The technology relates to a pneumatic tire and particularly relates to a pneumatic tire that can provide improved separation resistance performance while maintaining performance on ice.
Studless tires are required to have good performance on ice and performance on snow, as well as good wet performance and rolling resistance. Accordingly, in recent years, a tread structure in which the rubber compound of the cap tread has an increased silica content has been employed.
However, because silica is a good insulator, the electrical resistance value of the cap tread increases when the silica content of the cap tread increases. Accordingly, the tire-to-road surface electrical discharge properties decrease and the electrostatic suppression performance of the tire decreases. Because of this, recent studless tires have employed an electrostatic suppressing structure including an earthing tread. The technologies described in Japan Patent Nos. 3964511 and 4220569 are known pneumatic tires using such a structure.
However, increasing the silica content of the cap tread increases the difference in modulus between the earthing tread and the cap tread. This increases the difference in ground contact pressure between the earthing tread and the cap tread, causing separation at the boundary face between the earthing tread and the cap tread to readily occur.
The present technology provides a pneumatic tire that can provided improved separation resistance performance while maintaining performance on ice.
A pneumatic tire according to an embodiment of the technology includes a carcass layer, a belt layer disposed outward of the carcass layer in a radial direction, a tread rubber disposed outward of the belt layer in a radial direction, and a plurality of main grooves and a plurality of blocks defined by the plurality of main grooves formed in a tread surface, the tread rubber including a cap tread forming the tread surface, an undertread disposed in a layer below the cap tread; and an earthing tread extending through the cap tread and exposed on a road contact surface of the block, a modulus at 300% elongation of the cap tread ranging from 3.0 Mpa to 7.0 Mpa, a modulus at 300% elongation of the undertread ranging from 10.0 Mpa to 20.0 Mpa, the earthing tread being made from a rubber material with a volume resistivity of 1×10̂7 Ω·cm or less, and the earthing tread being made from the same rubber material as the undertread and having an integral structure with the undertread.
In a pneumatic tire according to an embodiment of the technology, the modulus at 300% elongation of the cap tread ranging from 3.0 Mpa to 7.0 Mpa is advantageous in appropriately setting the modulus M_cap of the cap tread and thus improving the performance on ice (braking performance on ice) of the tire. Additionally, the earthing tread and the undertread having an integral structure made from the same rubber material is advantageous in effectively suppressing the separation at the boundary face between the earthing tread and thus the cap tread and improving the separation resistance performance of the tire.
Embodiments of the technology are described in detail below with reference to the drawings. However, the technology is not limited to these embodiments. Moreover, constituents of the embodiments include elements that are substitutable while maintaining consistency with the technology, and obviously substitutable elements. Furthermore, the modified examples described in the embodiments can be combined as desired within the scope apparent to one skilled in the art.
The pneumatic tire 1 has an annular structure with the tire rotation axis as its center and includes a pair of bead cores 11, 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, a tread rubber 15, a pair of sidewall rubbers 16, 16, and a pair of rim cushion rubbers 17, 17 (see
The carcass layer 13 extends between the left and right bead cores 11, 11 in a toroidal shape, forming the framework of the tire. Additionally, both end portions of the carcass layer 13 are turned back outwardly in the tire lateral direction to wrap around the bead cores 11 and the bead fillers 12 and fixed. The carcass layer 13 is made by performing a rolling process on coating rubber-covered plural carcass cords made of steel or an organic fiber material (e.g. aramid, nylon, polyester, rayon, or the like). The carcass layer 13 has a carcass angle (inclination angle of the fiber direction of the carcass cords with respect to the tire circumferential direction), as an absolute value from 80 degrees to 95 degrees. Note that in the configuration of
The belt layer 14 is a multilayer structure including a pair of cross belts 141, 142 and a belt cover 143 and is disposed around the outer circumference of the carcass layer 13. The pair of cross belts 141, 142 are made by performing a rolling process on coating rubber-covered plural belt cords made of steel or an organic fiber material. The cross belts 141, 142 have a belt angle, as an absolute value, from 20 degrees to 40 degrees. Furthermore, the pair of cross belts 141, 142 have belt angles (inclination angle of the fiber direction of the belt cords with respect to the tire circumferential direction) of opposite signs, and the belts are layered so that the fiber directions of the belt cords intersect each other (crossply structure). The belt cover 143 is made by performing a rolling process on coating-rubber-covered plural belt cords made of steel or an organic fiber material. The belt cover 143 has a belt angle, as an absolute value, from −10 to 10 degrees. The belt cover 143 is disposed in a layered manner outward of the cross belts 141, 142 in the tire radial direction.
