The present invention relates to a pneumatic tire for motorcycles (hereinafter also simply referred to as “tire”), and more particularly to a pneumatic tire for motorcycles which can exhibit a performance of a new tire at an early period and enables visual confirmation that the tire as new is worn to such an extent as to be capable of sufficiently exhibiting its performance.
Typically, a vulcanization process at a manufacturing process of a pneumatic tire is performed by disposing a bladder for tire vulcanization in the interior of the unvulcanized tire which is provided in a mold, and allowing this bladder for tire vulcanization to expand by the steam so as to adhere the unvulcanized tire to the mold. The tire as vulcanized is taken out from a vulcanization device, while, however, the vulcanized tire is then required to be smoothly released from the vulcanization device.
In view of such problems, hitherto, it has been performed that onto an upper mold portion of the vulcanization device, a mold release agent of, for example, a silicon base is sprayed in advance, thereby preventing adhesion of the vulcanized tire. Besides, for example, in Patent Document 1, there has been made a design in which remodeling to provide a release jig without using a mold release agent is performed to release a tightly adhered vulcanized tire.
Patent Document 1: Japanese Unexamined Patent Application Publication No. H06-218734
A tire which is manufactured using a mold release agent during vulcanization of the unvulcanized tire fails to sufficiently exhibit its original performance when used as a brand new product because silicon and the like which is a component of the mold release agent migrates to a tread portion. Accordingly, in order to allow the performance of a new tire to be sufficiently exhibited, the tread portion is made to be worn to a certain extent so as to remove silicon and the like having migrated to the tread portion.
Thus, it is an object of the present invention to provide a pneumatic tire for motorcycles which can exhibit a performance of a new tire at an early period and enables visual confirmation that the tire as new is worn to such an extent as to be capable of sufficiently exhibiting its performance.
In order to solve the above problems, the present inventors intensively studied to discover the findings below. That is, it has been found out that a tread portion is provided with a shallow groove, thereby facilitating the wear of the tread portion when used as a brand new product to allow a performance of the new tire to be exhibited at an early period and enable visual confirmation that the tire as new is worn to such an extent as to be capable of sufficiently exhibiting its performance whereby the above problems can be solved, and the present invention has been accomplished.
In other words, a pneumatic tire for motorcycles of the present invention includes a tread portion formed into a ring shape, characterized in that
the tread portion is provided with a width direction shallow groove in which the shallow groove having a width of 0.1 to 2.0 mm and a depth of 0.1 to 2.0 mm is designed to extend at least in a tire width direction, a length of the shallow groove is greater than or equal to 50% of a width of a tire ground contact surface, and the width direction shallow groove is provided at intervals which are shorter than a length of the tire ground contact surface.
In the tire of the present invention, preferably, a width of the shallow groove provided to the tread portion is designed to change in an extending direction of the shallow groove.
In the tire of the present invention, preferably, the shallow groove further includes a circumferential direction shallow groove designed to extend in a tire circumferential direction, and when a ground contact region of the tread portion during straight running is a center region and each of both outer sides of the center region in a tire width direction is a shoulder region, and
in one of either the center region or the shoulder region, one of either a total length of a border line of the circumferential direction shallow groove or a total length of a border line of the width direction shallow groove is greater than the other.
Further, in the tire of the present invention, preferably, when a ground contact region of the tread portion during straight running is a center region and each of both outer sides of the center region in a tire width direction is a shoulder region, at least in the shoulder region, a plurality of at least two types of shallow grooves which extending directions differ from each other are provided, and
at least a part of the shallow grooves intersect with each other, and at least a part of the shallow grooves opens at a tread end.
Still further, in the tire of the present invention, a number of the shallow grooves may be greater in the center region than in the shoulder region of the tread portion and may be greater in the shoulder region than in the center region of the tread portion. Moreover, in the tire of the present invention, a depth of the shallow groove may be greater in the center region than in the shoulder region of the tread portion and may be greater in the shoulder region than in the center region of the tread portion. Further, in the tire of the present invention, a width of the shallow groove may be greater in the center region than in the shoulder region of the tread portion and may be greater in the shoulder region than in the center region of the tread portion.
