The present disclosure relates to a pneumatic radial tire for passenger Vehicles.
In the past, the applicant has proposed a technology to improve fuel efficiency, etc. in a pneumatic radial tire for passenger vehicles by narrowing the width and increasing the diameter of the tire (e.g., PTL 1).
PTL 1: 2011-207283A
Because of the high ring rigidity of the above tires, when a vehicle equipped with such tires travels on a snow-covered road surface, it causes local contact close to point contact with hardened snow, and the vibration of the vehicle input during such local contact causes the vehicle body to bounce, resulting in reduced on-snow performance.
It is therefore an object of the present disclosure to provide a pneumatic radial tire for passenger vehicles that can improve fuel efficiency while suppressing the decrease in on-snow performance.
The gist structure of the present disclosure is as follows:
(1) A pneumatic radial tire for passenger vehicles, comprising a carcass consisting of plies of radially arranged cords, spanning toroidally between a pair of bead portions, wherein
(2) A pneumatic radial tire for passenger vehicles, comprising a carcass consisting of plies of radially arranged cords, spanning toroidally between a pair of bead portions, wherein
OD (mm)≥2.135×SW (mm)+282.3,
(3) A pneumatic radial tire for passenger vehicles, comprising
a carcass consisting of plies of radially arranged cords, spanning toroidally between a pair of bead portions, wherein
OD (mm)≥−0.0187×SW (mm)2+9.15×SW (mm)−380,
the tire has a tread portion,
Here, the term “tread surface” refers to the entire circumferential surface of the contact patch which is the surface that will be in contact with the road surface when the tire is mounted on the rim, filled with the prescribed internal pressure, and loaded with the maximum load.
As used herein, the term “rim” refers to a standard rim in the applicable size (Measuring Rim in the STANDARDS MANUAL by ETRTO and Design Rim in the YEAR BOOK by TRA) that is or will be described in the industry standards in effect in the region where the tire is produced and used, such as the JATMA YEAR BOOK by JATMA (Japan Automobile Tyre Manufacturers Association) in Japan, the STANDARDS MANUAL by ETRTO (European Tyre and Rim Technical Organization) in Europe, and the YEAR BOOK by TRA (Tire and Rim Association, Inc.) in the United States, etc. That is, the term of the above-mentioned “rim” includes not only current sizes, but also sizes that may be included in the above industry standards in the future. An example of “sizes that may be included in the future” would be the size listed as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition. However, for sizes not listed in the above industry standards, the term “rim” refers to a rim with a width corresponding to the bead width of the tire.
In addition, the term “prescribed internal pressure” refers the air pressure corresponding to the maximum load capacity of a single wheel in the applicable size and ply rating as described in JATMA etc., above, i.e., maximum air pressure. For sizes not listed in the above industry standards, the term “prescribed internal pressure” shall mean the air pressure corresponding to the maximum load capacity prescribed for each vehicle in which the tire is mounted, i.e., maximum air pressure. Furthermore, the term “maximum load” refers the load corresponding to the above the maximum load capacity.
In this specification, the term “sipe width of widened portion” refers the maximum value of sipe width at the widened portion.
According to the present disclosure, it is possible to provide a pneumatic radial tire for passenger vehicles that can improve fuel efficiency while suppressing the decrease in on-snow performance.
In the accompanying drawings:
The following is a detailed illustrative description of one embodiment of the pneumatic radial tire for passenger vehicles of this disclosure, with reference to the drawings.
In the one embodiment of a pneumatic radial tire for passenger vehicles, hereinafter referred to simply as “tire”, in the first aspect of the present disclosure, the cross-sectional width SW of the tire is less than 165 (mm), the ratio SW/OD of the cross-sectional width SW to the outer diameter OD of the tire is 0.26 or less, and accordingly the tire has a narrow-width and large-diameter shape. By making the cross-sectional width SW of the tire narrower relative to the outer diameter OD of the tire, air resistance can be reduced; by increasing the outer diameter OD of the tire relative to the cross-sectional width SW of the tire, the deformation of the tread rubber near the contact patch of the tire can be suppressed and rolling resistance can be reduced; and these can improve the fuel efficiency of the tire. The above ratio SW/OD is preferably 0.25 or less, and more preferably 0.24 or less.
The above ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or higher, more preferably when it is 220 kPa or higher, and even more preferably when it is 280 kPa or higher. This is because rolling resistance can be reduced. On the other hand, the above ratio is preferably satisfied when the internal pressure of the tire is 350 kPa or less. This is because ride comfort can be improved.