The tread rubber 15 is disposed outward of the carcass layer 13 and the belt layer 14 in the tire radial direction and constitutes a tread portion. The tread rubber 15 includes a cap tread 151, an undertread 152, and left and right wing tips 153, 153. The cap tread 151 includes a tread pattern and constitutes the exposed portion of the tread rubber 15 (tread contact surface or the like). The undertread 152 is disposed between the cap tread 151 and the belt layer 14 and constitutes the base portion of the tread rubber 15. The wing tips 153 are disposed at left and right end portions of the cap tread 151 in the tire lateral direction and constitute a part of the buttress portion.
For example, in the configuration of
The pair of sidewall rubbers 16, 16 are disposed outward of the carcass layer 13 in the tire lateral direction and constitute left and right sidewall portions. For example, in the configuration of
The pair of rim cushion rubbers 17, 17 are disposed outward of the left and right bead cores 11, 11 and the bead fillers 12, 12 in the tire lateral direction, and constitute left and right bead portions. For example, in the configuration of
Additionally, the pneumatic tire 1 includes a plurality of circumferential grooves 21 to 24 extending in the tire circumferential direction and a plurality of land portions 31 to 33 defined by the circumferential main grooves 21 to 23 in the tread surface (see
“Main groove” is a groove required to display a wear indicator as specified by the Japan Automobile Tyre Manufacturers Association (JATMA) and typically has a groove width of 5.0 mm or greater and a groove depth of 6.5 mm or greater. “Lug groove” is a lateral groove extending in the tire lateral direction and typically has a groove width of 1.0 mm or greater and a groove depth of 3.0 mm or greater. “Sipe”, described below, is a cut formed in the tread contact surface and typically has a sipe width of less than 1.0 mm and a sipe depth of 2.0 mm or greater, and closes when the tire comes into contact with the ground.
The groove width is the maximum distance between the left and right groove walls at the groove opening portion and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. In configurations in which the land portions include notch portions or chamfered portions on the edge portions thereof, the groove width is measured with reference to the intersection points where the tread contact surface and extension lines of the groove walls meet, when viewed in a cross-section normal to the groove length direction. Additionally, in configuration in which the grooves extend in a zigzag-like or wave-like manner in the tire circumferential direction, the groove width is measured with reference to the center line of the amplitude of the groove walls.
The groove depth is the maximum distance from the tread contact surface to the groove bottom and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. Additionally, in configurations in which the grooves include a ridged/grooved portion or sipes on the groove bottom, the groove depth is measured excluding these portions.
The sipe width is the maximum distance of the opening width of the sipe at the road contact surface of the land portion and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state.
The sipe depth is the maximum distance from the tread contact surface to the sipe bottom and is measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state. Additionally, in configurations in which the sipes include a partially ridged/grooved portion on the groove bottom, the sipe depth is measured excluding these ridged/grooved portions.
“Specified rim” refers to an “applicable rim” defined by the Japan Automobile Tyre Manufacturers Association Inc. (JATMA), a “Design Rim” defined by the Tire and Rim Association, Inc. (TRA), or a “Measuring Rim” defined by the European Tyre and Rim Technical Organisation (ETRTO).
Additionally, “specified internal pressure” refers to a “maximum air pressure” defined by JATMA, to the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, and to “INFLATION PRESSURES” defined by ETRTO. Additionally, “specified load” refers to a “maximum load capacity” defined by JATMA, the maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “LOAD CAPACITY” defined by ETRTO. However, in the case of JATMA, for a passenger vehicle tire, the specified internal pressure is an air pressure of 180 kPa, and the specified load is 88% of the maximum load capacity.
For example, in the configuration of
Note that no such limitation is intended, and three or five or more circumferential grooves may be disposed, or a circumferential main groove may be disposed instead of the circumferential narrow groove 24 of
In the configuration of
In the configurations illustrated in
The pneumatic tire 1 preferably has a designated mounting direction on a vehicle when the pneumatic tire 1 is mounted on the vehicle such that the circumferential narrow groove 24 side (see
The pneumatic tire 1 is preferably a snow tire, particularly a studless tire. The indicator portion indicating that it is a studless tire, for example, is constituted by a mark or ridges/grooves on the sidewall portion of the tire.
Studless tires are required to have good performance on ice and performance on snow, as well as good wet performance and rolling resistance.
Accordingly, in recent years, a tread structure in which the rubber compound of the cap tread has an increased silica content has been employed.
However, because silica is a good insulator, the electrical resistance value of the cap tread increases when the silica content of the cap tread increases. Accordingly, the tire-to-road surface electrical discharge properties decrease and the electrostatic suppression performance of the tire decreases. Because of this, recent studless tires have employed an electrostatic suppressing structure including an earthing tread.
However, increasing the silica content of the cap tread decreases the modulus of the cap tread and increases the difference in modulus between the earthing tread and the cap tread. This increases the ground contact pressure of the earthing tread and increases the difference in ground contact pressure between the earthing tread and the cap tread. Accordingly, separation at the boundary face between the earthing tread and the cap tread, step wear between the earthing tread and the cap tread, and the like readily occur. In particular, to ensure performance on ice and performance on snow, generally a studless tire is given a block pattern with multiple sipes and a deep groove depth. Also, to ensure block rigidity, the gauge of the undertread is set thicker than that of summer tires. Thus, separation and step wear such as that described above tends to be generated.
