Pneumatic tire with tread including circumferential grooves having inclined ridges or recesses

Information

  • Patent Grant
  • 7537033
  • Patent Number
    7,537,033
  • Date Filed
    Tuesday, November 18, 2003
    21 years ago
  • Date Issued
    Tuesday, May 26, 2009
    15 years ago
Abstract
A pneumatic tire which positively discharges water having flowed into a groove extending in the tire circumferential direction and enhances capability of preventing hydroplaning. The groove is provided in the tread face of the tire and extends in the tire circumferential direction. The wall face of the groove is provided with line portions composed of a plurality of ridges or recesses that are inclined in one direction with respect to the groove longitudinal direction.
Description
TECHNICAL FIELD

The present invention relates to a pneumatic tire with improved drainage, and specifically, relates to a pneumatic tire which positively discharges water having flowed into a groove extending in the tire circumferential direction and enhances capability of preventing hydroplaning.


BACKGROUND TECHNOLOGY

In a pneumatic tire, a groove extending in the tire circumferential direction is formed in a tread surface to ensure drainage in the rain and the like. In order to improve drainage of such a pneumatic tire and prevent occurrence of hydroplaning, various proposals have hitherto been made in terms of arrangement of grooves in the tread surface and the like. In those proposals, there is a pneumatic tire in which a curved inclined groove which is formed in the tread surface is provided with a protruded rim extending in the groove longitudinal direction in the bottom of the groove to rectify water having flowed into the groove and thus improve the drainage (for example, see the Japanese Patent Laid-Open publication No. 2000-318411).


It is true that when the protruded rim extending in the groove longitudinal direction is provided in the bottom of the groove as described above, reduction of the drainage due to turbulence of the water flow can be avoided. However, it is not possible to obtain an effect of positively discharging water having flowed into the groove to the exterior. Accordingly, the capability of preventing hydroplaning has not necessarily been sufficient.


DISCLOSURE OF THE INVENTION

An object of the present invention is to provide a pneumatic tire capable of positively discharging water having flowed into a groove extending in the tire circumferential direction and enhancing the capability of preventing hydroplaning.


An aspect of the present invention is a pneumatic tire provided with a groove extending in a tire circumferential direction in a tread surface, and the pneumatic tire is characterized by including line portions provided in a wall face of the groove, the line portions being composed of a plurality of ridges or recesses inclined in one direction with respect to a groove longitudinal direction.


Herein, preferably, an inclined angle of the line portions with respect to the groove longitudinal direction is 10 to 60°, a height thereof is not smaller than 0.3 mm and is not more than 20% of each of a width and a depth of the groove, and a pitch interval of the line portions is preferably 1.5 to 8.0 mm. In addition, preferably, the line portions are provided in a range of not less than 50% of the wall face of the groove in a cross section of the groove orthogonal to the groove longitudinal direction.


Accordingly, water having flowed into the groove flows along the line portions, which are formed in the wall face of the groove and spirally arranged, and forms a vortex flow. The water is then accelerated to progress within the groove and discharged to the exterior. Since water on a road is a continuum, a negative pressure is created within the groove according to the amount of water accelerated and discharged. Thus, a larger amount of water is drawn into the groove, and a larger amount of water is then discharged. Moreover, since the water progressing within the groove while forming the vortex flow moves toward the center position of the groove space while swirling, thereby the contact resistance between water and the wall face of the groove is significantly reduced, and the discharging action is assisted as a result. The capability of preventing hydroplaning can be therefore dramatically improved.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view showing a tread surface of a pneumatic tire according to an embodiment of the present invention.



FIG. 2 is a perspective view showing a main portion of FIG. 1.



FIG. 3 is a plan view of FIG. 2.



FIG. 4 is a cross-sectional view of FIG. 3 taken along a line A-A.



FIGS. 5A to 5C are cross-sectional views, each showing a cross-sectional shape of line portions formed in a groove.



FIG. 6 is an explanatory plan view for explaining a discharging action according to the present invention.



FIG. 7 is an explanatory cross-sectional view for explaining the discharging action according to the present invention.





BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, a description is given of an embodiment of the present invention with reference to the accompanying drawings. In the drawings, same components are given same reference numerals, and a redundant description is omitted.