From the viewpoint of securing the ground contact area, the cross-sectional width SW of the tire is preferably 105 mm or more, more preferably 125 mm or more, even more preferably 135 mm or more, and especially preferred 145 mm or more, within the range satisfying the above ratio. On the other hand, from the viewpoint of reducing air resistance, the cross-sectional width SW of the tire is preferably 155 mm or less, within the range satisfying the above ratio. From the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, and even more preferably 580 mm or more, within the range satisfying the above ratio. On the other hand, from the viewpoint of reducing air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 720 mm or less, even more preferably 650 mm or less, and especially preferred 630 mm or less, within the range satisfying the above ratio. From the viewpoint of reducing rolling resistance, the rim diameter is preferably 16 inches or larger, more preferably 17 inches or larger, and even more preferably 18 inches or larger, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above ratio. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, more preferably 21 inches or less, even more preferably 20 inches or less, and especially preferred 19 inches or less, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above ratio. The aspect ratio of the tire is preferably 45 to 70, and more preferably 45 to 65, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above ratio.
The specific tire sizes are not limited, but can be any of the following as an example: 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17, 135/60R18, 135/60R19, 135/65R19, 145/45R21, 145/55R20, 145/60R16, 145/60R17, 145/60R18, 145/60R19, 145/65R19, 155/45R18, 155/45R21, 155/55R18, 155/55R19, 155/55R21, 155/60R17, 155/65R18, 155/70R17, 155/70R19.
In the one embodiment of the tire in the second aspect of the present disclosure, the cross-sectional width SW of the tire is 165 (mm) or more, the cross-sectional width SW (mm) and the outer diameter OD (mm) of the tire satisfy the following relationship, and accordingly the tire has a narrow-width and large-diameter shape:
OD (mm)≥2.135×SW (mm)+282.3
Satisfying the above relationship reduces air resistance and rolling resistance, thereby improving fuel efficiency of the tire.
In the second aspect, the ratio SW/OD of the cross-sectional width SW and the outer diameter OD of the tire is preferably 0.26 or less, more preferably 0.25 or less, and even more preferably 0.24 or less, after satisfying the above relationship. This is because it can further improve the fuel efficiency of the tire.
The above relationship and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or higher, more preferably when it is 220 kPa or higher, and even more preferably when it is 280 kPa or higher. This is because rolling resistance can be reduced. On the other hand, the above relationship and/or ratio is preferably satisfied when the internal pressure of the tire is 350 kPa or less. This is because ride comfort can be improved.
From the viewpoint of securing the ground contact area, the cross-sectional width SW of the tire is preferably 175 mm or more, and more preferably 185 mm or more, within the range satisfying the above relationship. On the other hand, from the viewpoint of reducing air resistance, the cross-sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, even more preferably 205 mm or less, and especially preferred 195 mm or less, within the range satisfying the above relationship. From the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 630 mm or more, and more preferably 650 mm or more, within the range satisfying the above relationship. On the other hand, from the viewpoint of reducing air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less, within the range satisfying the above relationship. From the viewpoint of reducing rolling resistance, the rim diameter is preferably 18 inches or larger, and more preferably 19 inches or larger, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above relationship. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, and more preferably 21 inches or less, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above relationship. The aspect ratio of the tire is preferably 45 to 70, and more preferably 45 to 65, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above relationship.
The specific tire sizes are not limited, but can be any of the following as an example: 165/45R22, 165/55R18, 165/55R19, 165/55R20, 165/55R21, 165/60R19, 165/65R19, 165/70R18, 175/45R23, 175/55R19, 175/55R20, 175/55R22, 175/60R18, 185/45R22, 185/50R20, 185/55R19, 185/55R20, 185/60R19, 185/60R20, 195/50R20, 195/55R20, 195/60R19, 205/50R21, 205/55R20, 215/50R21.
In the one embodiment of the tire in the third aspect of the present disclosure, the cross-sectional width SW (mm) and the outer diameter OD (mm) of the tire satisfy the following relationship, and accordingly the tire has a narrow and large diameter shape:
OD (mm)≥−0.0187×SW (mm)2+9.15×SW (mm)−380
Satisfying the above relationship reduces air resistance and rolling resistance, thereby improving fuel efficiency of the tire.
In the third aspect, the ratio SW/OD of the cross-sectional width SW and the outer diameter OD of the tire is preferably 0.26 or less, more preferably 0.25 or less, and even more preferably 0.24 or less, after satisfying the above relationship. This is because it can further improve the fuel efficiency of the tire.
The above relationship and/or ratio is preferably satisfied when the internal pressure of the tire is 200 kPa or higher, more preferably when it is 220 kPa or higher, and even more preferably when it is 280 kPa or higher. This is because rolling resistance can be reduced. On the other hand, the above relationship and/or ratio is preferably satisfied when the internal pressure of the tire is 350 kPa or less. This is because ride comfort can be improved.