To ensure performance on ice and electrostatic suppression performance and also to suppress separation and step wear at the block road contact surface, the pneumatic tire 1 has the following configuration.
The cap tread 151 is made from a rubber material with a volume resistivity of 1×10̂10 Ω·cm or greater. For the cap tread 151, for example, an insulating rubber material is used that contains 65 parts by weight or greater of silica blended with 100 parts by weight of a rubber base material and 30 parts by weight or less of carbon black, preferably 10 parts by weight or less of carbon black, and more preferably substantially no carbon black. Note that the rubber base material may be produced from, for example, one kind of diene rubber such as natural rubber (NR), styrene-butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR) or a combination of two or more kinds. Additionally, for example, sulfur, a vulcanization accelerator, an anti-aging agent, and other known additives may also be added.
The volume resistivity is measured in accordance with the method specified in JIS(Japanese Industrial Standard)-K6271 “Rubber, vulcanized or thermoplastic—Determination of volume and/or surface resistivity”. Typically, a member with an electric resistivity of less than 1×10̂8 Ω·cm can be considered to have electrical conductivity sufficient to suppress a buildup of static electricity.
A modulus M_cap at 300% elongation of the cap tread 151 is preferably in the range 3.0 Mpa≤M_cap≤7.0 Mpa and more preferably in the range 4.0 Mpa≤M_cap≤6.0 Mpa. By appropriately setting the modulus M_cap of the cap tread 151 in this manner, the performance on ice of the tire is increased and the wet performance and low rolling resistance of the tire is ensured.
The modulus (strength at break) is measured by a tensile test using a dumbbell-shaped test piece at a temperature of 20° C. in accordance with JIS-K6251 (using No. 3 dumbbell).
The value R_cap of carbon black volume fraction×dibutyl phthalate oil absorption number/100 for the cap tread 151 is preferably in the range 5≤R_cap≤15 and more preferably in the range 7≤R_cap≤10. By appropriately setting the modulus value R_cap of the cap tread 151 in this manner, the performance on ice of the tire is ensured.
The carbon black volume fraction is defined as the proportion of the volume of a carbon black to the total volume of all components in the mixture. The dibutyl phthalate oil absorption number is defined as the amount of dibutyl phthalate that carbon black can absorb and is measured in accordance with Oil Absorption Method A of JIS-K6217-4.
The rubber hardness H_cap of the cap tread 151 is preferably in the range 45≤H_cap≤70 and more preferably in the range 46≤H_cap≤55. Accordingly, the rubber hardness H_cap of the cap tread 151 is set in a range lower than that of a typical summer tire. By appropriately setting the rubber hardness H_cap of the cap tread 151 in this manner, the performance on ice and performance on snow of the tire is increased and the wet performance and low rolling resistance of the tire is ensured.
Herein, the rubber hardness is measured as JIS-A hardness in accordance with JIS-K6253.
The loss tangent tan δ_cap of the cap tread 151 is preferably in the range 0.05≤tan δ_cap≤0.30 and more preferably in the range 0.12≤tan δ_cap≤0.20. By appropriately setting the loss tangent tan δ_cap of the cap tread 151 in this manner, the wet performance and low rolling resistance of the tire is ensured.
The loss tangent tan δ is measured using a viscoelastic spectrometer available from Toyo Seiki Seisaku-sho, Ltd., under conditions of a temperature of 60° C., a shear strain of 10%, an amplitude of ±0.5%, and a frequency of 20 Hz.
The undertread 152 is made from a rubber material with a volume resistivity of 1×10̂7 Ω·cm or less. By the undertread 152 having such low resistivity, an electrically conductive path from the belt layer 14 through the undertread 152 to the earthing tread 7 is ensured. This undertread 152, for example, is produced by blending 40 parts by weight or greater of carbon black and preferably from 45 to 70 parts by weight with 100 parts by weight of a diene rubber base material. To increase electrical conductivity, for example, an electrostatic suppression agent, an electrical conductive plasticizer, a metal salt, and other conductive agents may be added.
A modulus M_ut at 300% elongation of the undertread 152 is preferably in the range 10.0 Mpa≤M_ut≤20.0 Mpa and more preferably in the range 13.0 Mpa≤M_ut≤18.0 Mpa. Accordingly, the modulus M_ut of the undertread 152 is greater than the modulus M_cap of the cap tread 151. Specifically, the modulus M_cap of the cap tread 151 and the modulus M_ut of the undertread 152 have the relationship 7.0 Mpa≤M_ut−M_cap≤14.0 Mpa.
The value R_ut of carbon black volume fraction×dibutyl phthalate oil absorption number/100 for the undertread 152 is preferably in the range 15≤R_ut≤35 and more preferably in the range 16≤R_ut≤25. The value R_ut of the undertread 152 is greater than the value R_cap of the cap tread 151.
