | Jun 2016 | A1 |
20160166753 | Meyer | Jun 2016 | A1 |
20170281847 | Venkatesh | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
101687070 | Mar 2010 | CN |
101883594 | Nov 2010 | CN |
102307650 | Jan 2012 | CN |
202105667 | Jan 2012 | CN |
101237918 | Jan 2013 | CN |
101883584 | Jul 2013 | CN |
103889481 | Jun 2014 | CN |
201510761050.6 | Aug 2017 | CN |
3215003 | Apr 1985 | DE |
102011052188 | Jan 2013 | DE |
0022370 | Jan 1981 | EP |
0187109 | Jul 1986 | EP |
266795 | Nov 1987 | EP |
0264695 | Apr 1988 | EP |
0298587 | Jun 1994 | EP |
0743071 | Nov 1996 | EP |
1124599 | May 2000 | EP |
1175238 | Nov 2000 | EP |
711182 | Jun 2003 | EP |
2308526 | Oct 2003 | EP |
1364666 | Nov 2003 | EP |
1523347 | Jan 2004 | EP |
1523350 | Jan 2004 | EP |
0906768 | Feb 2004 | EP |
1691863 | Apr 2005 | EP |
2116269 | Feb 2008 | EP |
1450879 | Oct 2008 | EP |
1514562 | Apr 2009 | EP |
2219703 | May 2009 | EP |
1592494 | Jun 2009 | EP |
1490129 | Sep 2009 | EP |
2100553 | Sep 2009 | EP |
2398529 | Nov 2010 | EP |
2575827 | Dec 2010 | EP |
2100553 | Aug 2011 | EP |
2388030 | Nov 2011 | EP |
2576453 | Dec 2011 | EP |
2701580 | Nov 2012 | EP |
2701595 | Nov 2012 | EP |
1545652 | Jan 2013 | EP |
1345856 | Mar 2013 | EP |
2344220 | Apr 2013 | EP |
1351756 | Jul 2013 | EP |
2190498 | Jul 2013 | EP |
1414543 | Sep 2013 | EP |
2701596 | Mar 2014 | EP |
2740502 | Jun 2014 | EP |
2883558 | Jun 2015 | EP |
1787666 | Nov 2015 | EP |
2237639 | Feb 1977 | FR |
60-132606 | Jul 1985 | JP |
60135064 | Jul 1985 | JP |
08504116 | May 1996 | JP |
2002306904 | Oct 2002 | JP |
2006325668 | Dec 2006 | JP |
5099464 | Oct 2012 | JP |
2013521862 | Jun 2013 | JP |
9532010 | Nov 1995 | WO |
1996040313 | Dec 1996 | WO |
9937342 | Jul 1999 | WO |
9937342 | Jul 1999 | WO |
0057935 | Oct 2000 | WO |
WO2000057935 | Oct 2000 | WO |
200066197 | Nov 2000 | WO |
2000066197 | Nov 2000 | WO |
200170307 | Sep 2001 | WO |
2001085295 | Sep 2001 | WO |
0185295 | Nov 2001 | WO |
2002043859 | Jun 2002 | WO |
2003043677 | May 2003 | WO |
2003043680 | May 2003 | WO |
2003051422 | Jun 2003 | WO |
2004008826 | Jan 2004 | WO |
2004009156 | Jan 2004 | WO |
2004030716 | Apr 2004 | WO |
2004030717 | Apr 2004 | WO |
2004064616 | Aug 2004 | WO |
2004062710 | Oct 2004 | WO |
2004105589 | Dec 2004 | WO |
2005044339 | May 2005 | WO |
2004105589 | Jun 2005 | WO |
2005061026 | Jul 2005 | WO |
2005123230 | Dec 2005 | WO |
2005123230 | Dec 2005 | WO |
2006023589 | Mar 2006 | WO |
2006124431 | Nov 2006 | WO |
2007010164 | Jan 2007 | WO |
2007089855 | Aug 2007 | WO |
2007146162 | Dec 2007 | WO |
2007146162 | Dec 2007 | WO |
2008037410 | Apr 2008 | WO |
2008051994 | May 2008 | WO |
2009026603 | Dec 2008 | WO |
2009024566 | Feb 2009 | WO |
2009026603 | Mar 2009 | WO |
2009061608 | May 2009 | WO |
2009064984 | May 2009 | WO |
2009067071 | May 2009 | WO |
2009071103 | Jun 2009 | WO |
WO 2009073567 | Jun 2009 | WO |
2009094184 | Jul 2009 | WO |
2009132839 | Nov 2009 | WO |
2009157877 | Dec 2009 | WO |
2009157878 | Dec 2009 | WO |
20090157877 | Dec 2009 | WO |
2010028860 | Mar 2010 | WO |
