The present technology relates to a pneumatic tire, and more specifically, to a pneumatic tire having improved uneven wear resistance performance.
Low profile heavy duty tires mounted on trucks and buses and the like demonstrate suppression of tire radial growth in the center region and demonstrate uniformity of contact pressure distribution in the tire width direction due to the disposition of a circumferential reinforcing layer in the belt layer. Conventional pneumatic tires using such a configuration are disclosed in Japanese Patent Nos. 4642760B, 4663638B and 4663639B, as well as Japanese Unexamined Patent Application Publication Nos. 2009-1092A, 2006-111217A, and 2006-183211A.
However, there is a problem in that tire uneven wear resistance performance of the pneumatic tires needs to be improved.
The present technology provides a pneumatic tire with improved tire uneven wear resistance performance in a configuration with a circumferential reinforcing layer.
A pneumatic tire according to the present technology includes a carcass layer, a belt layer that is disposed on the outer side in a tire radial direction of the carcass layer, a tread rubber that is disposed on the outer side in the tire radial direction of the belt layer, at least three circumferential main grooves extending in a tire circumferential direction, and a plurality of land portions that are defined by the circumferential main grooves. In such a pneumatic tire, the belt layer includes an inner-side cross belt and outer-side cross belt having belt angles of not less than 46° and not more than 80° as absolute values with respect to the tire circumferential direction, the belt angles having mutually opposite signs, a circumferential reinforcing layer having a belt angle satisfying a range of ±5° with respect to the tire circumferential direction, and disposed between the inner-side cross belt and outer-side cross belt, and a supplemental belt having a belt angle of not less than 10° and not more than 45° as an absolute value with respect to the tire circumferential direction, and disposed on the outer side in the tire radial direction of the outer-side cross belt; and the supplemental belt and the outer-side cross belt having belt angles of mutually opposite signs.
In the pneumatic tire of this technology, the pair of cross belts function as high-angle belts to ensure stiffness in the tire width direction. The circumferential reinforcing layer and supplemental belt also function as low-angle belts to ensure stiffness in the tire circumferential direction. This has the advantage of providing an appropriate stiffness balance between the tire circumferential direction and the tire width direction to improve the uneven wear resistance performance of the tire.
The present technology is described below in detail with reference to the accompanying drawings. However, the present technology is not limited to these embodiments. Moreover, constituents which can possibly or obviously be substituted while maintaining consistency with the present technology are included in constitutions of the embodiments. Furthermore, a plurality of modified examples that are described in the embodiment can be freely combined within a scope of obviousness for a person skilled in the art.
Pneumatic Tire
A pneumatic tire 1 includes a pair of bead cores 11, 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, tread rubber 15, and a pair of side wall rubbers 16, 16 (see
The pair of bead cores 11, 11 have annular structures and constitute cores of left and right bead portions. The pair of bead fillers 12, 12 are formed from a lower filler 121 and an upper filler 122, and are disposed on a periphery of each of the pair of bead cores 11, 11 in the tire radial direction so as to reinforce the bead portions.
The carcass layer 13 stretches between the left and right side bead cores 11 and 11 in toroidal form, forming a framework for the tire. Additionally, both end portions of the carcass layer 13 are folded from an inner side in a tire width direction toward an outer side in the tire width direction and fixed so as to wrap around the bead cores 11 and the bead fillers 12. Also, the carcass layer 13 is constituted by a plurality of carcass cords formed from steel or organic fibers (e.g. nylon, polyester, rayon, or the like) covered by a coating rubber and subjected to a rolling process, and has a carcass angle (inclination angle of the carcass cord in a fiber direction with respect to the tire circumferential direction), as an absolute value, of not less than 85° and not more than 95°.
The belt layer 14 is formed by laminating a plurality of belt plies 142, 143, 144, and 145, and disposed to extend over the periphery of the carcass layer 13. A detailed configuration of the belt layer 14 is described below.
The tread rubber 15 is disposed on the periphery in the tire radial direction of the carcass layer 13 and the belt layer 14, and forms a tread portion of the tire. The pair of side wall rubbers 16, 16 are disposed on the outer side in the tire width direction of the carcass layer 13, so as to form left and right side wall portions of the tire.
In the configuration illustrated in
Here, “circumferential main grooves” refers to circumferential grooves having a groove width of 5.0 mm or greater. The groove widths of the circumferential main grooves are measured excluding notched portions and/or chamfered portions formed at the groove opening portions.