Specifically, the value R_cap of the cap tread 151 and the value R_ut of the undertread 152 have the relationship 5≤R_ut−R_cap≤18.
The rubber hardness H_ut of the undertread 152 is preferably in the range 53≤H_ut≤78 and more preferably in the range 55≤H_ut≤70. The rubber hardness H_ut of the undertread 152 is greater than the rubber hardness H_cap of the cap tread 151. Specifically, the rubber hardness H_cap of the cap tread 151 and the rubber hardness H_ut of the undertread 152 have the relationship 5≤H_ut−H_cap≤25. In this way, the undertread 152 appropriate ensures the rigidity of the blocks 5.
The loss tangent tan δ_ut of the undertread 152 is preferably in the range 0.03≤tan δ_ut≤0.25 and more preferably in the range 0.10≤tan δ_ut≤0.15. The loss tangent tan δ_ut of the undertread 152 is less than the loss tangent tan δ_cap of the cap tread 151. Specifically, the loss tangent tan δ_cap of the cap tread 151 and the loss tangent tan δ_ut of the undertread 152 have the relationship 0.01≤tan δcap−tan δ_ut and more preferably the relationship 0.02≤tan δcap−tan δ_ut. In such a configuration, using the undertread 152 with low heat build-up suppresses separation at the contact portions between the undertread 152 and the cap tread 151 and also between the undertread 152 and the belt layer 14.
The cord rubber of the carcass layer 13, the coating rubber of the belt plies 141 to 143 of the belt layer 14, and the rim cushion rubbers 17 are made from a rubber material with a volume resistivity of 1×10̂7 Ω·cm or less.
The earthing tread 7 is an electrically conductive rubber member that extends through the cap tread 151 and is exposed on the tread contact surface. The earthing tread 7 constitutes an electrically conductive path from the tire interior to the road surface.
The earthing tread 7 is made from a rubber material with an electric resistivity lower than that of the cap tread 151. Specifically, the earthing tread 7 is preferably made from a rubber material with a volume resistivity of 1×10̂7 Ω·cm or less. This earthing tread 7, for example, is produced by blending 40 parts by weight or greater of carbon black and preferably from 45 to 70 parts by weight with 100 parts by weight of a diene rubber base material. To increase electrical conductivity, for example, an electrostatic suppression agent, an electrical conductive plasticizer, a metal salt, and other conductive agents may be added.
A modulus M_ea at 300% elongation of the earthing tread 7 is preferably in the range 10.0 Mpa≤M_ea≤20.0 Mpa and more preferably in the range 13.0 Mpa≤M_ea≤18.0 Mpa. Accordingly, the modulus M_ea of the earthing tread 7 is greater than the modulus M_cap of the cap tread 151. As a result, the block rigidity of the blocks 5 appropriately ensured. Specifically, the modulus M_cap of the cap tread 151 and the modulus M_ea of the earthing tread 7 have the relationship 7.0 Mpa≤M_ea−M_cap≤14.0 Mpa.
The value R_ea of carbon black volume fraction×dibutyl phthalate oil absorption number/100 for the earthing tread 7 is preferably in the range 15≤R_ea≤35 and more preferably in the range 16≤R_ea≤25. The value R_ea of the earthing tread 7 is greater than the value R_cap of the cap tread 151. Specifically, the value R_cap of the cap tread 151 and the value R_ea of the earthing tread 7 have the relationship 5≤R_ea−R_cap≤18.
The rubber hardness H_ea of the earthing tread 7 is preferably in the range 53≤H_ea≤78 and more preferably in the range 55≤H_ea≤70. The rubber hardness H_ea of the earthing tread 7 is greater than the rubber hardness H_cap of the cap tread 151. Specifically, the rubber hardness H_cap of the cap tread and the rubber hardness H_ea of the earthing tread 7 have the relationship 5≤H_ea−H_cap≤25.
The loss tangent tan δ_ea of the earthing tread 7 is preferably in the range 0.03≤tan δ_ea≤0.25 and more preferably in the range 0.10≤tan δ_ea≤0.15. The loss tangent tan δ_ea of the earthing tread 7 is less than the loss tangent tan δ_cap of the cap tread 151. Specifically, the loss tangent tan δ_cap of the cap tread 151 and the loss tangent tan δ_ea of the earthing tread 7 have the relationship 0.01≤tan δ_cap−tan δ_ea and more preferably the relationship 0.02≤tan δ_cap−tan δ_ea. In such a configuration, using the earthing tread 7 (and the undertread 152) with low heat build-up suppresses separation at the contact portion between the earthing tread 7 and the cap tread 151.