2010028860 | Mar 2010 | WO |
2010042666 | Apr 2010 | WO |
2010042666 | Apr 2010 | WO |
2010052705 | May 2010 | WO |
2010062698 | Jun 2010 | WO |
2010096659 | Oct 2010 | WO |
2010121820 | Oct 2010 | WO |
2010102190 | Nov 2010 | WO |
2011017215 | Feb 2011 | WO |
2011025705 | Mar 2011 | WO |
2011072337 | Aug 2011 | WO |
2011113572 | Sep 2011 | WO |
WO 2011112317 | Sep 2011 | WO |
2012026978 | Mar 2012 | WO |
2012042323 | Apr 2012 | WO |
2012050781 | Apr 2012 | WO |
2012051996 | Apr 2012 | WO |
2012067585 | May 2012 | WO |
2010042666 | Jun 2012 | WO |
2012138604 | Oct 2012 | WO |
2012148781 | Nov 2012 | WO |
2012148786 | Nov 2012 | WO |
2012148789 | Nov 2012 | WO |
2012162515 | Nov 2012 | WO |
20120277551 | Nov 2012 | WO |
2012172398 | Dec 2012 | WO |
2013019179 | Feb 2013 | WO |
2013019994 | Feb 2013 | WO |
2013025844 | Feb 2013 | WO |
2013025844 | Feb 2013 | WO |
2013027214 | Feb 2013 | WO |
2013028809 | Feb 2013 | WO |
2013028809 | Feb 2013 | WO |
2013019994 | Apr 2013 | WO |
2013025844 | May 2013 | WO |
2013103607 | Jul 2013 | WO |
2013103906 | Jul 2013 | WO |
2013110906 | Aug 2013 | WO |
2013110919 | Aug 2013 | WO |
2013114063 | Aug 2013 | WO |
2013121162 | Aug 2013 | WO |
2013140346 | Sep 2013 | WO |
2013141896 | Sep 2013 | WO |
2013188861 | Dec 2013 | WO |
14066254 | May 2014 | WO |
14066255 | May 2014 | WO |
14077082 | May 2014 | WO |
WO 2014099631 | Jun 2014 | WO |
2014117000 | Jul 2014 | WO |
2014121158 | Aug 2014 | WO |
2014121162 | Aug 2014 | WO |
2014121163 | Aug 2014 | WO |
2014121167 | Aug 2014 | WO |
2014121169 | Aug 2014 | WO |
WO 2014159918 | Oct 2014 | WO |
2015071247 | May 2015 | WO |
WO2017001358 | Jan 2017 | WO |
Entry |
---|
Extended European Search Report for App. No. 20203585.3, dated Feb. 17, 2021. |
Extended European Search Report for App. No. 20160568.0, dated Jun. 17, 2020. |
[NPL264] PCT/US2014/014357 International Search Report and Written Opinion dated May 19, 2014. |
[NPL268] Ronco et al. 2008, Cardiorenal Syndrome, Journal American College Cardiology, 52:1527-1539, Abstract. |
[NPL27] Overgaard. et. al., Relations between excitability and contractility in rate soleusmuscle: role of the Na+—K+ pump and Na+—K—S gradients. Journal of Physiology, 1999, 215-225, 518(1). |
[NPL306] Coast, et al. 1990, An approach to Cardiac Arrhythmia analysis Using Hidden Markov Models, IEEE Transactions on Biomedical Engineering. 1990, 37(9):826-835. |
[NPL309] Weiner, et. al., Article: Cardiac Function and Cardiovascular Disease in Chronic Kidney Disease, Book: Primer on Kidney Diseases (Author: Greenberg, et al), 2009,499-505, 5th Ed., Saunders Elsevier, Philadelphia, PA. |
[NPL311] U.S. Appl. No. 13/424,479. |
[NPL313] U.S. Appl. No. 13/424,525. |
[NPL377] European Search Report 12819714.2-1651/2739325 PCT/US2012049398, dated Jun. 12, 2015. |
[NPL378] PCT/US2014/14343 Intl Search Report & Written Opinion, dated May 9, 2014. |
[NPL379] PCT/US2014/014350 International Search Report and Written Opinion dated May 2014. |
[NPL380] EP 14746793 Supplementary European Search Report dated Aug. 18, 2016. |