From the viewpoint of securing the ground contact area, the cross-sectional width SW of the tire is preferably 105 mm or more, more preferably 125 mm or more, even more preferably 135 mm or more, and especially preferred 145 mm or more, within the range satisfying the above relationship. On the other hand, from the viewpoint of reducing air resistance, the cross-sectional width SW of the tire is preferably 230 mm or less, more preferably 215 mm or less, even more preferably 205 mm or less, and especially preferred 195 mm or less, within the range satisfying the above relationship. From the viewpoint of reducing rolling resistance, the outer diameter OD of the tire is preferably 500 mm or more, more preferably 550 mm or more, even more preferably 580 mm or more, within the range satisfying the above relationship. On the other hand, from the viewpoint of reducing air resistance, the outer diameter OD of the tire is preferably 800 mm or less, more preferably 750 mm or less, and even more preferably 720 mm or less, within the range satisfying the above relationship. From the viewpoint of reducing rolling resistance, the rim diameter is preferably 16 inches or larger, more preferably 17 inches or larger, and even more preferably 18 inches or larger, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above relationship. On the other hand, from the viewpoint of reducing air resistance, the rim diameter is preferably 22 inches or less, more preferably 21 inches or less, and even more preferably 20 inches or less, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above relationship. The aspect ratio of the tire is preferably 45 to 70, and more preferably 45 to 65, when the cross-sectional width SW and the outer diameter OD of the tire satisfy the above ratio.
The specific tire sizes are not limited, but can be any of the following as an example: 105/50R16, 115/50R17, 125/55R20, 125/60R18, 125/65R19, 135/45R21, 135/55R20, 135/60R17, 135/60R18, 135/60R19, 135/65R19, 145/45R21, 145/55R20, 145/60R16, 145/60R17, 145/60R18, 145/60R19, 145/65R19, 155/45R18, 155/45R21, 155/55R18, 155/55R19, 155/55R21, 155/60R17, 155/65R18, 155/70R17, 155/70R19, 165/45R22, 165/55R18, 165/55R19, 165/55R20, 165/55R21, 165/60R19, 165/6R19, 165/70R18, 175/45R23, 175/55R18, 175/55R19, 175/55R20, 175/55R22, 175/60R18, 185/45R22, 185/50R20, 185/55R19, 185/55R20, 185/60R19, 185/60R20, 195/50R20, 195/55R20, 195/60R19, 205/50R21, 205/55R20, 215/50R21.
In this example, the pair of bead portions 2 each have a bead core 2a embedded therein. In the present disclosure, the cross-sectional shape and material of the bead core 2a are not limited and can be of the configuration normally used in the pneumatic radial tires for passenger vehicles. In the present disclosure, the bead core 2a may be divided into a plurality of small bead cores. Alternatively, the tires herein can be configured without the bead core 2a.
The tire 1 in the illustrated example comprises a bead filler 2b with abbreviated triangular cross section on the outer side of the bead core 2a in the tire radial direction. The cross-sectional shape of the bead filler 2b is not limited to this example, nor is its material. Alternatively, the tire can be made lighter by not comprising bead filler 2b.
In this embodiment, the tire widthwise cross-sectional area S1 of the bead filler 2b is preferably one or more and four or less times larger than the tire widthwise cross-sectional area S2 of the bead core 2a. This is because; by making the above cross-sectional area S1 one time or more than the above cross-sectional area S2, the rigidity of the bead portion 2 can be secured, and by making the above cross-sectional area S1 four times or less than the above cross-sectional area S2, the tire can be made lighter and fuel efficiency can be further improved. In addition, in this embodiment, the ratio of the gauge Ts of the sidewall portion at the tire maximum width position to the bead width Tb at the center position in the tire radial direction of the bead core 2a, Ts/Tb, is preferably 15% or more and 40% or less. Here, the “tire maximum width position” is the tire radial position where the width in the tire width direction is maximum, and if it is the radially extending area, it is the center position in the tire radial direction of that area. Also, the “bead width” is the width in the tire width direction of the bead portion 2. This is because; setting the above ratio Ts/Tb to 15% or more ensures the rigidity of the sidewall portion, while setting the above ratio Ts/Tb to 40% or less makes the tire lighter and further improves fuel efficiency. Note, the gauge Ts is the sum of the thicknesses of all members, including rubber, reinforcement members, and inner liners. However, in a case that a sound control body is placed on the inner surface of the sidewall portion, its thickness is not included. Here, the term “sidewall portion” refers to the tire radial region on the outside of the ground contact edge E in the tire width direction, extending from the ground contact edge E to the outer edge in the tire radial direction of the bead portion. The “outer edge in the tire radial direction of the bead portion” is the outer edge in the tire radial direction of bead filler 2b if the tire has a bead filler 2b, or the outer edge in the tire radial direction of bead core 2a if the tire does not have a bead filler 2b. In the case of a structure in which the bead core 2a is divided into multiple small bead cores by the carcass 3, Tb is the distance between the innermost and outermost ends of all small bead cores in the tire width direction. In this embodiment, the ratio of the gauge Ts of the sidewall portion at the tire maximum width position to the diameter Tc of the carcass cords, Ts/Tc, is preferably 5 or more and 10 or less. This is because setting the above ratio Ts/Tc to 5 or more ensures the rigidity of the sidewall portion, while setting the ratio Ts/Tc to 10 or less makes the tire lighter and further improves fuel efficiency. In this embodiment, the tire maximum width position can be provided, for example, in the range of 50% to 90% of the tire cross-sectional height to the outer side in the tire radial direction from the bead base line. The “bead base line” is an imaginary line passing through the bead base and parallel to the tire width direction.
