This invention relates to a pneumatic power tool having a housing with a motor and a pressure air inlet passage and an exhaust air outlet passage, wherein an exhaust air outlet deflector is movably mounted on the housing for directing the exhaust air leaving the tool in any desired direction.
In prior art there are known pneumatic power tools of the above type, wherein the outlet deflectors comprise more or less flow restricting passages creating undesirable pressure drops and motor power reductions. Examples thereon are illustrated in for instance U.S. Pat. Nos. 6,110,145 and 5,954,142.
It is a main object of the invention to provide a pneumatic power tool having an exhaust air outlet deflector which combines a low flow resistance with a sound attenuating effect.
Other objects and advantages of the invention will appear from the following specification and claims.
A preferred embodiment of the invention is below described in detail with reference to the accompanying drawing.
In the drawing.
In
The outlet deflector 17 comprises a shell-like body 18 with a cylindrical neck portion 19 which is rotatively mounted in a socket portion 20 of the outlet passage 16. A circumferential outer shoulder 22 on the neck portion 19 engages by snapping a circular groove 23 in the outlet passage 16. In order to facilitate mounting of the neck portion 19 there are provided a number of axial weakening slots 24 in the neck portion 19, and in order to enhance the snapping action of the shoulder 22 into the groove 23 of the outlet passage 16 an Ω-shaped spring element 26 (see
Moreover, the outlet deflector 17 is formed with a concave guide surface 28 for diverting the outlet flow out through a side opening 29. The deflector 17 is also provided with two parallel longitudinal inner walls 30a,b which form between them a central main passage 31, and which together with the side walls of the deflector shell 18 form two narrower secondary passages 32a,b. See
In the outlet passage 16 there are inserted sound attenuating means in the form a downstream full size element 36 of a highly porous and elastic resinous material, a smaller upstream element 37 of the same porous material as the downstream element 36, and a sound absorbing lining 35 surrounding the upstream element 37 and covering a substantial part of the inner wall of the outlet passage 16 upstream of the full size element 36. The full size element 36 fills up the entire outlet passage 16 and is axially supported on the spring element 26 which is made of a thin steel wire to cause a minimum flow restriction. The elements 36,37 are arranged to be penetrated by the exhaust air flow for noise reduction under a certain pressure drop.
The material of the elements 36 and 37 is carefully chosen so as to have a sound attenuating effect while causing a low or moderate restriction of the exhaust air outlet flow only. Materials having these properties suffer from a low mechanical load supporting capacity, and the sound attenuating elements 36,37 are not by themselves able to withstand the axial load caused by the pressure drop of the exhaust air flow across the elements 36,37 but would collapse into rather dens blocks at the outlet end of the outlet passage 16.
In order to prevent the two sound attenuating elements 36,37 from collapsing under the pressure drop load across them, they are provided with substantially U-shaped reinforcement elements 38,39, respectively, which extend over the main part of the length of the elements 36,37. Each reinforcement element 38,39 comprises a straight main section 38a, 39a and two legs 38b,c and 39b,c which extend perpendicularly to the main section 38a, 39a. The main section 38a, 39a is a little bit shorter than the respective sound attenuating element 36,37, and the legs 38b,c and 39b,c are penetrated transversely into the elements 36,37 at a short distance from the ends of the elements 36,37. These reinforcement elements 38,39 are made of a thin but stiff metal wire and do not cause any increase of the pressure drop across the sound attenuating elements 36,37. See
The reinforcement elements 38,39 are very simple in structure and are very easily mounted on the sound attenuating elements 36,37. They are put in place just by pressing manually the legs 38b,c and 39b,c, respectively, into the porous material before inserting the elements 36,37 into the outlet passage 16.
By using reinforcement elements 38,39 as suggested by the invention it is possible to use sound attenuating elements 36,37 of a material which has good sound damping properties but suffers from a poor mechanical load carrying capacity. By designing the reinforcement elements 38,39 as simple wire elements there is obtained a very simple and cheap means to strengthen the weak porous elements 36,37 and prevent deformation of same.
In its most general form, the invention is not limited to the above described U-shape of the reinforcement elements but can be varied within the scope of the claims. keep these claims
Number | Date | Country | Kind |
---|---|---|---|
01039270 | Nov 2001 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE02/02149 | 11/25/2002 | WO |