FIG. 1 shows a tread surface of a pneumatic tire according to an embodiment of the present invention; FIGS. 2 to 4 show a main portion thereof; and each of FIG. 5A to 5C shows a cross-sectional shape of line portions formed in a groove.


In FIG. 1, a plurality of grooves (circumferential grooves) 2 extending in a tire circumferential direction T and a plurality of grooves (lateral grooves) 5 extending in the tire width direction are formed in a tread surface 1. As shown in FIG. 2, in a wall face 3 of at least one of the grooves 2 extending in the tire circumferential direction T, line portions 4 inclined in one direction with respect to the groove longitudinal direction are formed.


It is preferable that the line portions 4 formed in the wall face 3 of the groove 2 has an inclined angle α of 10 to 60 degrees with respect to the groove longitudinal direction (i.e., the tire circumferential direction T) as shown in FIG. 3 so that water having flowed into the groove 2 forms vortices to easily flow. When this inclined angle α is out of the above range, the effect of creating a vortex flow is insufficient. It is obvious that the inclined direction of the grooves 2 is not particularly limited.


The line portions 4 are composed of ridges or recesses provided in the wall face 3 of the groove 2. The cross-sectional shape thereof is not particularly limited and can adopt shapes shown in FIGS. 5A to 5C. In any case thereof, preferably, a height h of the line portions 4 is not less than 0.3 mm. When the height h is less than 0.3 mm, the effect of creating a vortex flow is insufficient. As shown in FIG. 4, it is preferable that the height h of the line portions 4 is not more than 20% of each of a groove width W and a groove depth H of the groove 2. When the height h of the line portions 4 is too large, reduction in the volume of the groove deteriorates the drainage in the case where the line portions 4 are ridges, and it is difficult to ensure an adequate rubber gauge between the groove bottom and an outermost belt layer in the case where the line portions are recesses.


Preferably, a pitch interval P of the line portions 4 is 1.5 to 8.0 mm. When the pitch interval P is out of the above range, the effect of creating a vortex flow is insufficient.


Preferably, the line portions 4 are formed in the entire wall face 3 of the groove 2. However, the line portions 4 made discontinuous or provided in a part of the wall face 3 of the groove 2 are also expected to offer the effect of creating a vortex flow. In these cases, the line portions 4 are required to be provided in a range of not less than 50% of the wall face 3 of the groove 2 in a cross-section of the groove 2 orthogonal to the grove longitudinal direction.


In the pneumatic tire provided with the line portions 4 in the side wall 3 of the groove 2 extending in the tire circumferential direction as described above, water flowed into the groove 2 flows along the line portions 4 spirally arranged to form a vortex flow and is efficiently discharged from the groove 2, for example, when traveling in the rain.


Herein, a description is given of the above discharging action with reference to FIGS. 6 and 7. As shown in FIG. 6, when a vehicle progresses in a direction indicated by an arrow R, water flowed into the groove 2 is discharged in a direction indicated by an arrow R′. At this time, since the water forms the vortex flow along the line portions 4 in the wall face 3, the water is accelerated to progress within the groove 2 and then discharged to the exterior. According to the amount of water accelerated and discharged, a negative pressure is created within the groove 2. Accordingly, a larger amount of water is drawn into the groove 2, and a larger amount of water is discharged off. Moreover, as shown in FIG. 7, water progressing within the groove 2 while forming the vortex flow moves toward the center position of the groove space while swirling. Accordingly, the contact resistance between water and the wall face of the groove is dramatically reduced, and the discharging action is assisted as a result. It is therefore possible to provide an excellent capability of preventing hydroplaning.


EXAMPLES

The pneumatic tires (Examples 1 to 5) of the present invention were fabricated as follows. In pneumatic tires (size: 205/60R15) each having the block pattern of FIG. 1, the line portions were provided in the wall face of the grooves extending in the tire circumferential direction, and the inclined angle a, height h, pitch interval P thereof were varied as shown in Table 1. For comparison, a conventional tire (Conventional Example) which was not provided with the line portions in the wall face of the grooves extending in the tire circumferential direction was fabricated. The grooves provided with the line portions had a groove width of 10 mm and a groove depth of 8 mm.