Here, the term “bead portion” refers to the portion of the tire in the tire radial direction from the rim baseline to the outermost edge in the tire radial direction of the bead filler when the tire has bead filler, or to the portion in the tire radial direction from the rim baseline to the outermost edge in the tire radial direction of the bead core when the tire has no bead filler.
In this embodiment, the tire 1 can also be configured with a rim guard. In this embodiment, the bead portion 2 can be further provided with additional members such as rubber layers or cord layers for reinforcement or other purposes. Such additional members can be provided in various positions relative to the carcass 3 and the bead filler 2b.
In the example illustrated in
The tire according to this embodiment preferably comprises one or more inclined belt layers consisting of a rubber-coated layer of cords extending at an angle with respect to the tire circumferential direction, and it is most preferable to have two layers of that for the balance between weight reduction and suppression of distortion of the contact patch shape. From the viewpoint of weight reduction, one belt layer can be used, and from the viewpoint of suppressing the distortion of the contact patch shape, three or more layers can be used. In the example illustrated in
In this embodiment, metal cords, especially steel cords, are most preferred as the belt cords for the belt layers 4a, 4b, but organic fiber cords can also be used. The steel cords are mainly composed of steel and can contain various trace inclusions such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium. In this embodiment, the belt cords of the belt layers 4a, 4b can be monofilament cords, cords with multiple filaments drawn together, or cords with multiple filaments twisted together. Various twist structures can be adopted, and the cross-sectional structure, twist pitch, twist direction, and distance between adjacent filaments can also be varied. Further, the cords made of twisted filaments of different materials can also be used, the cross-sectional structure is not limited, and the various twist structures such as single twist, layer twist, and multiple twist can be used.
In this embodiment, the inclination angle of the belt cords of the belt layers 4a, 4b is preferably 10 degrees or more with respect to the tire circumferential direction. In this embodiment, the inclination angle of the belt cords of the belt layers 4a, 4b is preferably a high angle, specifically more than 20 degrees with respect to the tire circumferential direction, preferably more than 35 degrees, and especially in the range of 55 to 85 degrees with respect to the tire circumferential direction. This is because an inclination angle of 20 degrees or more, preferably 35 degrees or more, increases rigidity in the tire width direction and improves handling stability performance, especially during cornering. In addition, this is because it also reduces shear deformation of the interlayer rubber, thereby reducing rolling resistance.
The tire according to this embodiment does not comprise the circumferential belt layer consisting of cords extending approximately along the tire circumferential direction on the outer side in the tire radial direction of the belt 4. On the other hand, in this disclosure, the tire can also be configured with a circumferential belt consisting of one or more circumferential belt layers on the outer side in the tire radial direction of the belt 4. In particular, it is preferable to provide a circumferential belt when the inclination angles θ1, θ2 of the belt cords of the belt layers 4a, 4b constituting the belt 4 are 35 degrees or more. In this case, it is preferable to the circumferential belt that the tire circumferential rigidity per unit width is higher in the center region C than in the shoulder region S.
In the cross-sectional view of the tire width direction when the tire is mounted on a rim, filled with prescribed internal pressure, and unloaded, the center region C is the tire widthwise direction area in the center 50% between the ground contact edges E and the shoulder regions S are the tire widthwise direction areas of 25% each on the outer side of the center region C.