Herein, used to indicate an extending direction of the shallow groove, the tire circumferential direction means a range of ±45° relative to a tire equator and the tire width direction means a range greater than −45° and less than 45° relative to a direction vertical to the tire equator. Note that when a shape of the shallow groove is not linear, a direction of the shallow groove refers to a direction of a line in which both ends of the shallow groove are connected to each other. Moreover, the center region of the tread portion refers to a ground contact region during straight running in the state in which the tire is fitted to a prescribed rim, a prescribed internal pressure is charged, and a maximum load weight is loaded, and the shoulder region refers to a region of a tire width direction outer side than the center region in the tread portion. Further, herein, the prescribed rim refers to a standard rim (or “approved rim” and “recommended rim”) of an applicable size specified in a predetermined industrial standard, and the prescribed internal pressure refers to a pneumatic pressure corresponding to a maximum load (maximum load capacity) of a single wheel of an applicable size specified in the same standard. Still further, the maximum load weight refers to a maximum load (maximum load capacity) of a single wheel of an applicable size specified in the same standard. Regarding such an industrial standard, an effective standard is set in each region where the tire is manufactured or used, and such a standard is specified, for example, in each of “the Tire and Rim Association Inc. Year Book” (inclusive of design guides) in the United States of America, “the European Tire and Rim Technical Organization Standards Manual” in Europe, and “JATMA YEAR BOOK” by the Japan Automobile Tire Manufacturer Association in Japan. Further, in the tire of the present invention, the width of the ground contact surface width refers to a length of a portion that is the largest in a width direction in a ground contact surface under a normal load and a normal internal pressure.
According to the present invention, there can be provided a pneumatic tire for motorcycles which can exhibit a performance of a new tire at an early period and enables visual confirmation that the tire as new is worn to such an extent as to be capable of sufficiently exhibiting its performance.
Hereinafter, a pneumatic tire for motorcycles of the present invention will be described in detail with reference to the drawings.
In
In the tire of the present invention, the tread portion 10 is provided with the width direction shallow groove 11b so that the effects as described below can be obtained. First, in the tire as new, the silicon used at the tire vulcanization process is present at a surface layer and so it is slippery when used as a brand new product. Accordingly, in order to allow a performance of the tire to be completely exhibited, the surface layer of the tread portion 10 is to be worn to a certain extent. In the tire of the present invention, the tread portion 10 is provided with the width direction shallow groove 11b, whereby the tread portion 10 is likely to be worn so as to allow a performance of a new tire to be exhibited at an early period. Further, due to the width direction shallow groove 11b, a water evacuation property and a traction property are improved, while a rubber of the tread portion 10 is facilitated to move at the time of a ground contact and heat dissipation is facilitated so as to allow a grip performance to be exhibited at an early period. Moreover, due to this width direction shallow groove 11b, an external appearance can be also improved.
In the tire of the present invention, a width of the width direction shallow groove 11b is 0.1 to 2.0 mm, preferably 0.5 to 1.5 mm. If the width of the width direction shallow groove 11b is less than 0.1 mm, a sufficient water evacuation property may not be obtained, and on the other hand, if the width of the width direction shallow groove 11b is greater than 2.0 mm, a rigidity of the tread portion 10 is reduced so that a steering stability deteriorates, while a ground contact area is reduced, and accordingly a sufficient grip performance may not be obtained. Herein, a width w of the width direction shallow groove 11b refers to a width of an opening portion on a section orthogonal to an extending direction of the width direction shallow groove 11b. Further, when the width of the width direction shallow groove 11b changes in an extending direction of the width direction shallow groove 11b, the width w of the width direction shallow groove 11b refers to a portion that is the largest of the width direction shallow groove 11b.
Moreover, a depth of the width direction shallow groove 11b is 0.1 to 2.0 mm, preferably 0.2 to 0.5 mm. If the depth of the width direction shallow groove 11b is less than 0.1 mm, a water evacuation property may not be sufficiently obtained, and on the other hand, if the width of the width direction shallow groove 11b is greater than 2.0 mm, a rigidity of the tread portion 10 is inevitably reduced so that a steering stability may deteriorate. Herein, when the depth of the width direction shallow groove 11b changes in an extending direction of the width direction shallow groove 11b, the depth of the width direction shallow groove 11b refers to a portion that is the deepest of the width direction shallow groove 11b. Note that when such a deep groove as to have a depth greater than 2.0 mm is provided, uneven wear may occur in a conventional tire, whereas in the tire of the present invention, such a problem does not occur. Further, the depth of the width direction shallow groove 11b refers to a distance from a tread surface of the tread portion 10 to a groove bottom of the width direction shallow groove 11b, and does not include a protrusion provided at the groove bottom of the width direction shallow groove 11b. Herein, the protrusion refers to that a peripheral border line shape of which is a shape having a curved line, such as a circular shape, an oval shape and the like or a polygonal shape, such as a parallelogram, a rhombus and the like.