[NPL381] EP 14746791 Supplementary European Search Report dated Aug. 19, 2016. |
[NPL382] EP 14746799 Supplementary European Seach Report dated Aug. 18, 2016. |
[NPL386] The FHN Trial Group. In-Center. Hemodialysis Six Times per Week versus Three Times per Week, New England Journal of Medicine, 2010 Abstract. |
[NPL39] PCT/US2012/034332, International Search Report, dated Jul. 5, 2012. |
[NPL462] Office Action in U.S. Appl. No. 13/757,717 dated Dec. 26, 2014. |
[NPL463] Office Action in U.S. Appl. No. 13/757,709 dated Jun. 6, 2015. |
[NPL464] Office Action in U.S. Appl. No. 13/757,709 dated Jan. 7, 2016. |
[NPL465] Office Action in U.S. Appl. No. 13/757,728 dated Jan. 8, 2016. |
[NPL466] Office Action in U.S. Appl. No. 13/757,728 dated Aug. 12, 2016. |
[NPL467] Office Action in U.S. Appl. No. 13/757,796 dated Apr. 13, 2015. |
[NPL468] Office Action in U.S. Appl. No. 13/757,796 dated Dec. 21, 2015. |
[NPL469] Office Action in U.S. Appl. No. 13/836,538 dated Aug. 19, 2015. |
[NPL470] Office Action in U.S. Appl. No. 13/836,538 dated Jan. 11, 2016. |
[NPL471] Office Action in U.S. Appl. No. 13/836,538 dated Apr. 27, 2016. |
[NPL472] Office Action in U.S. Appl. No. 13/757,722 dated May 19, 2016. |
[NPL473] Office Action in U.S. Appl. No. 13/757,709 dated Jan. 7, 2016. |
[NPL474] Office Action in U.S. Appl. No. 13/757,693 dated Nov. 13, 2015. |
[NPL475] Office Action in U.S. Appl. No. 13/757,693 dated May 23, 2016. |
[NPL476] Office Action in U.S. Appl. No. 13/757,709 dated Jun. 6, 2015. |
[NPL47] U.S. Appl. No. 61/480,544. |
[NPL481] Office Action in U.S. Appl. No. 13/757,794 dated Oct. 21, 2015. |
[NPL482] Office Action in U.S. Appl. No. 13/757,794 dated May 2, 2016. |
[NPL483] Office Action in U.S. Appl. No. 13/424,525 dated Aug. 11, 2015. |
[NPL484] Office Action in U.S. Appl. No. 13/424,525 dated Feb. 25, 2016. |
[NPL485] Office Action in U.S. Appl. No. 13/424,525 dated Jun. 17, 2016. |
[NPL486] Office Action in U.S. Appl. No. 13/424,525 dated Oct. 20, 2016. |
[NPL487] Office Action in U.S. Appl. No. 13/424,479 dated Nov. 24, 2014. |
[NPL488] Office Action in U.S. Appl. No. 14/566,686 dated Apr. 28, 2016. |
[NPL489] Office Action in U.S. Appl. No. 13/424,533 dated Oct. 22, 2013. |
[NPL490] Office Action in U.S. Appl. No. 13/424,533 dated Apr. 18, 2014. |
[NPL491] Office Action in U.S. Appl. No. 13/424,533 dated Jan. 5, 2015. |
[NPL492] Office Action in U.S. Appl. No. 13/424,533 dated Jun. 2, 2015. |
[NPL493] Office Action in U.S. Appl. No. 13/424,533 dated Jul. 14, 2016. |
[NPL496] Welgemoed, T.J., Capacitive Deionization Technology: An Alternative to desalination Solution, Desalination 183 (2005) 327-340. |
[NPL497] European Search Report for App. No. 15193645.7, dated Apr. 15, 2016. |
[NPL498] European Search Report in App. No. 15193720.8 dated Apr. 26, 2016. |
[NPL499] EP. App. 14746193.3 Search Report dated Oct. 19, 2016. |
[NPL528] Office Action in U.S. Appl. No. 14/555,393 dated May 4, 2016. |
[NPL529] Office Action in U.S. Appl. No. 14/555,393 dated Nov. 1, 2016. |
[NPL530] Office Action in U.S. Appl. No. 14/555,414 dated May 4, 2016. |
