(1) Field of the Invention
The expression pneumatic tents usually refers to inflatable tents and floating dome tents which are used where a simpler and faster installation, a low transport weight, a small packing size and possibly an increased advertising effectiveness are of significant importance.
(2) Description of Related Art
These pneumatic tents are often used only briefly, for example, as storage tent on large construction sites, as advertising pavilion, as a service tent for military operations, as a medical tent, as an emergency shelter, as a dwelling for traveling exhibitions, as festival hostel or as a pavilion for sports events,
For the construction of pneumatic tents, three basic designs have dominated the market, wherein for maintaining the required internal pressure, the pneumatic tents are either filled with air only once and then closed off by valves, or a fan/compressor is operated permanently.
It is immanently important for the first design that the tent skin forming the shell of the tent is double-walled and subdivided into chambers, wherein each chamber is inflated individually or several chambers are inflated together.
The structure of a geodesic dome, which is supported by a positive pressure generated by the blower and has a correspondingly designed pressure lock for access, is distinguished from this double-walled design.
Lastly, the frame construction with an inflatable frame shall be mentioned, wherein the frame is at least partially covered by an additional tarpaulin forming an outer skin. Such tent structures are cherished primarily in camping applications, in the advertising industry and sporting events because of their almost limitless functional design and visual appearance and moreover, because no—often cumbersome—framework is required for their construction.
The latter types of pneumatic tents have manufacturing limitations when offerings of so-called star-shaped canopy tents as purely pneumatic tents are commercially desirable. Star-shaped canopy tents differ from other tents in that they have a greater height and thus provide a more comfortable “sensation of space” for the user.
Star-shaped canopy tents are composed, in essence, of a single vertically extending, centrally placed post usually made of aluminum or wood, and a dome-shaped tent skin extending across the apex of the post and distally guyed at several points by tensioning elements and thereby anchored in the ground. The assembly of such a post, which is inherently heavy due to its normal length of 4 m to 12 m, requires at least two people for assembly/disassembly, which inevitably represents an organizational and financial burden.
It has not been possible to date with the solutions currently available on the market to replace the heavy, centrally-placed aluminum or wooden post with a more manageable structure.
It is therefore the object of the invention to propose a pneumatic tent, in particular a star-shaped canopy tent, which can be particularly easily handled by a single person during transport and during assembly/disassembly. In addition, the pneumatic tent should have greater functionality.
According to the invention, the pneumatic tent, especially a star-shaped canopy tent, has at least one pole extending in the final installation position vertically from the mounting surface and a tent cover extending over the self-supporting pole like a dome, which is locked and tensioned relative to the mounting surface with locking means, wherein the pole having a pressurized filling gas is formed with one or more layers and has a controllable or adjustable illumination device, which is placed inside the pole.
In a multi-layered pole, the individual layers are connected with one another permanently, for example in form of a laminate, and/or are superpositioned and/or placed next to each other without being bonded, similar to a so-called “onion skin structure”.
The multilayered pole with layers that are superpositioned and/or placed next to each preferably includes a first layer, which is formed as an outer skin providing the exterior shape of the pole and acting as a support structure. A second layer is formed as an inner tube forming a filling gas reservoir that can be filled once, with at least one valve penetrating the outer skin, wherein the controllable or adjustable illumination device is placed either inside the inner tube designed as fillable filling gas reservoir or between the inner tube and the outer skin.
The employed filling gases are preferably pure oxygen, nitrogen, or a mixture thereof, or air. Although air, unlike nitrogen, is naturally available in unlimited quantities for free, pure nitrogen has the advantage over air, of which nitrogen represents a fraction, in that it has larger molecules that have a lesser tendency to diffuse.
In a preferred embodiment of the invention, however, only a single pole is employed which is centrally placed relative to the tent cover, with the dome-shaped tent cover spanning the apex of the pole. The outer shape is similar to the shape of a tent of the North American Indians, i.e. a teepee. Furthermore, it is also possible to provide two poles, which are used when the user desires a larger “covered” tent area.
With this solution, a pneumatic star-shaped canopy tent is available on the market for the first time, where not only the tent cover, but also the at least one illuminated pole, can be used as a backlit advertising space in addition to its function as a structural element, without the necessity to permanently operate a blower for maintaining the internal pressure.
Preferably, polyester, for example Dacron, is used as material for the robust outer skin of the pole.
The outer skin of the pole includes an abrasion-resistant base section that is resistant to mechanical forces, a center section and a head section operatively connected with the tent cover, wherein one or more sections have locking means in the form of loops, rings, Velcro or eyelets for securing the pole with respect to the mounting area and also for attaching functional elements in the form of illumination means, loudspeakers, advertising banners, brackets or control elements on the pole.