Further, in the tire of the present invention, a length of the width direction shallow groove 11b is greater than or equal to 50%, preferably 80% of a width of a tire ground contact surface, and the entirety of the width direction shallow groove 11b may also extend to tread ends and open at the tread ends, or only a part of the width direction shallow groove 11b may also open at the tread end. With such a configuration, a favorable initial water evacuation property can be obtained. An angle of the width direction shallow groove 11b is preferably provided in such a manner as to be orthogonal to an input direction in view of allowing an edge component to be increased. Note that a part or the entirety of the width direction shallow groove 11b may also terminate approximately 20 mm before the tread ends.
Further, the width direction shallow groove 11b is provided at intervals which are shorter than a length of the tire ground contact surface. Preferably, the width direction shallow groove 11b is provided in such a manner as to be constantly two or more in the tire ground contact surface. With such a range, the effects as described above can be favorably obtained. Note that in the tire of the present invention, a shape of the width direction shallow groove 11b is not particularly limited and, as illustrated in
In
Further, in the tire as illustrated in
Further, in the tire of the present invention, the depth of the width direction shallow groove 11b may be greater in the center region Tc than in the shoulder regions Ts of the tread portion 10, and may be also greater in the shoulder regions Ts than in the center region Tc. This is because increasing the depth of the width direction shallow groove 11b in the center region Tc further improves a water evacuation property and a traction property, which accordingly allows a grip performance on a wet road surface to be improved and, on the other hand, increasing the depth of the shallow groove 11b in the shoulder regions Ts facilitates movement of the rubber in the shoulder regions Ts at the time of a ground contact and further facilitates heat dissipation so as to further allow a grip performance to be exhibited at an early period. For a similar reason, the width of the width direction shallow groove 11b may be greater in the center region Tc than in the shoulder regions Ts of the tread portion 10, and may be also greater in the shoulder regions Ts than in the center region Tc. Note that in the tire of the present invention, the depth of the width direction shallow groove 11b is not required to be constant and may also change along the width direction. For example, such a configuration that the center region Tc of the width direction shallow groove 11b is made to be shallow and the shoulder regions Ts thereof is made to be deep and the like may be employed.
Still further, in the tire of the present invention, the intervals of the width direction shallow groove 11b, which are L1 and L2 as illustrated in
Moreover, as described above, in the tire of the present invention, the depth of the width direction shallow groove 11b may also change in an extending direction. For example, the depth may be different at positions in the width direction of the tread portion 10. Thus, suitably adjusting the depth of the width direction shallow groove 11b allows a water evacuation property to be adjusted, and adjusting a rigidity of the tread portion allows a grip performance to be adjusted.
Deepening a center region Tc side of the width direction shallow groove 11b further improves a water evacuation property, which accordingly allows a grip performance on a wet road surface to be improved. On the other hand, deepening a shoulder regions Ts side of the width direction shallow groove 11b facilitates movement of the rubber in the shoulder regions Ts at the time of a ground contact and further facilitates heat dissipation so as to further allow a grip performance during a turn to be improved and further allow a water evacuation property during a turn to be improved as well. Note that a shallow portion of the groove bottom of the width direction shallow groove 11b provides a criterion for determining a degree of wear of the tire.
Further,
In
In the tire of the present invention, there may be also provided decoration patterns called as serration in which a plurality of ridges are arranged at the width direction shallow groove 11b at predetermined pitches. Further, using shallow grooves, the tread portion 10 may be also provided with information or decorative patterns such as characters and signs of a name of a maker and the like, or figures, patterns and the like to exhibit a state of use of a camber angle. Still further, when circumferential direction shallow grooves and width direction shallow grooves which are inclined with respect to the circumferential direction are provided, those shallow grooves may be also designed to have an arrow shape so as to be a rotation mark.
In
Moreover, in the example as illustrated, two types of main grooves 22a, 22b are periodically provided at equal pitches, but a shape of a main groove 22 is not particularly limited and is not to be limited to the example as described above. For example, as the main groove, a circumferential direction groove which is continuously formed in the circumferential direction may be also provided.