[NPL531] Office Action in U.S. Appl. No. 14/555,414 dated Nov. 3, 2016. |
[NPL534] Office Action in U.S. Appl. No. 13/586,824 dated Dec. 21, 2015. |
[NPL535] Office Action in U.S. Appl. No. 13/586,824 dated Jun. 4, 2016. |
[NPL546] Office Action in Chinese Application No. 201480007138.2 dated Sep. 28, 2016. |
[NPL553] Ruperez et al., Comparison of a tubular pulsatile pump and a volumetric pump for continuous venovenous renal replacement therapy in a pediatric animal model, 51 ASAIO J. 372, 372-375 (2005). |
[NPL554] St. Peter et al., Liver and kidney preservation by perfusion, 359 The Lancet 604, 606(2002). |
[NPL555] Dasselaar et al., Measurement of relative blood volume changes during hemodialysis: merits and limitations, 20 Nephrol Dial Transpl. 2043, 2043-2044 (2005). |
[NPL556] Ralph T. Yang, Adsorbents: Fundamentals and Applications 109 (2003). |
[NPL557] Henny H. Billett, Hemoglobin and Hematocrit, in Clinical Methods: The History, Physical, and Laboratory Examinations 719(HK Walker, WD Hall, & JW Hurst ed., 1990). |
[NPL558] Office Action in U.S. Appl. No. 13/565,733 dated Jan. 11, 2016. |
[NPL559] Office Action in U.S. Appl. No. 13/565,733 dated Jun. 11, 2015. |
[NPL55] U.S. Appl. No. 13/424,454. |
[NPL560] Office Action in U.S. Appl. No. 13/586,824 dated Jun. 4, 2015. |
[NPL562] Office Action in U.S. Appl. No. 13/757,796 dated Apr. 13, 2015. |
[NPL563] Office Action in U.S. Appl. No. 13/757,796 dated Dec. 21, 2015. |
[NPL564] Office Action in U.S. Appl. No. 13/835,735 dated Oct. 13, 2015. |
[NPL565] Office Action in U.S. Appl. No. 13/836,079 dated Apr. 17, 2015. |
[NPL566] Office Action in U.S. Appl. No. 13/836,079 dated Jun. 30, 2016. |
[NPL569] Office Action in U.S. Appl. No. 13/791,755 dated Mar. 16, 2016. |
[NPL570] Office Action in U.S. Appl. No. 13/791,755 dated Aug. 9, 2016. |
[NPL571] Office Action in U.S. Appl. No. 13/835,735 dated Jun. 16, 2016. |
[NPL572] Office Action in U.S. Appl. No. 13/836,079 dated Nov. 6, 2015. |
[NPL578] Office Action in U.S. Appl. No. 13/791,755 dated Sep. 10, 2015. |
[NPL579] Office Action in U.S. Appl. No. 13/791,755 dated Apr. 20, 2015. |
[NPL57] U.S. Appl. No. 13/424,467. |
[NPL580] Office Action in U.S. Appl. No. 14/259,589 dated Nov. 4, 2016. |
[NPL581] Office Action in U.S. Appl. No. 14/261,651 dated Aug. 25, 2016. |
[NPL586] International Search Report from International Application No. PCT/US2014/014347 dated May 9, 2014. |
[NPL587] International Search Report for PCT/US2015/060090 date of completion is Feb. 9, 2016 (3 pages). |
[NPL592] St. Peter et al., Liver and Kidney Preservation by perfusion, 369 The Lancet 604, 606 (2002). |
[NPL593] Office Action for Chinese Application 20148007136.3, dated Jun. 2, 2016. |
[NPL593] Office Action in Chinese Application No. 20148007136.3 dated Jun. 15, 2017. |
[NPL594] Office Action for Chinese Application 20148007136.3, dated Jan. 26, 2017. |
[NPL597] Franks, Gene, Cabon Filtration: What it does, What it doesnt, Mar. 14, 2012, pp. 1-3. |
[NPL597] Franks, Gene, Carbon Filtration: What it does, What it doesnt, Mar. 14, 2012, pp. 1-3. |