Additionally, in the pneumatic tire 1, the left and right outermost circumferential main grooves 2, 2 in the tire width direction are referred to as outermost circumferential main grooves. Moreover, the left and right land portions 3, 3 on the outer side in the tire width direction that are defined by the left and right outermost circumferential main grooves 2, 2 are referred to as shoulder land portions.
[Belt Layer]
The belt layer 14 is formed by laminating a pair of cross belts 142, 143, a supplemental belt (low-angle belt) 144, and a circumferential reinforcing layer 145, and is disposed so as to be extended over the periphery of the carcass layer 13 (see
The pair of cross belts 142, 143 are constituted by a plurality of belt cords, the plurality of belt cords being formed from steel or organic fibers covered by a coating rubber, and subjected to a rolling process. Additionally the pair of cross belts 142, 143 preferably have belt angles of not less than 46° and not more than 80° as absolute values (the inclination angle of the fiber direction of the belt cords with respect to the tire circumferential direction), and more preferably have belt angles of not less than 51° and not more than 70°. Additionally, the pair of cross belts 142, 143 have belt angles that are of the opposite sign to each other, and are laminated so that the fiber directions of the belt cords intersect each other (a cross-ply structure). In the following description, the cross belt 142 positioned on the inner side in the tire radial direction is referred to as “inner-side cross belt,” and the cross belt 143 positioned on the outer side in the tire radial direction is referred to as “outer-side cross belt.” Three or more cross belts may be disposed so as to be laminated (not illustrated on the drawings).
Additionally, the supplemental belt 144 is constituted by a plurality of belt cords, the plurality of belt cords being formed from steel or organic fibers, covered by coating rubber, and subjected to a rolling process. This supplemental belt 144 preferably has a belt angle of not less than 10° and not more than 45° as an absolute value, and more preferably have a belt angle of not less than 15° and not more than 30°. Moreover, the supplemental belt 144 is disposed so as to be laminated on the outer side in the tire radial direction of the pair of cross belts 142, 143. Further, in the structure in
The circumferential reinforcing layer 145 is constituted by belt cords, the belt cords being formed from steel, covered by coating rubber, and wound in a spiral manner with an inclination satisfying a range of ±5° with respect to the tire circumferential direction. Specifically, the circumferential reinforcing layer 145 is formed by winding one or a plurality of wires in a spiral manner around the periphery of the inner-side cross belt 142. Additionally, the circumferential reinforcing layer 145 is disposed so as to be interposed between the pair of cross belts 142, 143. Additionally, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction of the left and right edge portions of the pair of cross belts 142, 143. The stiffness in the tire circumferential direction is reinforced by this circumferential reinforcing layer 145.
Note that, in the pneumatic tire 1, the belt layer 14 may have an edge cover (not illustrated on the drawings). Generally, the edge cover is constituted by a plurality of belt cords, the plurality of belt cords being formed from steel or organic fibers, covered by coating rubber, and subjected to a rolling process. The edge cover has a belt angle, as an absolute value, of no less than 0° and no more than 5°. Additionally, the edge covers are disposed on the outer side in the tire width direction of the left and right edge portions of the outer-side cross belt 143 (or the inner-side cross belt 142). As a result of the fastening effect of the edge cover, the difference in radial growth of a tread center region and a shoulder region is reduced.
Additionally, the inner-side cross belt 142 is disposed adjacent to the carcass layer 13. Therefore, the inner-side cross belt 142 constitutes the innermost layer in the tire radial direction of the belt layer 14, and no other belt ply is disposed between the inner-side cross belt 142 and the carcass layer 13.
Additionally, the inner-side cross belt 142 and the outer-side cross belt 143 sandwich the circumferential reinforcing layer 145 so as for each to be located adjacent to the circumferential reinforcing layer 145. Therefore, no other belt ply is disposed between the inner-side cross belt 142 and outer-side cross belt 143 and the circumferential reinforcing layer 145.
[Specific Structure of the Supplemental Belt]
Additionally, in this pneumatic tire 1, the supplemental belt 144 and outer-side cross belt 143, which are located adjacent to each other, have belt angles of mutually opposite signs (see
The supplemental belt 144 also is disposed so as to cover the areas in which the outermost circumferential main grooves 2 are disposed (see
Additionally, a width Wb4 of the supplemental belt 144 and a width Wb3 of the outer-side cross belt 143 have a relationship such that 0.75≦Wb4/Wb3≦0.95 (see
Moreover, the width Wb4 of the supplemental belt 144 and a width Ws of the circumferential reinforcing layer 145 have a relationship such that 1.02≦Wb4/Ws (see
The width of a belt ply is the distance in the direction of the tire rotational axis between the left and right end portions of each belt ply, measured when the tire is assembled on a standard rim, inflated to a prescribed internal pressure and is in an unloaded state.