As illustrated, in the tire of the present invention, a depth of the shallow groove 21 (the width direction shallow groove 21b and the circumferential direction shallow groove; the width direction shallow groove 21b in the example as illustrated) may also change in an extending direction. For example, the depth may be different at positions in the width direction of the tread portion 20. Thus, suitably adjusting the depth of the width direction shallow groove 21b allows a water evacuation property to be adjusted, and adjusting a rigidity of the tread portion 20 allows a grip performance to be adjusted. In the tire of the present invention, a shape of the shallow groove 21 is not particularly limited.
In
Widening the center region Tc side of the shallow groove 21 further improves a water evacuation property, which accordingly allows a grip performance on a wet road surface to be improved. On the other hand, widening the shoulder regions Ts side of the shallow groove 21 facilitates movement of the rubber in the shoulder regions Ts at the time of a ground contact and further facilitates heat dissipation so as to further allow a grip performance during a turn to be improved and further allow a water evacuation property during a turn to be improved as well.
Further, also in the present embodiment, intervals of the substantially parallel shallow groove 21 (width direction shallow grooves 21b in
Next, in
Moreover,
In the tire according to the present embodiment, preferably, in one of either the center region Tc or the shoulder region Ts, either one of a total of a length of a border line of the circumferential direction shallow groove or a total of a length of a border line of the width direction shallow groove is greater than the other. For example, in the center region Tc, a total of a length of a border line of the circumferential direction shallow groove may be also greater than a total of a length of a border line of the width direction shallow groove, or in the center region Tc, a total of a length of a border line of the width direction shallow groove may be also greater than a total of a length of a border line of the circumferential direction shallow groove.
In the example as illustrated in
Also in the tire according to the present embodiment, the entirety of the circumferential direction shallow groove which have an angle in relation to the circumferential direction and the width direction shallow groove may also extend to tread ends and open at the tread ends, or only a part of the shallow grooves 31, 41 may also open at the tread end. With such a configuration, a favorable initial water evacuation property can be obtained. An angle of the shallow grooves 31, 41 is preferably provided in such a manner as to be orthogonal to an input direction in view of allowing an edge component to be increased. Further, a part or the entirety of the shallow groove may also terminate approximately 20 mm before the tread ends.
Note that in the present embodiment, a width, a depth, a shape, a cross-sectional shape and the like of the circumferential direction shallow grooves 31a, 41a and the width direction shallow grooves 31b, 41b and effects thereof are similar to those of the circumferential direction shallow groove of the tire according to the preferred embodiment as described above.
In the tire according to the present embodiment, intervals of the substantially parallel shallow grooves 31, 41 (circumferential direction shallow grooves 31a, 41a, and width direction shallow grooves 31b, 41b), which are L4, L5, and L6 as illustrated, are preferably 10 to 100 mm. Herein, the intervals of the shallow grooves 31, 41 refer to a length of a tread portion surface under a normal internal pressure and no load. If the intervals of the shallow grooves 31, 41 are less than 10 mm, a rigidity of the tread portions 30, 40 is reduced so that a steering stability may deteriorate. Further, an area of the shallow grooves 31, 41 in relation to the entirety of the ground contact surface is increased so that a grip performance may deteriorate. On the other hand, if the intervals of the shallow grooves 31, 41 are greater than 100 mm, a water evacuation property and a traction property deteriorate and movement of the tread portions 31, 41 becomes difficult so that effects of the present invention may not be sufficiently obtained. Note that an interval between the shallow grooves having a zigzag shape or the like is a distance between center positions of the amplitude of the shallow grooves.
Further, similarly to the width direction shallow groove of the tire according to the preferred embodiment as described above, in the tire of the present invention, the depth of the shallow grooves 31, 41 (circumferential direction shallow grooves 31a, 41a and width direction shallow grooves 31b, 41b) may also change in an extending direction. For example, the depth may be different at positions in the extending direction of the tread portions 30, 40. Thus, suitably adjusting the depth of the shallow grooves 31, 41 allows a water evacuation property to be adjusted, and adjusting a rigidity of the tread portions 30, 40 allows a grip performance to be adjusted.
Nest, in
Motorcycles turn by tilting a vehicle body in relation to a road surface. Accordingly, during straight running and cornering, a ground contact region of a tread portion differs from each other, and a center region of the tread portion during straight running and shoulder regions of the tread portion during cornering come into contact with a road surface. Thus, a pneumatic tire for motorcycles in which a ground contact region differs from each other during straight running and during cornering is required to have a favorable water evacuation property and an excellent grip performance during transition from straight running to cornering.