In the configuration described above, static electricity generated in the vehicle, when traveling, is discharged from a rim 10, through the rim cushion rubbers 17 and the carcass layer 13, to the belt layer 14, then from the belt layer 14, through the undertread 152 and the earthing tread 7 to the road surface. This prevents the vehicle from having a charge. As the rim cushion rubbers 17, the coating rubber of the carcass layer 13 and the coating rubber of the belt layer 14 form an electrically conductive path, these components preferably have a low electric resistivity.
In the pneumatic tire 1, the earthing tread 7 is made from the same rubber material as the undertread 152. Thus, the earthing tread 7 has the same physical properties as the undertread 152. In the manufactured tire after vulcanization molding, the earthing tread 7 has an integral structure with the undertread 152. For example, the earthing tread 7 and the undertread 152 may be formed from a single piece of unvulcanized rubber formed in a predetermined shape or may be formed from a plurality of separate unvulcanized rubber pieces.
The boundary between the earthing tread 7 and the undertread 152 in a manufactured tire is not strictly defined, but can be generally understood as follows. In a cross-sectional view in the tire meridian direction, the undertread 152 can be understood as a base rubber with a broad width that is inserted between the cap tread 151 and the belt layer 14 and extends across the entire tread region. The earthing tread 7 can be understood as a rubber portion with a narrow width that projects in a branch-like manner from the undertread 152 toward the block road contact surface and is exposed on the block road contact surface. The connection portion between the broad base rubber and the narrow rubber portion can be understood as the boundary between the earthing tread 7 and the undertread 152. A typical earthing tread 7 has an overall narrow rectangular or trapezoidal shape. Additionally, at the connection portion with the undertread 152, the earthing tread 7 gradually widens as it extends towards the undertread 152 (see
As described above, in a configuration in which the rubber material of the cap tread 151 and the rubber material of the earthing tread 7 differ greatly in terms of physical properties, separation at the boundary face between the earthing tread and the cap tread, step wear between the earthing tread and the cap tread, and the like readily occur. In particular, to ensure performance on ice and performance on snow, generally a studless tire is given a block pattern with multiple sipes and a deep groove depth. Also, to ensure block rigidity, the gauge of the undertread 152 is set thicker than that of summer tires. Thus, separation and step wear such as that described above tends to be generated.
On this point, in the configuration described above, the earthing tread 7 and the undertread 152 have an integral structure made from the same rubber material. This suppresses separation caused by a difference in rigidity between members and effectively suppresses separation at the block road contact surface.
The pneumatic tire 1 employs a block pattern generally used for studless tires. By the blocks 5 each including a plurality of sipes 6 (see
The earthing tread 7 extends through the cap tread 151 and exposed on the road contact surface of the block 5 of the center land portion 33 (see
As illustrated in
Specifically, in a cross-sectional view in the tire meridian direction, a line running parallel with the road contact surface of the block 5 through a point 20% of a maximum groove depth H0 of the main groove 23 from the maximum groove depth position of the main grooves 22, 23 is defined as an imaginary line L (the dot-dash line in the drawing). In a case in which the groove depths of the left and right main grooves 22, 23 of the block 5 differ, the imaginary line L is defined in reference to the maximum groove depth H0 of the deeper main groove. In such a case, a width W1 of all of the road contact surface of the block 5 and a total width W2 of the portion of the undertread 152 projecting outward in the tire radial direction beyond the imaginary line L preferably have the relationship 0.60≤W2/W1 and more preferably have the relationship 0.70≤W2/W1. The upper limit of the ratio W2/W1 in not particularly limited, but is subject to restrictions depending on the width of the block 5 at a position 20% of the maximum groove depth H0.
The maximum groove depth H0 of the main grooves 21 to 23 are preferably in the range 6.5 mm≤H0, and more preferably in the range 7.5 mm≤H0. Accordingly, the depth of the main grooves 21 to 23 is deeper than that of a typical summer tire. The upper limit of H0 is not particularly limited, but is subject to restrictions in relation to the tread gauge as the groove bottom of the main groove 23 is required to not reach the belt layer 14.
The width W1 of all of the ground contact region of the block 5 is measured as the width of the ground contact region of the block, when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state.
The ground contact region of the block 5 is defined at a contact surface between a tire and a flat plate when the tire is mounted on a specified rim, inflated to the specified internal pressure, placed vertically on the flat plate in a static state, and loaded with a load corresponding to the specified load.
In a configuration in which a plurality of portions of the undertread 152 project beyond the imaginary line L, the total width W2 of the portion of the undertread 152 is calculated by finding the sum of the widths of each portion.