For example, by increasing the number of circumferential belt layers in the center region C compared to the shoulder regions S, the circumferential rigidity per unit width of the center region C can be higher than that of the shoulder regions S. Many tires with belt cords of belt layers 4a, 4b inclined at 35 degrees or more with respect to the tire circumferential direction produce loud noise emission in the high-frequency range of 400 Hz to 2 kHz, because the tread surface will have a uniformly large vibration shape in first, second, and third etc., cross-sectional vibration modes. Therefore, by locally increasing the circumferential rigidity of the center region C of the tread portion 5, the center region C of the tread portion 5 becomes more difficult to spread in the tire circumferential direction, and the spreading of the tread surface in the tire circumferential direction is suppressed, resulting in a reduction in noise emission.
In this embodiment, it is also preferable that the inclination angle θ1 of the belt cords of the belt layer with the widest width in the tire width direction, the belt layer 4a in the illustrated example, and the inclination angle θ2 of the belt cords of the belt layer with the narrowest width in the tire width direction, the belt layer 4b in the illustrated example, with respect to the tire circumferential direction are 35°≤θ1≤85°, 10°≤θ2≤30°, and θ1>θ2. Many tires with belt cords of belt layers inclined at 35 degrees or more with respect to the circumferential direction produce loud noise emission in the high-frequency range of 400 Hz to 2 kHz, because the tread surface will have a uniformly large vibration shape, in first, second, and third etc., cross-sectional vibration modes. Therefore, by locally increasing the circumferential rigidity of the center region C of the tread portion 5, the center region C of the tread portion 5 becomes more difficult to spread in the tire circumferential direction, and the spreading of the tread surface in the tire circumferential direction is suppressed, resulting in a reduction in noise emission.
Here, in this embodiment, in case a circumferential belt is provided, the circumferential belt layer is preferably highly rigid, more specifically, it preferably consists of rubber-coated layer of cords extending in the tire circumferential direction, and 1500≥X≥225 is satisfied when defining X=Y×n×m×d with the Young's modulus of cords as Y (GPa), the number of implantation of cords as n (pcs/50 mm), the number of the circumferential belt layer as m (layers), and the cord diameter as d (mm). The young's modulus means Young's modulus relative to the tire circumferential direction and is determined in accordance with JIS L1017 8.8 (2002) by testing with JIS L1017 8.5 a) (2002). In the pneumatic radial tire for passenger vehicles with narrow-width and large-diameter, local deformation occurs in the tire circumferential direction in response to inputs from the road surface during turning, and the contact patch tends to be triangular in shape, i.e., the circumferential contact length varies greatly depending on the position in the tire width direction. In contrast, the use of a highly rigid circumferential belt layer improves the ring rigidity of the tire and suppresses the deformation in the tire circumferential direction, and for that reason, the non-compressibility of the rubber also suppresses deformation in the tire width direction, and the ground contact area is less likely to change. Furthermore, the increase in ring rigidity promotes eccentric deformation, which simultaneously increases rolling resistance. Furthermore, when using a high-rigidity circumferential belt layer as described above, the inclination angle of the belt cords of the belt layers 4a, 4b with respect to the tire circumferential direction is preferably a high angle, specifically 35 degree or more. When the high-rigidity circumferential belt layer is used, the increased stiffness in the tire circumferential direction may result in reducing the ground contact length for some tires. Therefore, by using a high-angle belt layer, the out-plane flexural rigidity in the tire circumferential direction can be reduced to increase the circumferential elongation of the rubber during tread deformation, thereby reducing the reduction of the contact patch length. In this embodiment, the circumferential belt layer may also be made of wavy cords to increase breaking strength. Similarly, high elongation cords, e.g., 4.5 to 5.5% elongation at break, may be used to increase breaking strength. Furthermore, in this embodiment, a variety of materials can be employed for the circumferential belt layer and the typical examples include rayon, nylon, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), aramid, glass fiber, carbon fiber, and steel. The organic fiber cords are particularly preferred in terms of weight reduction. Here, when a circumferential belt is provided, the cord of the circumferential belt layer can be a monofilament cord, a cord with multiple filaments drawn together, a cord with multiple filaments twisted together, or even a hybrid cord with filaments of different materials twisted together. In this embodiment, the number of cords in the circumferential belt layers can be in the range of 20 to 60 per 50 mm but is not limited to this range. Furthermore, in this embodiment, the stiffness, material, number of layers, and implantation density in the tire width direction can also be varied. For example, the number of the circumferential belt layers can be increased only in the shoulder area S, while the number of the circumferential belt layers can be increased only in the center region C. In this embodiment, the circumferential belt layer can be larger, smaller, or the same in the tire width direction than the belt layers 4a, 4b. For example, the tire widthwise width of the circumferential belt layer can be 90% to 110% of the widthwise width of the belt layer having the maximus widthwise width of the belt layers 4a, 4b, the belt layer 4a in the example illustrated. Here, it is particularly advantageous from a manufacturing perspective to configure the circumferential belt layer as a spiral layer.