With respect to such a technique, for example, Japanese Unexamined Patent Application Publication No. 2009-101722 can be cited. A pneumatic tire for motorcycles disclosed in Japanese Unexamined Patent Application Publication No. 2009-101722 is formed by a tread center region including a tire equatorial surface, a tread end region constituting a tread end side, and a tread middle region constituting a space between the tread center region and the tread end region, in which the tread center region and the tread end region are a slick portion in which no groove is provided, and in the tread middle region, a rag groove which intersects with a tire circumferential direction U and a block row is provided.
Typically, a tread rubber of a tire is designed in such a manner as to be capable of exhibiting a maximum performance at a certain temperature or more. However, in a case of motorcycles, during normal running, a straight running time occupies a large ratio, and heat dissipation due to friction at a shoulder region which is used during cornering may lack. Thus, at the time of low temperature, shortage of grip performance is concerned during cornering. Such concerns become even more increased when the ground is wet.
Thus, the tire according to the present embodiment includes a tread portion 50 formed into a ring shape, in which when a ground contact region of the tread portion 50 during straight running is a center region Tc and each of both outer sides of the center region Tc in the tire width direction is a shoulder region Ts, at least in the shoulder region Ts, preferably in the shoulder region Ts, a plurality of at least two types of shallow grooves 51 which have a width of 0.1 to 2.0 mm and a depth of 0.1 to 2.0 mm and differ from each other in an extending direction are provided. In the present embodiment, at least one type is a width direction shallow groove.
In an example as illustrated in
In the tire according to the present embodiment, at least a part of the shallow grooves 51 intersect with each other, whereby a land portion 58 which is partitioned by the shallow grooves 51 is formed. The land portion 58 provided by intersecting the shallow grooves 51 has a small area so as to easily move at the time of ground contact and heat dissipation is facilitated so as to allow a grip performance in the shoulder region Ts to be exhibited at an early period. Moreover, due to the shallow grooves 51, an external appearance can be also improved. Further, in the tire as new, silicon used at the tire vulcanization process is present on a surface layer and so it is slippery when used as a brand new product. Accordingly, in order to allow a performance of the tire to be completely exhibited, the surface layer of the tread portion 50 is to be worn to a certain extent. In the tire according to the present embodiment, the shoulder region Ts is provided with the shallow grooves 51, whereby the shoulder region Ts is likely to be worn so as to allow a new tire performance to be exhibited at an early period.
Further, in the tire according to the present embodiment, a part of the shallow grooves 51 extends to a tread end to form an opening. Accordingly, the shallow grooves 51 allow an initial water evacuation property to be improved and allow a grip performance on a wet road surface to be improved. In the tire according to the present embodiment, when a distance along a surface of the tread portion 50 from a tire equator E to the tread end along a surface of the tread portion 50 is L7, the shallow grooves 51 are preferably provided at least in a region from the tread end to 0.5 L7. Thereby, effects of the present invention can be favorably obtained. Herein, the distance L7 is a value measured in a state in which the tire is fitted to the prescribed rim, the prescribed internal pressure is charged, and no load is applied.
Also in the tire according to the present embodiment, a width of the shallow groove 51 is 0.1 to 2.0 mm, preferably 0.5 to 1.5 mm. If the width of the shallow groove 51 is less than 0.1 mm, a sufficient water evacuation property may not be obtained, and on the other hand, if the width of the shallow groove 51 is greater than 2.0 mm, a rigidity of the land portion 58 is reduced so that a steering stability deteriorates, while a ground contact area of the land portion 58 is reduced, and accordingly a sufficient grip performance may not be obtained. Moreover, a depth of the shallow groove 51 is 0.1 to 2.0 mm, preferably 0.2 to 0.5 mm. If the depth of the shallow groove 51 is less than 0.1 mm, a water evacuation property may not be sufficiently obtained, and on the other hand, if the depth of the shallow groove 51 is greater than 2.0 mm, a rigidity of the land portion 58 is inevitably reduced so that a steering stability may deteriorate. Further, also in the present embodiment, a shape, a width and the like of the shallow groove are as described above.