Additionally, in a case where a belt ply has a structure that is split in two in the tire width direction (not illustrated on the drawings), the belt ply width is measured as the distance between the outer sides in the tire width direction of the left and right divided portions.
Moreover, in a typical pneumatic tire, each belt ply has a left-right symmetrical structure centered on the tire equatorial plane CL, as illustrated in
Herein, “standard rim” refers to an “applicable rim” defined by the Japan Automobile Tyre Manufacturers Association (JATMA), a “design rim” defined by the Tire and Rim Association (TRA), or a “measuring rim” defined by the European Tyre and Rim Technical Organisation (ETRTO). “Prescribed internal pressure” refers to “maximum air pressure” defined by JATMA, a maximum value in “tire load limits at various cold inflation pressures” defined by TRA, and “inflation pressures” defined by ETRTO. Note that “regular load” refers to “maximum load capacity” defined by JATMA, a maximum value in “tire load limits at various cold inflation pressures” defined by TRA, and “load capacity” defined by ETRTO. However, with JATMA, in the case of passenger car tires, the prescribed internal pressure is an air pressure of 180 kPa, and the regular load is 88% of the maximum load capacity.
Additionally, the belt cords of the supplemental belt 144 are constituted by steel wire, and the number of ends in the supplemental belt 144 is not less than 15 ends/50 mm and not more than 25 ends/50 mm.
[Improved Uneven Wear Resistance Performance]
Recent heavy duty tires mounted on trucks and buses and the like maintain their tread shape due to the tires having a low aspect ratio, while also including circumferential reinforcing layer in the belt layer. Specifically, by disposing the circumferential reinforcing layer at the tread center region, and exploiting the fastening effect thereof, radial growth of the tread is suppressed and the tread shape is maintained.
In such a configuration, the stiffness in the tire width direction of the belt layer is relatively decreased because the stiffness in the tire circumferential direction is further increased by the circumferential reinforcing layer. Thus, there is a problem in that the stiffness balance between the tire circumferential direction and the tire width direction becomes uneven, decreasing the uneven wear resistance performance of the tire. Such problems become markedly pronounced especially under long-term service conditions at high inner pressures and high loads.
At this point, as described above, the pair of cross belts 142, 143 function as high-angle belts in the pneumatic tire 1 to ensure stiffness in the tire width direction. Additionally, the circumferential reinforcing layer 145 and supplemental belt 144 function as low-angle belts to ensure stiffness in the tire circumferential direction. This provides an appropriate stiffness balance between the tire circumferential direction and tire width direction, improving the uneven wear resistance performance of the tire.
[Tread Gauge]
Moreover, the distance Gcc from the tread profile to the tire inner circumferential surface at the tire equatorial plane CL and the distance Gsh from the tread edge P to the tire inner circumferential surface have a relationship such that 0.80≦Gsh/Gcc≦1.20, and more preferably have a relationship such that 0.85≦Gsh/Gcc≦1.10.
The distance Gcc is measured as the distance from the intersection of the tire equatorial plane CL and the tread profile to the intersection of the tire equatorial plane CL and the tire inner circumferential surface when viewed as a cross-section from the tire meridian direction. Therefore, in a configuration having a circumferential main groove 2 at the tire equatorial plane CL such as the configuration illustrated in
In the configuration illustrated in
[Round Shaped Shoulder Portion]
In the configuration in
However, the shoulder portion is not limited as such, and may also have a round shape, as illustrated in
[Additional Data]
Additionally, in
The total tire width SW refers to a linear distance (including all portions such as patterns and letters on the tire side surface) between the side walls when the tire is assembled on the standard rim and inflated to the prescribed internal pressure and is in an unloaded state.
The tread width TW is the distance in the direction of the tire rotational axis between the left and right tread edges P, P, measured when the tire is assembled on a standard rim, inflated to a prescribed internal pressure and is in an unloaded state.
Additionally, the tread width TW and cross-sectional width Wca of the carcass layer 13 have a relationship such that 0.82≦TW/Wca≦0.92.
The cross-sectional width Wca of the carcass layer 13 refers to a linear distance between the left and right maximum width positions of the carcass layer 13 when the tire is assembled on the standard rim and inflated to the prescribed internal pressure and is in an unloaded state.