Each of these test tires was mounted on a domestically-produced car of 2.0 liter displacement and subjected to a hydroplaning test in straight running. In this hydroplaning test in straight running, the car was driven on a straight road provided with a pool having a water depth of 10 mm. The speed at which the car entered that pool was gradually increased, and the speed when hydroplaning occurred was measured. The evaluation results were shown in Table 1 by indices with the measured speed of Conventional Example being 100. Larger indices mean that the capability of preventing hydroplaning is more excellent.
















TABLE 1







Conventional
Example
Example
Example
Example
Example



Example
1
2
3
4
5






















Inclined angle α (°)

10
35
60
35
35


Pitch interval P (mm)

4
4
7
1.5
8


Height h (mm)

0.3
1.4
1.0
1.4
1.4


Hydroplaning preventing capability
100
105
110
108
108
108









As apparent from the table 1, the capability of preventing hydroplaning of the tires according to the present invention was superior to that of the conventional tire.


INDUSTRIAL APPLICABILITY

According to the present invention, in a pneumatic tire provided with a groove extending in the tire circumferential direction in the tread surface, the line portions composed of the plurality of ridges or recesses inclined in one direction with respect to the groove longitudinal direction are provided in the wall face of the groove. Water flowed into the groove extending in the tire circumferential direction is thereby positively discharged, and the capability of preventing hydroplaning can be enhanced.


Hereinabove, the preferred embodiment according to the present invention was described in detail, and it should be understood that various modifications, replacements, and substitutions can be made without departing from the spirit and the scope of the present invention as defined by the appended claims.

Claims
  • 1. A pneumatic tire comprising: a plurality of circumferential grooves extending in a tire circumferential direction in a tread surface having a width and a circumferential center;a plurality of lateral grooves extending from the circumferential grooves away from the circumferential center of the tread surface, the lateral grooves being open at their distal ends from the circumferential center of the tread surface and provided intermittently in the tire circumferential direction; andline portions provided in a wall face of the circumferential grooves, the line portions being composed of a plurality of ridges or recesses that are inclined from 10 ° to 35° with respect to the tire circumferential direction;wherein water can flow in the circumferential grooves along the line portions to form a vortex flow, and can be discharged from the circumferential grooves, andwherein the line portions are provided in a range of not less than 50% of the wall face of the circumferential grooves in a cross section of the circumferential grooves orthogonal to the groove longitudinal direction.
  • 2. The pneumatic tire according to claim 1, wherein a height of the line portions is not smaller than 0.3 mm and is not more than 20% of each of a width and depth of the circumferential grooves.
  • 3. The pneumatic tire according to claim 1, wherein a pitch interval of the line portions is 1.5 to 8.0 mm.
Priority Claims (1)
Number Date Country Kind
2002-341833 Nov 2002 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP03/14645 11/18/2003 WO 00 4/25/2005
Publishing Document Publishing Date Country Kind
WO2004/048130 6/10/2004 WO A
US Referenced Citations (7)
Number Name Date Kind
2268344 Shesterkin Dec 1941 A
4299264 Williams Nov 1981 A
5211779 Tomioka et al. May 1993 A
5535798 Nakamura Jul 1996 A
6415835 Heinen Jul 2002 B1
7004216 Godefroid Feb 2006 B2
20010032691 Ohsawa Oct 2001 A1
Foreign Referenced Citations (15)
Number Date Country
0 602 989 Jun 1994 EP
1 216 853 Jun 2002 EP
S60-3102 Jan 1985 JP
04-201606 Jul 1992 JP
06-099705 Apr 1994 JP
09-011708 Jan 1997 JP
10-076810 Mar 1998 JP
2000-318411 Nov 2000 JP
2001-287509 Oct 2001 JP
2002-036820 Feb 2002 JP
2002-219906 Aug 2002 JP
2003-054220 Feb 2003 JP
2003-146024 May 2003 JP
2003-312212 Nov 2003 JP
WO-9518022 Jul 1995 WO
Related Publications (1)
Number Date Country
20060090828 A1 May 2006 US