As illustrated in
The gauge Ga of the undertread 152, in a cross-sectional view in the tire meridian direction, is measured as the thickness of the undertread 152 in the groove depth direction of the main grooves 22, 23 (i.e., height direction of the block 5). The gauge Ga of the undertread 152 is defined for respective regions on the left and the right of the earthing tread 7. In the configuration of
For example, in the configuration of
Additionally, the undertread 152 includes the thickened portions 1521, 1521 in regions between the earthing tread 7 and the left and right edge portions of the block 5. The thickened portion 1521 includes a top surface with an arc shape that projects outward in the tire radial direction. The exposed portion of the earthing tread 7 on the block road contact surface and a maximum projection portion of the thickened portion 1521 are located at different positions in the block width direction. The boundary line between the cap tread 151 and the undertread 152 has a shape smoothly recessed inward in the tire radial direction between the earthing tread 7 and the thickened portion 1521 and also partially includes a region parallel with the road contact surface of the block 5. The undertread 152 has a square-shoulder shape protruding outward in the tire radial direction on the left and right side of the earthing tread 7.
The undertread 152 gradually decreases in thickness from the maximum projection position of the thickened portion 1521 toward the left and right edge portions of the block 5 and reaches the circumferential main grooves 22 (23). Thus, the outer circumferential surface of the undertread 152 (i.e., the boundary face with the cap tread 151) is curved in a gentle S-shape from the thickened portion 1521 toward the groove bottom of the circumferential main groove 22 (23). Additionally, at the groove walls and the groove bottoms of the circumferential main grooves 22, 23, the cap tread 151 is exposed but the undertread 152 is not exposed.
As illustrated in
In a region between the earthing tread 7 and the point P1, a point P2 is defined on the outer circumferential surface of the undertread 152 where the gauge Ga of the undertread 152 is a minimum value Ga2. The point P2 is located at or near the base of the earthing tread 7 in the block 5, or in other words, at or near the connection portion between the earthing tread 7 and the undertread 152.
For example, in the configuration of
In the configuration of
On this point, in the configuration of
Additionally, as illustrated in
Additionally, a distance H2 in the groove depth direction of the circumferential main groove 22 (23) from the maximum depth position of the circumferential main groove 23 (22) to the point P2 (defined as the point where the gauge Ga of the undertread 152 in the region between the earthing tread 7 and the point P1 is the minimum value Ga2) and the maximum groove depth H0 of the circumferential main groove 23 (22) preferably have the relationship 0.20≤H2/H0 and more preferably have the relationship 0.30≤H2/H0. In this way, the gauge Ga of the undertread 152 between the earthing tread 7 and the thickened portion 1521 is appropriately reduced, and the difference in ground contact pressure at the block road contact surface at the boundary portion between the earthing tread 7 and the cap tread 151 is made uniform. Note that the upper limit of the ratio H2/H0 is not particularly limited, but is subject to restrictions in relation to other conditions.
The distances H1, H2 are measured when the tire is mounted on a specified rim, inflated to the specified internal pressure, and in an unloaded state.
Additionally, the maximum value Ga1 of the gauge Ga of the undertread 152 in the region between the earthing tread 7 and the edge portion of the block 5 and the minimum value Ga2 of the gauge Ga of the undertread 152 in the region between the earthing tread 7 and the point P1 preferably have the relationship 0.5 mm≤Ga1−Ga2≤3.0 mm and more preferably have the relationship 1.0 mm≤Ga1−Ga2≤2.0 mm. In this way, the protrusion amount (gauge difference Ga1−Ga2) of the thickened portion 1521 of the undertread 152 can be appropriately set.
Additionally, width W3 (W31, W32) of the road contact surface of the block 5 in the region between the earthing tread 7 and the left and right edge portions of the block 5 and the width W1 (see
A distance D1 in the tire lateral direction from the point P1 to the edge portion in the block 5 and the width W3 of the road contact surface of the block 5 in the region between the earthing tread 7 and the edge portion of the block 5 preferably have the relationship 0.02≤D1/W3≤0.25 and more preferably have the relationship 0.05≤D1/W3≤0.20. In this way, the position of the point P1 where the gauge Ga of the undertread 152 is the maximum is appropriately set.
A width W4 of the thickened portion 1521 of the undertread 152 and the width W3 of the road contact surface of the block 5 in the region between the earthing tread 7 and the edge portion of the block 5 preferably have the relationship 0.30≤W4/W3≤0.70 and more preferably have the relationship 0.50≤W4/W3≤0.60. In this way, the width W4 of the thickened portion 1521 is appropriately set.
The width W4 of the thickened portion 1521 is measured in according with the following definitions. As illustrated in
As illustrated in
The width We1 is measured as the width in the tire lateral direction of the exposed portion of the earthing tread 7 at the road contact surface of the block 5.
The width We2 is measured in the following manner. Firstly, as illustrated in
As illustrated in
As described above, in a configuration in which the earthing tread 7 and the cap tread 151 differ greatly in terms of physical properties, the difference in ground contact pressure acting on both when the tire comes into contact with the ground increases and separation and step wear tend to occur at the boundary between the two. On this point, in the configuration described above, as the sipes 6 extend through the earthing tread 7 in the road contact surface of the block 5, the difference in ground contact pressure between the earthing tread 7 and the cap tread 151 is alleviated. This suppresses the separation and step wear described above to be generated.