[NPL598] PCT/US2014/014352 International Search Report and Written Opinion dated Jul. 7, 2014. |
[NPL599] PCT/US2014/014352 International Prelminary Report on Patentability, dated Aug. 14, 2015. |
[NPL600] Hamm et al,. Sorbent regenerative hemodialysis as a potential cuase of acute hypercapnia, Kidney International, vol. 21, (1982), pp. 416-418. |
[NPL624] Office Action in Chinese Application No. 201480007132.5 dated Jul. 19, 2017. |
[NPL627] EP Search Report for Application No. 16204175.0 dated Mar. 29, 2017. |
[NPL629] Office Action for Chinese Application 201510713880.1 dated Apr. 1, 2017. |
[NPL629] Office Action in Chinese Application 201510713880.1 dated Apr. 1, 2017. |
[NPL62] U.S. Appl. No. 13/424,533. |
[NPL631] Understanding Dialysate Bicarbonate—A simple approach to understanding a complex equation by Fresenius Medical Care, 2011. |
[NPL635] International Search Report, Application PCT/US2016/043948, dated Feb. 2, 2017. |
[NPL636] Written Opinion, Application PCT/2016/043948, dated Feb. 2, 2017. |
[NPL637] International Search Report, Application PCT/US2016/043935, dated Feb. 2, 2017. |
[NPL638] Written Opinion, Application PCT/US2016/043935, dated Feb. 2, 2017. |
2017-530641_OA. |
[NPL105] Brynda, et. al., The detection of toman 2-microglcbuiin by grating coupler immunosensor with three dimensional antibody networks. Biosensors & Bioelectronics, 1999, 363-368, 14(4). |
[NPL10] Wheaton, et al., DOWEX Ion Exchange Resins—Fundamentals of Ion Exchange; Jun. 2000, pp. 1-9. http://www.dow.com/scripts/litorder.asp?filepath=liquidseps/pdfs/noreg/177-01837.pdf. |
[NPL111] Zhong, et. al., Miniature urea sensor based on H(+)-ion sensitive field effect transistor and its application in clinical analysis, Chin. J. Biotechnol., 1992, 57-65. 8(1). |
[NPL119] PCT/US2012/034331, International Search Report and Written Opinion dated Jul. 9, 2012. |
[NPL121] Roberts M, The regenerative dialysis (REDY) sorbent system. Nephrology, 1998, 275-278:4. |
[NPL138] U.S. Appl. No. 61/480,544. |
[NPL139] U.S. Appl. No. 61/480,541 dated Apr. 29, 2011. |
[NPL142] Hemametrics, Crit-Line Hematocrit Accuracy, 2003, 1-5, vol. 1, Tech Note No. 11 (Rev. D). |
[NPL144] Weissman, S., et al., Hydroxyurea-induced hepatitis in human immunodeficiency virus-positive patients. Clin. Infec. Dis, (Jul. 29, 1999): 223-224. |
[NPL146] PCT/US2012/034334, International Search Report, dated Jul. 6, 2012. |
[NPL147] PCT/US2012/034335, International Search Report, dated Sep. 5, 2012. |
[NPL148] PCT/US/2012/034327, International Search Report, dated Aug. 13, 2013. |
[NPL149] PCT/US/2012/034329, International Search Report, dated Dec. 3, 2012. |
[NPL161] EP13182115.9-1651 European Search Report, dated Feb. 3, 2014. |
[NPL162] International Search Report from PCT/US2012/051946 dated Mar. 4, 2013. |
[NPL163] U.S. Appl. No. 61/526,209. |
[NPL164] Written Opinion of the International Searching Authority for PCT/US2012/049398 dated Feb. 25, 2013. |
[NPL169] Wang, Fundamentals of intrathoracic impedance monitoring in heart failure, Am. J. Cardiology, 2007, 3G-10G: Suppl. |