Additionally, in
The outer radii Hcc, Hsc of the tread profile are measured as the profile diameters centered on the tire rotational axis when the tire is assembled on the standard rim, inflated to the prescribed internal pressure and is in an unloaded state.
The “tire ground contact edge T” refers to the maximum width position in a tire axial direction of a contact surface between the tire and a flat plate in a configuration in which the tire is assembled on the regular rim, inflated to the prescribed internal pressure, placed perpendicularly to the flat plate in a static state, and loaded with a load corresponding to the regular load.
Additionally, in
The tire actual ground contact width Wg is calculated as the difference between the tire overall tire ground contact width and the sum of the groove widths of all the circumferential main grooves 2.
The ground contact width is measured as the total distance along the tread surfaces of all the land portions, when the tire is assembled on the standard rim, and inflated to the prescribed internal pressure.
Additionally the ground contact width Wsh of the shoulder land portion 3 and the tread width TW have a relationship such that 0.1≦Wsh/TW≦0.2 (see
Additionally, the ground contact width Wcc of the land portion 3 closest to the tire equatorial plane CL and the ground contact width Wsh of the outermost land portion 3 in the tire width direction have a relationship such that 0.80≦Wsh/Wcc≦1.30 (see
The land portion 3 closest to the tire equatorial plane CL refers, in a case where there is a land portion 3 on the tire equatorial plane CL, to this land portion 3, and, in a case where there is a circumferential main groove 2 on the tire equatorial plane CL, to the land portion 3 of the left and right land portions 3, 3 defined by this circumferential main groove 2 that is on the same side as the shoulder land portion 3 that is the object of comparison. For example, in a configuration having a left-right asymmetric tread pattern (not illustrated on the drawings), in a case where there is a circumferential main groove 2 on the tire equatorial plane CL, the Wsh/Wcc ratio between the ground contact width Wcc of the land portion 3 closest to the tire equatorial plane CL and the ground contact width Wsh of the shoulder land portion 3 is measured in a one-sided region bounded by the tire equatorial plane CL.
Additionally, in
Widths Wb2, Wb3 of the cross belts 142, 143 are the distances in the tire rotational axis direction between the left and right end portions of each cross belt 142, 143, measured when the tire is assembled on the standard rim, inflated to the prescribed internal pressure and is in an unloaded state.
Additionally, in
Moreover, the width Ws of the circumferential reinforcing layer 145 and the cross-sectional width Wca of the carcass layer 13 have a relationship such that 0.60≦Ws/Wca≦0.70.
Additionally in the pneumatic tire 1, in
Moreover, as illustrated in
The distance S of the circumferential reinforcing layer 145 is measured as a distance in the tire width direction when the tire is assembled on the standard rim, inflated to the prescribed internal pressure, and is in an unloaded state.
Additionally, in
The radii R1, R2 of the circumferential reinforcing layer 145 are measured as a distance from the tire rotational axis to the center line of the circumferential reinforcing layer 145 when the tire is assembled on the regular rim, inflated to the prescribed internal pressure, and is in an unloaded state, and viewed as a cross-section from the tire meridian direction.
Further, in the configuration in
Moreover, the belt cords of the pair of cross belts 142, 143 are constituted by steel wire, and the number of ends in the pair of cross belts 142, 143 preferably is not less than 18 ends/50 mm and not more than 28 ends/50 mm, and more preferably is not less than 20 ends/50 mm and not more than 25 ends/50 mm. Also, the belt cords of the circumferential reinforcing layer 145 are constituted by steel wire, and the number of ends in the circumferential reinforcing layer 145 preferably is not less than 17 ends/50 mm and not more than 30 ends/50 mm. This ensures appropriate strengths of the belt plies 142, 143, 145.
Moreover, moduli E2, E3 at 100% elongation of the coating rubbers of the pair of cross belts 142, 143, and the modulus Es at 100% elongation of the coating rubber of the circumferential reinforcing layer 145 preferably have a relationship such that 0.90≦Es/E2≦1.10 and 0.90≦Es/E3≦1.10. Moreover, the modulus Es at 100% elongation of the coating rubber of the circumferential reinforcing layer 145 preferably satisfies ranges such that 4.5 MPa≦Es≦7.5 MPa. Accordingly, the moduli of the belt plies 142, 143, 145 are made appropriate.
The modulus at 100% elongation is measured in a tensile test at ambient temperature in conformance with JIS K6251 (using No. 3 dumbbell).