It has proven to be particularly advantageous when the operative connection between the conical head portion of the pole and the tent cover is realized by means of a Velcro fastener.
To give the pole in final assembled position adequate stability, it is provided that the cylinder-shaped pole is associated with a torus placed on the mounting surface, with the free cross-section of the torus being designed to conform to the cross-section of the pole, wherein the torus has weighting means and surrounds the foot section of pole in form of a closed loop and is optionally coupled with the pole. Water or sand is provided as weighting means for the torus, which are usually available free of charge at almost any installation site.
The supporting structure of the pole is formed according to the invention by the outer skin made of polyester in combination with the inner tube placed which is inside the outer skin and completely is surrounded by the outer skin. To ensure optimal conformity of the inflated inner tube to the outer skin, the material is preferably polyurethane (PU) in the form of a foil
Such a construction, namely the assembly of a support structure with a high-strength Dacron outer skin and an inner PU foil, has proven in numerous trials to be particularly advantageous, since it can be used even under adverse weather conditions.
It has proven to be advantageous for selected applications of the subject matter of the invention to form the tent cover and/or the outer skin of the pole in multi-part or segment-like form, wherein the individual parts or segments are sewn together, glued, welded or joined together by a Velcro connection.
In practical applications, it has proven to be advantageous to provide in the foot section and/or in the center section of the pole at least one reservoir in which equipment to be stored, for example the compressor provided for a single filling, the power distribution, cable, and controller or regulator or locking means provided as replacement is placed. According to the concept of the invention, the optionally closable reservoir may be formed at a height of the pole in the area of the center section, which represents a user-friendly working height, i.e. between one meter and two meters.
Preferably, the illumination device has a plurality of LED and is designed as backlight for the pole, and further includes an adjusting and positioning device for aligning the LEDs inside the pole that are coupled with one another by cables or other conductive elements, such as carbon fiber, exactly with respect to their height and spacing relative to the outer skin of the pole. The adjusting and positioning device is constructed such that it can be operated even in the final assembly position of pneumatic tent. In the simplest case, spacers, guide pulleys, spaced-apart locking means and one or more tensioning ropes are provided, which are operatively connected with one another.
As already mentioned, the pole has an outer skin providing the outer shape and functioning as a supporting structure and an inner tube filling formed as a gas reservoir that can be filled once and has at least one valve penetrating the outer skin. It may also be advantageous for safeguarding against failure and ensuring functional and operational safety to provide several parallel inner tubes to produce a desired redundancy. The parallel design of the safety-related system ensures that in case of failure of an inner tube due to an unexpected drop in air pressure, the other inner tube(s) ensure(s) the required stability of the pole supporting the tent cover. This minimized the risk that all inner tubes placed in the pole malfunction at the same time.
The at least one inner tube includes a valve constructed as an inlet valve with integrated back-siphoning function and penetrating the outer skin. This means that an inner tube inflated using an electric pump, a pressurized air tank or a compressor can be readily emptied or evacuated again by switching the flow direction.
The invention has the following significant advantages and features compared to the prior art:
The aforementioned features and advantages of this invention can be better understood and assessed after a careful study of the following detailed description of preferred non-limiting exemplary embodiments of the invention in conjunction with the accompanying drawings, which shows in:
Number | Name | Date | Kind |
---|---|---|---|
3234685 | Harrowe | Feb 1966 | A |
3415475 | Goodman | Dec 1968 | A |
4068418 | Masse | Jan 1978 | A |
4179832 | Lemelson | Dec 1979 | A |
4537210 | Montgomery | Aug 1985 | A |
4655008 | Parish | Apr 1987 | A |
5036874 | Lynch | Aug 1991 | A |
5234011 | Lynch | Aug 1993 | A |
5421128 | Sharpless | Jun 1995 | A |
5477876 | Moss | Dec 1995 | A |
5482374 | Buhyoff | Jan 1996 | A |
5555679 | Scherba | Sep 1996 | A |
5918614 | Lynch | Jul 1999 | A |
6192633 | Hilbert | Feb 2001 | B1 |
6322230 | Medici | Nov 2001 | B1 |
7552555 | Pellecuer | Jun 2009 | B2 |
8789549 | Barnes | Jul 2014 | B1 |
9125467 | Randel et al. | Sep 2015 | B2 |
20040050411 | Lawrence | Mar 2004 | A1 |
20080291681 | Appleton | Nov 2008 | A1 |
20100200038 | Roman et al. | Aug 2010 | A1 |
20130271966 | Doble | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
112005002685 | Nov 2007 | DE |
2002194925 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20150267436 A1 | Sep 2015 | US |