This invention relates to a pneumatic motor, particularly to one used for pneumatic tools, such as a pneumatic sanding machine, a pneumatic engraving machine and the like.
A conventional pneumatic tool is generally formed with a housing provided therein with an accommodating chamber and a gas passage communicating with the accommodating chamber. A pneumatic motor is installed in the accommodating chamber and generally formed with a cylinder provided therein with a vane wheel, which is inserted therein with a rotating shaft able to be rotated relative to the cylinder and able to be connected with a work piece, such as a grinding wheel, a sanding machine or a cutting disc. Thus, when the pneumatic tool is started, outside driving gas will get into the cylinder through the gas passage to push the vane wheel to rotate and actuate the rotating shaft to drive the work piece to rotate for carrying out various kinds of pneumatic work.
However, the vane wheel and the rotating shaft of the conventional pneumatic tool are separately designed in order that when the vane wheel is used for a long time and causes wear, a user can disassemble the vane wheel from the rotating shaft by self and replace the vane wheel with a new one. But in a way of separating design, there will form a gap between the vane wheel and the rotating shaft and as a result, the vane wheel cannot truly drive the rotating shaft to rotate and result in loss of power transmission and further, at the moment of starting the pneumatic tool, power delay will occur and wear will increase. Therefore, the inventor of this invention observes the above-mentioned drawbacks and thinks that the pneumatic motor of the conventional pneumatic tool is necessary to be ameliorated and hence devises this invention.
The objective of this invention is to offer a pneumatic motor for pneumatic tools, able to avoid producing gap between the vane wheel and the rotating shaft and enabling the vane wheel to immediately and truly drive the rotating shaft to rotate synchronously.
The pneumatic motor for pneumatic tools in the present invention includes a cylinder formed with an air chamber, and a vane wheel is received in the air chamber and formed with a shaft hole for a rotating shaft to be inserted therein and further, the vane wheel has its circumferential side fixed with a plurality of blades spaced apart. Furthermore, two sealing covers are respectively provided at locations corresponding to the opposite openings of the air chamber and each sealing cover is provided with a pivot joint portion to be pivotally connected with two ends of the rotating shaft for enabling the rotating shaft to rotate relative to the cylinder. Moreover, the rotating shaft has one end axially bored with a tightening hole and one side radially bored with a withstanding hole communicating with the tightening hole at a location corresponding to the shaft hole of the vane wheel. In addition, the pneumatic motor contains a withstanding member slidably positioned in the withstanding hole and provided with a driven portion at one side facing the withstanding hole and formed with a withstanding portion at another side facing the vane wheel. The pneumatic motor is further provided with a tightening member to be inserted in the tightening hole and formed with an operating portion at one end facing outside of the tightening hole and provided with a driving portion at another end so that a user can operate the operating portion to drive the tightening member to move toward the withstanding member and push the driven portion through the driving portion to have the withstanding member moved toward the vane wheel and pushed out of the withstanding hole to make the withstanding portion withstand the inner wall of the shaft hole.
The pneumatic motor for pneumatic tools of this invention enables a user to operate the operating portion for actuating the tightening member to move toward the withstanding member and push the driven portion via the driving portion to have the withstanding member moved toward the vane wheel and pushed out the withstanding hole to make the withstanding portion resist against the inner wall of the shaft hole. Thus, the vane wheel and the rotating shaft can be close fit to avoid producing gap between the vane wheel and the rotating shaft. By so designing, when outside driving gas drives the vane wheel to rotate, the vane wheel can synchronously drive the rotating shaft to rotate immediately and truly, thus able to solve the problems of a conventional pneumatic motor that is likely to cause starting delay, untrue in power transmission and easy to wear.
This invention will be better understood by referring to the accompanying drawings, wherein:
A preferred embodiment of a pneumatic motor 100 for pneumatic tools in the present invention, as shown in
The cylinder 10 is formed with an air chamber 11 and has its circumferential side bored with a plurality of vent holes 12 communicating with the air chamber 11.
The vane wheel 20 to be received in the air chamber 11 is formed with a main body 21 having a central portion bored with a shaft hole 211, which has an inner wall provided with a recessed groove 212. Further, the main body 21 has its outer circumferential side provided with a plurality of blade grooves 213 spaced apart for installing blades 22 respectively.
The rotating shaft 30 to be inserted in the shaft hole 211 of the vane wheel 20 has one end first provided with a countersink 31 and then has the underside of the countersink 31 axially bored with a tightening hole 32, which is provided with female thread 33. Further, the rotating shaft 30 has one side radially bored with a withstanding hole 34 communicating with the tightening hole 32 at a locating corresponding to the shaft hole 211 of the vane wheel 20.
The withstanding member 40 is slidably received in the withstanding hole 34 of the rotating shaft 30 and formed with a driven portion 41 at one side facing the tightening hole 32 and provided with a withstanding portion 42 at another side facing the vane wheel 20. In this preferred embodiment, the driven portion 41 is a circular cambered surface, which is partially located within the range of the tightening hole 32, while the withstanding portion 42 is a flat surface parallel to the inner wall of the shaft hole 211.
The tightening member 50 is inserted in the tightening hole 32, provided with an operating portion 51 at one end facing outside of the tightening hole 32 and formed with a driving portion 52 at another end. In this preferred embodiment, the tightening member 50 has its circumferential side provided with male threads 53 corresponding with the female thread 33 of the rotating shaft 30 so that the tightening member 50 can be threadably moved up and down in the tightening hole 32. Further, the operating portion 51 is a polygonal hole, while the driving portion 52 is a reverse slope.
The two sealing covers 60 are respectively provided at the opposite sides of the cylinder 10 at the locations corresponding to the openings of the air chamber 11. The sealing covers 60 are respectively formed with a cover body 61, which is bored with an insert hole 611 and provided with a pivot joint portion 62 at a location corresponding to the insert hole 611 to be pivotally connected with the end of rotating shaft 30 to enable the rotating shaft 30 to rotate relative to the cylinder 10. In the preferred embodiment, the pivot joint portion 62 is a bearing, and two ends of the rotating shaft 30 are respectively inserted in the bearings, letting the two ends of the rotating shaft 30 respectively and pivotally connected with the two sealing covers 60.
Referring to
In assembling the pneumatic motor 100, referring to
What is worth mentioning is that the vane wheel 20 and the rotating shaft 30 is close fit through foresaid structure; therefore, the diameter of the shaft hole 211 can be slightly larger than that of the rotating shaft 30. Thus, when the vane wheel 20 causes wear and needs to be replaced, a user needs only to drive the operating portion 51 to actuate the tightening member 50 to move away from the withstanding member 40 to let the driving portion 52 to move away from the driven portion 41 and enable the withstanding member 40 to be concealed in the withstanding hole 34, letting the withstanding portion 42 moved away from the inner wall of the shaft hole 211 of the vane wheel 20. Thus, the vane wheel 20 can easily be removed from the rotating shaft 30 and replaced, easy to attain effect of maintenance.
One special feature of this invention is that the rotating shaft 30 has one end first provided with the recessed countersink 31 and then has the underside of the countersink 31 axially bored with the tightening hole 32 and subsequently has the interior of the tightening hole 32 forming the female thread 33 by means of tapping tools. Compared with a way of direct drilling and tapping, this way can greatly reduce tapping depth and lower difficulty and cost of tapping.
While the preferred embodiment of the invention has been described above, it will be recognized and understood that various modifications may be made therein and the appended claims are intended to cover all such modifications that may fall within the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
107143218 | Dec 2018 | TW | national |