In the illustrated example, the tread rubber forming the tread portion 5 consists of one layer. On the other hand, in this embodiment, the tread rubber forming the tread portion 5 may be consists by laminating a plurality of different rubber layers in the tire radial direction. For the plurality of rubber layers described above, rubber with different loss tangent (tan δ), modulus, hardness, glass transition temperature, material, etc. can be used. The ratio of the thicknesses of the multiple rubber layers in the tire radial direction may vary in the tire width direction, and only the bottom of the circumferential main groove, etc. may have a different rubber layer than the surrounding area. The tread rubber forming the tread portion 5 may be made up of multiple rubber layers that differ in the tire width direction. For the plurality of rubber layers described above, rubber with different loss tangent, modulus, hardness, glass transition temperature, material, etc. can be used. The ratio of the width in the tire width direction of the multiple rubber layers may vary in the tire radial direction, and only some limited areas, such as only near the circumferential main groove, only near the ground contact edge, only on the shoulder land portion, and only on the center land portion, may have a different rubber layer than the surrounding area.
The rubber gauge of the tread rubber is preferably 5 mm or more and less than 8 mm. The rubber gauge in this embodiment is, as illustrated in
In this embodiment, in the cross-sectional view of the tire width direction, when a straight line passing through point P on the tread surface at the tire equatorial plane CL and parallel to the tire width direction is m1, a straight line passing through the ground contact edge E and parallel to the tire width direction is m2, the distance in the tire radial direction between the straight lines m1 and m2 is the fall height LCR, and the ground contact width of the tire is W, the ratio LCR/W is preferably 0.045 or less. By setting the ratio LCR/W to the above range, the crown portion of the tire is flattened, the ground contact area is increased, the input, i.e., input pressure, from the road surface is mitigated, the deflection rate in the tire radial direction is reduced, and thus the tire durability and wear resistance can be improved.
The tire 1 according to this embodiment has an inner liner 8 on the inner surface 7 of the tire which is also referred to simply as the tire inner surface 7. The thickness of the inner liner 8 is preferably about 1.5 mm to 2.8 mm. This is because it can effectively reduce vehicle-interior noise in the 80-100 Hz range. The air permeability coefficient of the rubber composition comprising the inner liner 8 is preferably 1.0×10−14 cc-cm/(cm2-s-cmHg) or more and 6.5×10−10 cc-cm/(cm2-s-cmHg) or less. It is preferable to have one or more fluorine-containing particles with a maximum diameter of 1.0 μm or greater per 100 μm2 area of the tire inner surface. It is also preferable that a plurality of bladder ridges extending in the tire width direction are formed on the circumference of the tire inner surface. The bladder ridges are preferably formed at any location in the tire width direction on the tire inner surface, with at least five bladder ridges per inch in the circumferential direction of the tire.
In this embodiment, the inner liner 8 can be formed by a rubber layer consisting mainly of butyl rubber, or by a film layer consisting mainly of resin. In this embodiment, the tire inner surface 7 can also be provided with a sealant material to prevent air leakage in the event of a puncture.
For example, when the number of circumferential main grooves is two, and the tire widthwise region between the ground contact edges E is divided into two central regions C and two lateral regions S by dividing the tire widthwise region into four equal parts, the two circumferential main grooves 6 is preferably located in the central area C as illustrated in this example. This is because drainage can be better secured.
Here, the term “extending in the tire circumferential direction” includes the case where extending without inclination to the tire circumferential direction as well as the case where extending at an inclination angle of 5 degrees or less with respect to the tire circumferential direction. As illustrate in the figure, the circumferential main groove 6 is preferably extends continuously in the tire circumferential direction. The shape of the circumferential main groove 6 is most preferable to be straight, as illustrated in the example, however it can also be zigzag, curved, etc.
The width, the opening width, of the circumferential main groove 6 is preferably 9 mm to 16 mm. This is because the groove width of 9 mm or more improves drainage, while the groove width of 16 mm or less ensures greater rigidity of the land portion 9. For the same reason, it is more preferable that the width of the circumferential main groove 6 is between 10 mm and 15.5 mm. The groove depth, the maximum depth, of the circumferential main groove 6 is preferably 1 to 5 mm. This is because a groove depth of 1 mm or more improves drainage, while a groove depth of 5 mm or less ensures the rigidity of the land portion 9. For the same reason, it is more preferable that the depth of the circumferential main groove 6 is between 2 and 4 mm.