For example, in the configuration of
As illustrated in
In a configuration in which the bottom portion of the sipe 6 and the boundary face between the cap tread 151 and the undertread 152 has the same position, cracking originating from the bottom portion of the sipe 6 tend to be generated. On this point, in the configuration described above, as the bottom portion of the sipe 6 and the boundary face between the cap tread 151 and the undertread 152 are disposed offset from one another in the tire radial direction, the cracking described above is suppressed to be generated.
For example, in the configuration of
As illustrated in
In such a configuration, by the narrow shallow grooves 8 taking in and removing a water film formed between an icy road surface and the block road contact surface when the tire comes into contact with the ground, the braking performance on ice of the tire is improved. Additionally, as the narrow shallow grooves 8 extend through the earthing tread 7 in the road contact surface of the block 5, the difference in ground contact pressure between the earthing tread 7 and the cap tread 151 is alleviated. This suppresses the separation and step wear described above to be generated.
For example, in the configuration of
Additionally, as described above, in a configuration in which the narrow shallow grooves 8 have a linear shape, an angle θ formed between the longitudinal direction of the narrow shallow grooves 8 and the tire circumferential direction is preferably in the range 20 degrees≤θ≤90 degrees and more preferably in the range 40 degrees≤θ≤60 degrees. The arrangement interval of the narrow shallow grooves 8 preferably ranges from 0.5 mm to 1.5 mm and more preferably ranges from 0.7 mm to 1.2 mm. As a result, the water film removing function of the narrow shallow grooves 8 is appropriately ensured, and the ground contact area of the block 5 is ensured.
In the configuration of
However, no such limitation is intended, and the earthing tread 7 may be disposed closer to one of the edge portions of the block 5 (see
Additionally, the undertread 152 may include the thickened portion 1521 in only one of the regions to the left and right of the earthing tread 7 (see
For example, in the configurations of
Additionally, for example, in the configuration of
As described above, the pneumatic tire 1 includes the carcass layer 13, the belt layer 14 disposed outward of the carcass layer 13 in the tire radial direction, and the tread rubber 15 disposed outward of the belt layer 14 in the tire radial direction. Also, the pneumatic tire 1 includes, in the tread surface, the plurality of main grooves 21 to 23 and the plurality of block 5 defined by the main grooves 21 to 23 (see
In such a configuration, (1) the tire is provided with the earthing tread 7 having a predetermined volume resistivity to form an electrically conductive path from the tire interior to the block road contact surface. As a result, there is an advantage that the electrostatic suppression performance of the tire is secured.
Additionally, (2) the modulus at 300% elongation of the cap tread 151 ranging from 3.0 Mpa to 7.0 Mpa is advantageous in appropriately setting the modulus M_cap of the cap tread 151. In other words, by the modulus of the cap tread 151 being 3.0 Mpa or greater, the wet performance and low rolling resistance of the tire is ensured. Also, by the modulus of the cap tread 151 being 7.0 Mpa or less, the performance on ice (in particular, braking performance on ice) of the tire is improved.
Furthermore, (3) in a configuration in which the modulus of the cap tread 151 is within a low range such as that described above, separation may be generated at the boundary face between the cap tread 151 and the earthing tread 7. In particular, to ensure performance on ice and performance on snow, a studless tire includes a block pattern with multiple sipes. Also, to ensure block rigidity, the gauge of the undertread 152 is set thicker than that of summer tires. Thus, separation such as that described above tends to be generated. On this point, in the configuration described above, by the earthing tread 7 and the undertread 152 having an integral structure made from the same rubber material, separation at the boundary face between the earthing tread 7 and the cap tread 151 is effectively suppressed. As a result, there is an advantage that the separation resistance performance of the tire is improved.
In the pneumatic tire 1, the value R_cap of carbon black volume fraction×dibutyl phthalate oil absorption number/100 for the cap tread 151 is in the range 5≤R_cap≤15, and the value R_ut of carbon black volume fraction×dibutyl phthalate oil absorption number/100 for the undertread 152 is in the range 15≤R_ut≤35. This is advantageous in that the values described above of the cap tread 151 and the undertread 152 can be appropriately set.
Additionally, in the pneumatic tire 1, the modulus M_cap of the cap tread 151 and the modulus M_ea of the earthing tread 7 have the relationship 5.0 Mpa≤M_ea−M_cap. In a configuration in which the cap tread 151 and the earthing tread 7 differ greatly in terms of physical properties, separation at the boundary face between the two and step wear between the two caused by a difference in ground contact pressure between the two tends to occur. This is advantageous, by applying to such a configuration, in effectively obtaining a suppression effect of the separation at the boundary face between the earthing tread 7 and the cap tread 151 and the step wear between the earthing tread 7 and the cap tread 151.