[NPL16] PCT/US2014/067650 International Search Report Written Opinion dated Mar. 9, 2015. |
[NPL170] Bleyer, et al, Kidney International. Jun. 2006; 69(12):2268-2273. |
[NPL172] U.S. Appl. No. 29/446,285, filed Feb. 1, 2013. |
[NPL175] Marchant, et. al., In vivo Biocompatibility Studies 1: The Cage Implant System and a Biodegradable Hydrogel, J. Biomed. Mat. Res., 1983, 301-325: 17. |
[NPL176] Bleyer, et. al., Sudden and cardiac death rated in hemodialysis patients, Kidney International. 1999, 1553-1559: 55. |
[NPL178] PCT/US2012/025711, International Search Report dated Jul. 4, 2012. |
[NPL179] PCT/US2013/020404, International Search Report, dated Jan. 4, 2013. |
[NPL187] PCT/US2012/034333, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
[NPL188] PCT/US2012/034333, International Search Report, dated Aug. 29, 2012. |
[NPL188] PCT/US2012/034333, International Search Report, dated Aug. 29, 2013. |
[NPL189] PCT/US2012/051011, International Search Report, dated Jan. 17, 2014. |
[NPL197] PCT/US2012/034330, International Preliminary Report on Patentability, dated Oct. 29, 2013. |
[NPL205] Culleton, BF et al. Effect of Frequent Nocturnal Hemodialysis vs. Conventional Hemodialysis on Left Ventricular Mass and Quality of Life. 2007 Journal of the American Medical Association 298 (11), 1291-1299. |
[NPL217] U.S. Appl. No. 13/757,722, filed Feb. 1, 2013. |
[NPL218] U.S. Appl. No. 13/757,794, filed Feb. 2, 2012. |
[NPL219] U.S. Appl. No. 13/791,755, filed Mar. 8, 2013. |
[NPL21] U.S. Appl. No. 13/424,479 dated Nov. 1, 2012. |
[NPL220] U.S. Appl. No. 13/757,792, filed Feb. 2, 2013. |
[NPL222] U.S. Appl. No. 13/757,794, filed Feb. 2, 2013. |
[NPL227] U.S. Appl. No. 13/837,287, filed Mar. 15, 2013. |
[NPL22] U.S. Appl. No. 13/424,429 dated Nov. 1, 2012. |
[NPL230] Redfield, et. al, Restoration of renal response to atria! natriuretic factor in experimental low-output heat failure, Am. J. Physiol., Oct. 1, 1989, R917-923:257. |
[NPL231] Rogoza, et. al., Validation of A&D UA-767 device for the self-measurement of blood pressure, Blood Pressure Monitoring, 2000, 227-231, 5(4). |
[NPL234] Lima, et. al., An electrochemical sensor based on nanostructure hollsndite-type manganese oxide for detection of potassium ion, Sensors, Aug. 24, 2009, 6613-8625, 9. |
[NPL235] Maclean, et, al., Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat, J. App. Physiol., 1998, 1583-1592, 85(4). |
[NPL237] U.S. Appl. No. 13/757,693, dated Feb. 1, 2013. |
[NPL238] PCT Application, PCT/US20013/020404, filed Jan. 4, 2013. |
[NPL23] U.S. Appl. No. 13/424,525. |
[NPL240] U.S. Appl. No. 13/836,973, filed Mar. 15, 2013. |
[NPL241] U.S. Appl. No. 14/259,655, filed Apr. 23, 2014. |
[NPL242] U.S. Appl. No. 14/259,589, filed Apr. 23, 2014. |
[NPL243] U.S. Appl. No. 13/757,693, filed Jan. 4, 2013. |
[NPL244] U.S. Appl. No. 13/836,079, filed Mar. 15, 2013. |
[NPL245] U.S. Appl. No. 14/240,129, filed Aug. 22, 2013. |
[NPL246] PCT/US2014/014346 International Search Report and Written Opinion. |
[NPL247] U.S. Appl. No. 13/835,735, filed Mar. 15, 2013. |