The negative percentage of the tread surface of tread portion 5 is preferably 20% or less, more preferably 18% or less, and even more preferably 15% or less. On the other hand, from the viewpoint of ensuring drainage, the negative ratio of the tread surface of tread portion 5 is preferably at least 5%. Here, the term “negative ratio” shall mean the ratio of the groove area to the area of the tread surface. When calculating the groove area above, the groove area shall not include the area of sipes, whose opening width is 1 mm or less in the above standard condition.
As illustrated in
The sipe width, the opening width, of the width direction sipe 10 is not limited as long as it is 1 mm or less, as described above, however can be 0.3 to 0.7 mm, for example. The sipe depth, the maximum depth, of the width direction sipe 10 can be about the same as the depth of the circumferential main groove 6, although it is not limited. The pitch length in the tire circumferential direction of the plurality of width direction sipes 10 is preferably between 3 mm and 10 mm, more preferably between 5 mm and 10 mm. In order to reduce tire noise, the width direction sipes 10 can be arranged with a variation in pitch length, so-called pitch variation, in the tire circumferential direction.
In the illustrated example, the width direction sipe 10 is connected to the circumferential main groove 6 at both ends in the extension direction. On the other hand, the width direction sipe 10 can be a so-called one-closed sipe, where only one end is connected to the circumferential main groove 6 and the other end remains within the land portion 9, or it can be a sipe where both ends stay within the land portion 9. The use of these types of sipes will minimize the reduction in stiffness of the land portion due to the formation of the sipes.
In the illustrated example, the width direction sipes 10 are formed in all land portions 9a, 9b, however it is possible to have land portions 9 where no width direction sipes 10 are formed. In addition, in the illustrated example, the pitch length in the tire circumferential direction of the width direction sipes 10 formed on land portion 9a is the same as that of the width direction sipes 10 formed on land portion 9b, however it can be made longer or shorter.
The circumferential main groove 6 consists of a plate-like portion and a widened portion, with the widened portion on the groove bottom side where the groove width is larger than that on the tread surface side. The widened portion allows for better drainage during wear progression. The groove width, maximum width when measured in the same direction as the opening width, of the widened portion is preferably 1.1 to 1.5 times the opening width of the plate-like portion. The reason is that a value of 1.1 times or more improves drainage during wear development, while a value of 1.5 times or less ensures that the rigidity of the land portion is not reduced too much. In addition, the length, that is the depth, of the widened portion in the tire radial direction can be at least 0.4 times the length, that is the depth, of the plate-like portion in the tire radial direction. By setting the value to 0.4 times or more, drainage can be improved as early as possible during the wear progression. More preferably, the length, that is the depth, in the tire radial direction of the widened portion is preferably at least 0.5 times the length, that is the depth, in the tire radial direction of the plate-like portion. The upper limit is not limited because the plate-like portion may not be provided. The cross-sectional shape of the widened portion is a horizontal oval in the illustrated example, but it can be a longitudinal oval, a circular shape, a triangular shape in which the sipe width spreads inward from the outside in the tire radial direction to the inside, or various other shapes. Although not specifically limited, the groove width, the maximum width when measured in the same direction as the opening width, of the widened portion is preferably 11 to 12 mm when the widened portion is conical, that is triangular in cross-sectional shape, and is preferably 10 to 19 mm when it is spherical, that is circular or oval in cross-sectional shape.
The cross-sectional shape of the circumferential main groove 6 can be an ordinary U-shaped or V-shaped. All circumferential main grooves 6 can be the ordinary U-shaped or V-shaped, or all circumferential main grooves 6 can be of a shape consisting of a plate-like portion and a widened portion, or they can be arranged in any combination.
The following is a description of the effects of the pneumatic radial tire for passenger vehicles according to this embodiment.
First, the pneumatic radial tire for passenger vehicles according to this embodiment, the cross-sectional width SW and the outer diameter OD of the tire satisfy the above predetermined relationship, thereby reducing air resistance and rolling resistance, and improving fuel efficiency. However, as mentioned above, such tires could have poor on-snow performance due to their high ring rigidity. To address this problem, the tire of this embodiment has a plurality of width direction sipes extending in the tire width direction in the land portion, and the width direction sipes have a widened portion on the sipe bottom side where the sipe width is larger than the tread surface side. This reduces the compressive stiffness of the land portion to prevent localized contact with the road surface, while also reducing drainage loss during wear development. And the pitch length in the tire circumferential direction of the plurality of width direction sipes is 3 mm to 10 mm. If the pitch length in the tire circumferential direction of the plurality of width direction sipes is less than 3 mm, the space for the widened portion to collapse cannot be sufficiently secured, while if the pitch length in the tire circumferential direction exceeds 10 mm, the above effect cannot be fully obtained. Here, a tire that satisfies the above prescribed relationship for SW and OD has high edge pressure due to high ground contact pressure, and even if the edge component in the tire width direction, that is the edge component relative to the tire circumferential direction, is reduced by setting the pitch length to 3 mm or more, it can still adequately ensure on-snow traction performance and on-snow cornering performance. In this way, high edge pressure and localized contact with the road surface can be suppressed, thereby suppressing the decrease in on-snow performance.