In the tire according to the present embodiment, as illustrated, the entirety of the shallow grooves 51 may be inclined with respect to the tire circumferential direction and the tire width direction. Particularly, the inclination is preferably made in such a manner that an angle θ which is made by the shallow grooves 51 intersecting with each other is 5 to 80°. If the angle made by the shallow grooves 51 is less than 5°, the land portion 58 in the vicinity of the intersection position of the shallow grooves 51 becomes thin and cracking occurs, which is not preferable. On the other hand, the angle θ is designed to be 80° or less, whereby effects of the present invention can be favorably obtained.
In the tire according to the present embodiment, the shallow grooves 51 are preferably provided in a lattice pattern. The shallow grooves 51 are provided in a lattice pattern so that areas of the land portions 58 intersected by the shallow grooves 51 are substantially equal to each other, and accordingly, heat dissipation and water evacuation performance of the land portions 58 at the time of ground contact can be made to be uniform. In the tire of the present invention, the shallow grooves 51 which form a lattice and face each other are preferably parallel to each other but are not necessarily required to be parallel to each other and deviation of 5° or less may be allowed.
Further, in the tire according to the present embodiment, intervals of the shallow groove 51 that have the same extending direction, which are L8 and L9 in
Still further, in the tire according to the present embodiment, an auxiliary groove 59 is preferably provided at least in a part of the land portion 58 which is partitioned by the shallow groove 51 and the tread end. Thereby, an external appearance can be improved and a rigidity of the land portion 58 at a width direction outermost side in which the number of ground contacts is few is reduced so as to allow a grip performance to be improved. The auxiliary groove 59 can be suitably designed in accordance with tread patterns, but is preferably shallower than a maximum depth of the main groove 52 and deeper than a maximum depth of the shallow groove 51. Note that if a ratio of an area of the auxiliary groove 59 to an area of the land portion 58 defined by the shallow groove 51 and the tread end is larger, a rigidity of the land portion 58 is reduced more than necessary and a problem, such as cracking, may occur. Thus, in the tire of the present invention, a ratio of an area of the auxiliary groove 59 to an area of the land portion 58 is preferably approximately 5 to 40%, and the auxiliary groove 59 is preferably provided at such a pitch that two or more auxiliary grooves 59 are not included in the same ground contact surface and can be provided, for example, in every other, in every two and the like, of the land portion 58 defined by the shallow groove 51 and the tread end. Note that in the example as illustrated, the auxiliary groove 59 has a substantially rhombus shape and is closed in the land portion, but the shape thereof is not also particularly limited and other shapes, such as a circular shape, may be employed.
In the tire according to the present embodiment, the entirety of the shallow groove 51 may also open at the tread end, but as described above, at least a part thereof may only open at the tread end. In the example as illustrated, from among the shallow groove 51, the circumferential direction shallow groove 51a which extends from the first arrival side in the rotation direction toward the tire width direction inner side terminates at an intersection point with the width direction shallow groove 51b. In other words, it is configured that at a rotation direction first arrival side, the tread end and the circumferential direction shallow groove 51a are not to form a land portion having an acute tip. Such a configuration can prevent the formation of a small land portion having an acute tip in the vicinity of the tread end. Because such a small land portion may cause a problem, such as cracking, which is not preferable. Thus, as illustrated, the circumferential direction shallow groove 51a which extends toward the tire width direction inner side is preferably not provided in the vicinity of the tread end.
In the tire of the present invention, it is only important that the shallow grooves 11, 21, 31, 41, 51 respectively provided to the tread portions 10, 20, 30, 40, 50 satisfy the limitations as described above and no other particular limitations are included, and the other elements can employ a known structure. For example, as illustrated, when the main grooves 12, 22, 32, 42, 52 are provided, with respect to a width and a depth of the main grooves 12, 22, 32, 42, 52, any of those which have a width and a depth larger than those of the shallow grooves 11, 21, 31, 41, 51, respectively, may be employed. Further, also the elements other than the tread portions 10, 20, 30, 40, 50 are not also particularly limited, and a known structure can be employed. In
A tire 100 of the present invention as illustrated includes a tread portion 101, a pair of side wall portions 102 which are continuous with both sides of the tread portion 101, a pair of bead portions 103 which are respectively continuous with the pair of side wall portions 102, and a carcass 104 which is composed of at least one layer (one layer in the example as illustrated) of a carcass ply that reinforces such each portion over between the bead portions 103. In the example as illustrated, an end portion of the carcass 104 is fixed to the bead core 105 by being folded from tire inner side to an outer side, but may be also fixed by being sandwiched from both sides by a bead wire.