[NPL248] PCT/US2014/014345 International Search Report and Written Opinion, dated May 2014. |
[NPL250] U.S. Appl. No. 13/835,735 IDS, filed Jun. 13, 2013. |
[NPL26] Overgaard, et. al., Activity-induced recovery of excitability in K+-depressed rat soleus muscle, Am. J. P 280: R48-R55, Jan. 1, 2001. |
[NPL310] U.S. Appl. No. 61/480,532. |
[NPL312] U.S. Appl. No. 13/424,429 dated Nov. 1, 2012. |
[NPL317] U.S. Appl. No. 61/480,530. |
[NPL318] U.S. Appl. No. 61/480,528 dated Apr. 29, 2011. |
[NPL32] Secemsky, et. al, High prevalence of cardiac autonomic dysfunction and T-wave alternans in dialysis patients. Heart Rhythm, Apr. 2011, 592-598: vol. 8, No. 4. |
[NPL35] Wei, et. al., Fullerene-cryptand coated piezoelectric crystal urea sensor based on urease, Analytica Chimica Acta, 2001,77-85:437. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 1-140. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 141-280. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 281-420. |
[NPL376] Gambro AK 96 Dialysis Machine Operators Manual, Dec. 2012. p. 421-534. |
[NPL37] U.S. Appl. No. 13/368,225 dated Feb. 7, 2012. |
[NPL383] Leifer et al., A Study on the Temperature Variation of Rise Velocity for Large Clean Bubbles, J. Atmospheric & Oceanic Tech., vol. 17, pp. 1392-1402, Oct. 2000. |
[NPL384] Talaia, Terminal Velocity of a Bubble Rise in a Liquid Column, World Acad. of Sci., Engineering & Tech., vol. 28, pp. 264-268, Published Jan. 1, 2007. |
[NPL46] Siegenthaler, et al., Pulmonary fluid status monitoring with intrathoracic impedance, Journal of Clinical Monitoring and Computing, 24:449-451, published Jan. 12, 2011. |
[NPL561] Office Action in U.S. Appl. No. 13/757,792 dated Jun. 2, 2016. |
[NPL639] International Search Report and Written Opinion in App. No. PCT/US2012/049398 dated Feb. 25, 2013. |
[NPL640] Office Action in European App. No. 12819714.2 dated Aug. 5, 2016. |
[NPL641] PCT/US2014/014343 Written Opinion dated Jan. 2, 2015. |
[NPL642] PCT/US2014/014343 International Preliminary Search Report dated Mar. 18, 2015. |
[NPL643] European Search Report for EP Appl. No. 1474679.4 dated Aug. 19, 2016. |
[NPL644] Office Action for Chinese Application 201510761050.6 dated Aug. 2, 2017. |
[NPL645] PCT/US2014/014355 International Search Report and Written Opinion dated May 1, 2014. |
[NPL646] PCT/US2014/014355 International Preliminary Report dated Apr. 13, 2015. |
[NPL647] EP 14746817.7 European Search Report dated Sep. 27, 2016. |
[NPL650] Office Action in Chinese Application No. 201480007132.5 dated Feb. 27, 2017. |
[NPL652] Office Action in Chinese Application No. 201280047921.2 dated Jun. 11, 2015. |
[NPL654] International Preliminary Report from International Application No. PCT/US2014/014348 dated Jan. 9, 2015. |
[NPL655] European Search Report from European Application No. EP 14746193.3 dated Oct. 19, 2016. |
[NPL656] European Search Report from European Application No. EP 14746193.3 dated Jun. 8, 2016. |
[NPL661] PCT/US2014/014346 Writtent Opinion dated Apr. 10, 2015. |
[NPL662] PCT/US2014/014346 International Search Report and Writtent Opinion dated May 23, 2014. |