As described above, the pneumatic radial tire for passenger vehicles of this embodiment can improve fuel efficiency while suppressing the decrease in on-snow performance.
For the same reason, the pitch length in the tire circumferential direction of the plurality of width direction sipes is preferably 5 mm to 10 mm.
To achieve the above effect more reliably, 50 to 100% of all width direction sipes by number are preferably width direction sipes with the widened portions described above. When the width direction sipes with the above widened portion are used in combination with other width direction sipes, e.g., which are plate-like as a whole, the width direction sipes with the above widened portion are preferably arranged so that they are uniformly distributed in the tire circumferential direction; such as being arranged every other or every two in the circumferential direction. In this example, all width direction sipes 10 consist of a plate-like portion 10a and a widened portion 10b as described above.
In order to achieve the above effect, in any land portion, the width direction sipes with the above widened portions may account for 50 to 100% of all width direction sipes, and there may be a land portion where the number of width direction sipes with the above widened portions is less than 50% of the total, including zero sipes. As an example, at least one width direction sipe 10, consisting of a plate-like portion 10a and a widened portion 10b as described above, can be located in the ground contact patch.
Further, when the land portion 9b defined by the tread edge TE and the outermost circumferential main groove 6 in the tire width direction is the shoulder land portion, and the other land portion 9a is the center land portion, forming the width direction sipe with the above widened portion in the center land portion can improve traction performance on snowy roads, and forming the width direction sipe with the above widened portion in the shoulder land portion can increase cornering power.
Furthermore, the inner shoulder land portion when mounted on the vehicle contributes significantly to wear performance and the outer land portion when mounted on the vehicle contributes significantly to cornering performance. Therefore, it is possible to achieve a higher level of both wear resistance and cornering power by increasing the number density of the width direction sipes with the above widened portions on one side of the tire width direction, outside when mounted on the vehicle, than that of on the other side of the tire width direction, inside when mounted on the vehicle.
When the land portion is divided into blocks by a plurality of width direction grooves extending in the tire width direction, the width direction sipe with widened portion is preferably located in the central region, which is the central 50%, not 25% of each side, of the circumferential length of the block, the circumferential length between both ends of the block in the tire circumferential direction. This is because the widened portion has sufficient space to collapse, further enhancing the effect of suppressing the decrease in on-snow performance.
In addition, the width direction sipes with the widened portions described above may be provided as sipes closed on one side, and the width direction sipes connected to one circumferential main groove or tread edge and the width direction sipes connected to the other circumferential main groove or tread edge may be staggered alternately in the tire circumferential direction to increase the density of width direction sipes with widened portions described above. In this case, the pitch length shall be considered as the pitch length between width direction sipes that are connected to one circumferential main groove or tread edge and the pitch length between width direction sipes that are connected to the other circumferential main groove or tread edge.
When the land portion is divided into blocks by a plurality of width direction grooves extending in the tire width direction, the width direction sipe with the widened portion is arranged more on one side of the block than the other side of the block in the tire circumferential direction. This is because when the one side of the block in the tire circumferential direction is the side where the block is stepped on when mounted on a vehicle, the widened portion on the side where the block is stepped on is more effective in collapsing than the side where the block is kicked off, thus more efficiently suppressing the decrease in on-snow performance.
When the land portion is divided into blocks by a plurality of width direction grooves extending in the tire width direction, the sipe width at the widened portion of the width direction sipe located on one side of the tire circumferential direction of the block is also preferably larger than the sipe width of the widened portion of the width direction sipe located on the other side of the tire circumferential direction of the block. This is because when the one side of the block in the tire circumferential direction is the side where the block is stepped on when mounted on a vehicle, the widened portion on the side where the block is stepped on is more effective in collapsing than the side where the block is kicked off, thus more efficiently suppressing the decrease in on-snow performance.
Number | Date | Country | Kind |
---|---|---|---|
2020-208302 | Dec 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/021088 | 6/2/2021 | WO |