In the pneumatic tire 1, the rubber hardness H_cap of the cap tread 151 and the rubber hardness H_ea of the earthing tread 7 have the relationship 5≤H_ea−H_cap. In a configuration in which the cap tread 151 and the earthing tread 7 differ greatly in terms of physical properties, separation at the boundary face between the two and step wear between the two caused by a difference in ground contact pressure between the two tends to occur. This is advantageous, by applying to such a configuration, in effectively obtaining a suppression effect of the separation at the boundary face between the earthing tread 7 and the cap tread 151 and the step wear between the earthing tread 7 and the cap tread 151.
In the pneumatic tire 1, the width W1 of all of the road contact surface of the block 5 and the total width W2 of the portion of the undertread 152 that projects outward in the tire radial direction beyond the imaginary line L (in a cross-sectional view in the tire meridian direction, the line running parallel with the road contact surface of the block 5 through a point 20% of a maximum groove depth H0 of the main groove 22, 23 from the maximum groove depth position of the main grooves 22, 23 is defined as the imaginary line L) have the relationship 0.60≤W2/W1 (see
In the pneumatic tire 1, the undertread 152 includes a thickened portion 1521 in a region between the earthing tread 7 and at least one of the edge portions of the block 5 (see
In the pneumatic tire 1, the distance H1 in the groove depth direction of the main groove 23 (22) from the maximum depth position of the groove 23 (22) to the point P1 (the point P1 is defined as the point on the outer circumferential surface of the undertread 152 where the gauge Ga of the undertread 152 is at the maximum value, in the region between the earthing tread 7 and the edge portion of the block 5) and the maximum groove depth H0 of the main groove 23 (22) have the relationship H1/H0≤0.50 (see
In the pneumatic tire 1, the distance H2 in the groove depth direction of the circumferential main groove 22 (23) from the maximum depth position of the main groove 23 (22) to the point P2 (defined as the point where the gauge Ga of the undertread 152 in the region between the earthing tread 7 and the point P1 is the minimum value Ga2) and the maximum groove depth H0 of the main groove 23 (22) have the relationship 0.20≤H2/H0 (see
In the pneumatic tire 1, the gauge Ga1 at point P1 and gauge Ga2 at point P2 of the undertread 152 have the relationship 0.5 mm≤Ga1−Ga2≤3.0 mm (see
In the pneumatic tire 1, the width W3 of the road contact surface of the block 5 in the region between the earthing tread 7 and the edge portion of the block 5 and the width W1 of all of the road contact surface of the block 5 have the relationship 0.20≤W3/W1 (see
In the pneumatic tire 1, the distance D1 in the tire lateral direction from the point P1 to the edge portion in the block 5 and the width W3 of the road contact surface of the block 5 in the region between the earthing tread 7 and the edge portion of the block 5 have the relationship 0.02≤D1/W3≤0.25 (see
In the pneumatic tire 1, the width W4 of the thickened portion 1521 of the undertread 152 and the width W3 of the road contact surface of the block 5 in the region between the earthing tread 7 and the edge portion of the block 5 have the relationship 0.30≤W4/W3≤0.70 (see
In the pneumatic tire 1, the width We1 of the earthing tread 7 at the road contact surface of the block 5 and the width We2 of the earthing tread 7 at the connection portion with the undertread 152 have the relationship We1≤We2 (see
Additionally, in the pneumatic tire 1, the block 5 includes the plurality of sipes 6 (see
In the pneumatic tire 1, the block 5 includes a plurality of narrow shallow grooves 8 that extend through the earthing tread 7 in the tire lateral direction in the road contact surface of the block 5 (see
In the performance tests, a plurality of mutually differing pneumatic tires were evaluated for (1) braking performance on ice, (2) electrostatic suppression performance (electrical resistance value), and (3) separation resistance performance (see
(1) In the evaluation relating to braking performance on ice, the test vehicle was driven on a predetermined icy road surface and the braking distance from a travel speed of 40 km/h was measured. The measurement results are expressed as index values and evaluated with the Conventional Example being assigned as the reference (100). In this evaluation, larger values are preferable.
(2) In the evaluation relating to electrostatic suppression performance, a voltage of 1000 V was applied under conditions of 23° C. temperature and 50% humidity and the resistance value (S2) between the tread contact surface and the rim was measured. Lower values indicate superior discharge properties, which is preferable.
(3) In the evaluation relating to separation resistance performance, durability testing using an indoor drum testing machine was conducted, and the running distance until tire failure was measured. The measurement results are expressed as index values and evaluated with the Conventional Example being assigned as the reference (100). In this evaluation, larger values are preferable.
The structures of the test tires according to Examples 1 to 10 are illustrated in
The block of the test tires of the Conventional Example and the Comparative Example have the internal structure illustrated in
As can be seen from the test results, the pneumatic tires 1 of Examples 1 to 10 have improved braking performance on ice, electrostatic suppression performance, and separation resistance performance.
Number | Date | Country | Kind |
---|---|---|---|
2016-172197 | Sep 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/028639 | 8/7/2017 | WO | 00 |