[NPL663] EP 14746415.0 European Search Report dated Aug. 22, 2016. |
[NPL664] Office Action in European Application No. EP 14746415.0 dated Apr. 19, 2017. |
[NPL665] PCT/US2014/014357 International Search Report and Written Opinion dated May 19, 2014. |
[NPL666] PCT/US2014/014357 Written Opinion dated Feb. 18, 2015. |
[NPL667] European Search Report in European Application No. EP 14746010.9 dated Sep. 15, 2016. |
[NPL670] Office Action in European Application No. 14746415.0 dated Apr. 19, 2017. |
[NPL67] U.S. Appl. No. 13/424,490. |
[NPL68] U.S. Appl. No. 13/424,517. |
[NPL704] Written Opinion for PCT/US2015/060090 dated Feb. 16, 2016. |
[NPL705] EP 13733819 Supplementary European Search Report dated Jan. 28, 2015. |
[NPL713] EP Search Report and Opinion for Application No. 15193720.8 dated May 2, 2016. |
[NPL714] Office action for European Application No. 15193720.8 dated Apr. 25, 2017. |
[NPL723] PCT/US2012/051011, International Search Report and Written Opinion, dated Mar. 4, 2013. |
[NPL724] Office Action for European Application No. 14746611.4 dated Jan. 3, 2017. |
[NPL725] Supplemental Search Report and Search Opinion for European Application No. 14746611.4 dated Aug. 18, 2016. |
[NPL728] Examination Report in Australian Application No. AU2014212135 dated May 25, 2017. |
[NPL729] Office Action in Chinese Application No. 201480007138.2 dated May 31, 2017. |
[NPL736] Office Action in European Application No. 14746193.3 dated Apr. 19, 2017. |
[NPL739] European Office Action in Application No. 14746793.0 dated Apr. 13, 2017. |
[NPL743] Examination report in Australian Application No. 2014212141 dated May 26, 2017. |
[NPL744] Examination report for Australian Application 2015361083 dated Jul. 20, 2017. |
[NPL750] European Search Report and Search Opinion for European Application EP15193720 dated May 2, 2016. |
[NPL751] Office Action in European Application No. 15193720.8 dated Apr. 25, 2017. |
[NPL752] International Preliminary Report on Patentability for PCT2015/060090 dated Jun. 13, 2017. |
[NPL753] European Search Report for European Application EP 15193830.5 dated May 4, 2016. |
[NPL754] Office Action for European Application No. 15193645.7 dated Apr. 21, 2017. |
[NPL81] U.S. Appl. No. 61/480,539 dated Apr. 29, 2011. |
[NPL84] U.S. Appl. No. 61/480,535 dated Apr. 29, 2011. |
[NPL90] Nedelkov, et. al., Design of buffer exchange surfaces and sensor chips for biosensor chip mass spectrometry, Proteomics, 2002, 441-446, 2(4). |
PCT/US2017/025868 International Search Report dated Jun. 29, 2017. |
PCT/US2017/025868 Written Opinion dated Jun. 29, 2017. |
PCTUS2017025858 International Search Report dated Jun. 29, 2017. |
PCTUS2017025858 Written Opinion dated Jun. 29, 2017. |
PCTUS2017025876 International Search Report dated Jun. 29, 2017. |
PCTUS2017025876 Written Opinion dated Jun. 29, 2017. |
Office Action in European App. No. 19158804.5, dated Sep. 4, 2020. |
Number | Date | Country | |
---|---|---|---|
20190175814 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62595859 | Dec 2017 | US |