Moreover, in the tire as illustrated, a belt layer 106 is provided at a tire radial direction outer side of the carcass 104. A belt cord of the belt layer 106 is not also particularly limited and a known non-extensible and highly elastic cord can be employed, and those material that are composed of, for example, an organic fiber such as an aromatic polyamide (aramid, for example, manufactured by Du Pont; trade name: Kevlar), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), rayon, or nylon, steel, glass fiber, carbon fiber or the like can be suitably selected to be employed. Such a belt may be also those that are composed of an inclined belt layer having two or more layers provided in such a manner that cord directions intersect with each other between layers, and may be also those that are composed of a spiral belt layer having one or more layers in which a cord direction is substantially a tire circumferential direction. In
The tire of the present invention can be applied to either of a front tire or a rear tire for motorcycles and can be also applied to a tire having either of a radial structure or a bias structure.
Hereinafter, the present invention will be described further in detail using examples.
The pneumatic tire for motorcycles having tread patterns as illustrated in
Except that the tread portion was not provided with a shallow groove, a tire of the comparative example was prepared in a manner similar to the tire of the example.
Using each tire obtained, in accordance with procedures below, a grip property and a traction property were evaluated. Results are indicated together in Table 1.
(Grip Property)
The evaluation was performed by driving a vehicle to which each tire is fitted on a wet road surface. A grip performance was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 1 was set to be 100, and that of the tire of Example 1 was indexed.
(Traction Property)
A traction property was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 1 was set to be 100, and that of the tire of Example 1 was indexed.
From Table 1, it is found out that the tire of the present invention in which the tread portion is provided with the predetermined shallow groove is excellent in the grip property and the traction property.
The pneumatic tire for motorcycles having tread patterns as illustrated in
The pneumatic tire for motorcycles having tread patterns as illustrated in
Except that the tread portion was not provided with a shallow groove, a tire of the comparative example was prepared in a manner similar to the tire of the example.
Using each tire obtained, in accordance with procedures below, a grip property and a traction property were evaluated.
(Grip Property)
The evaluation was performed by driving a vehicle to which each tire is fitted on a wet road surface. A grip performance was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 2 was set to be 100, and that of the tires of Examples 2-1, 2-2 was indexed.
(Traction Property)
A traction property was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 2 was set to be 100, and that of the tires of Examples 2-1, 2-2 was indexed.
From Table 2, it is found out that the tire of the present invention in which the tread portion is provided with the predetermined shallow groove is excellent in the grip property and the traction property.
The pneumatic tire for motorcycles having tread patterns as illustrated in
The pneumatic tire for motorcycles having tread patterns as illustrated in
Except that the tread portion was not provided with a shallow groove, a tire of Comparative Example 3 was prepared in a manner similar to the tire of the example.
Using each tire obtained, in accordance with procedures below, a grip property and a traction property were evaluated. Results are indicated together in Table 3.
(Grip Property)
The evaluation was performed by driving a vehicle to which each tire is fitted on a wet road surface. A grip performance was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 3 was set to be 100, and that of the tires of Examples 3-1, 3-2 was indexed.
(Traction Property)
A traction property was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 3 was set to be 100, and that of the tires of Examples 3-1, 3-2 was indexed.
From Table 3, it is found out that the tire of the present invention in which the tread portion is provided with the predetermined shallow groove is excellent in the grip property and the traction property.
The pneumatic tire for motorcycles having tread patterns as illustrated in
Except that the shoulder region was not provided with a shallow groove, a tire of Comparative Example 4 was prepared in a manner similar to the tire of Example 4-1.
Using each tire obtained, in accordance with procedures below, a grip property was evaluated.
(Grip Property)
The evaluation was performed by driving a vehicle to which each tire is fitted on a wet road surface. A grip performance was evaluated by feeling of a driver. Herein, evaluation of the tire of Comparative Example 4 was set to be 100, and that of the tires of Examples 4-1, 4-2 was indexed.
From Table 4, it is found out that the tire of the present invention in which the shoulder region of the tread portion is provided with the predetermined shallow groove is excellent in a water evacuation property and the grip property.
Number | Date | Country | Kind |
---|---|---|---|
2015-212746 | Oct 2015 | JP | national |
2015-225219 | Nov 2015 | JP | national |
2015-225221 | Nov 2015 | JP | national |
2015-225223 | Nov 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/082170 | 10/28/2016 | WO | 00 |