Moreover, breaking elongations λ2, λ3 of the coating rubbers of the pair of cross belts 142, 143 are both preferably equal to or greater than 200%. Moreover, a breaking elongation λs of the coating rubber of the circumferential reinforcing layer 145 is preferably equal to or greater than 200%. This ensures an appropriate durability of the belt plies 142, 143, 145.
Breaking elongation is measured by performing a tensile test on a test specimen having 1B shape (dumbbell shape with a thickness of 3 mm) specified in JIS K7162 using a tensile tester (INSTRON5585H manufactured by Instron Corp.) conforming to JIS K7161 at a pulling speed of 2 mm/min.
The elongation of the belt cords is preferably not less than 1.0% and not more than 2.5% when the tensile load on the belt cords as components that constitute the circumferential reinforcing layer 145 is from 100 N to 300 N, and is preferably not less than 0.5% and not more than 2.0% when the tensile load is from 500 N to 1000 N as a tire (when removed from the tire). The belt cords (high elongation steel wire) have a better elongation ratio than that of a normal steel wire when a light load is applied; thus they can withstand loads that are applied to the circumferential reinforcing layer 145 during the time from manufacture until the tire is used, so it is possible to suppress damage to the circumferential reinforcing layer 145, which is desirable.
The elongation of the belt cord is measured in accordance with JIS G3510.
Additionally, in the pneumatic tire 1, the breaking elongation of the tread rubber 15 preferably is equal to or greater than 400%, and more preferably is equal to or greater than 450%. Accordingly, the strength of the tread rubber 15 can be properly ensured. Further, the maximum breaking elongation of the tread rubber 15 is not specifically limited, but is constrained by the type of rubber compound of the tread rubber 15.
Additionally, in this pneumatic tire 1, the hardness of the tread rubber 15 preferably is equal to or greater than 60. This ensures an appropriate strength of the tread rubber 15. Further, the maximum hardness of the tread rubber 15 is not specifically limited, but is constrained by the type of rubber compound of the tread rubber 15.
Here, “rubber hardness” refers to JIS A hardness in accordance with JIS K6263.
[Belt Edge Cushion Two-Color Structure]
In the configuration illustrated in
In the configuration illustrated in
Conversely, according to the configuration in
Additionally, a modulus Ein at 100% elongation of the stress relief rubber 191 and the modulus Es at 100% elongation of the coating rubber of the circumferential reinforcing layer 145 have a relationship such that Ein<Es in the configuration in
Moreover, the modulus Ein at 100% elongation of the stress relief rubber 191 and the modulus Eco at 100% elongation of the coating rubbers of the cross belts 142, 143 have a relationship of Ein<Eco in the configuration in
Additionally a modulus Eout at 100% elongation of the end portion relief rubber 192 and the modulus Ein at 100% elongation of the stress relief rubber 191 preferably have a relationship such that Eout≦Ein in the configuration in
In the configuration of
[Chamfered Portion of Shoulder Land Portion]
As illustrated in
For example, the left and right land portions 3, 3 defined by the outermost circumferential main grooves 2 are ribs and each have the chamfered portion 31 at the edge portion on the outermost circumferential main groove 2 side in the configuration in
[Split Structure of Supplemental Belt]
As illustrated in
However, the supplemental belt 144 is not limited as such, and may also have a split structure, as illustrated in
For example, the supplemental belt 144 in the configuration in
Moreover, a width (the disposal interval of the left and right divided portions 1441, 1441) Wb4_sp of the center space in the split structure and a width Ws of the circumferential reinforcing layer 145 preferably have a relationship such that 0.40≦Wb4_sp/Ws≦0.80, and more preferably have a relationship such that 0.50≦Wb4_sp/Ws≦0.70, in the configuration described above.
[Effect]
As described above, the pneumatic tire 1 includes the carcass layer 13, the belt layer 14 disposed on the outer side in the tire radial direction of the carcass layer 13, and the tread rubber 15 disposed on the outer side in the tire radial direction of the belt layer 14 (see
In this configuration, the pair of cross belts 142, 143 functions as a high-angle belt to ensure stiffness in the tire width direction. Additionally, the circumferential reinforcing layer 145 and supplemental belt 144 function as low-angle belts to ensure stiffness in the tire circumferential direction. This has the advantage of providing an appropriate stiffness balance in the tire circumferential direction and tire width direction to improve the uneven wear resistance performance of the tire.
In particular, since the pair of cross belts 142, 143 functions as a high-angle belt in the configuration described above, other high-angle belts (for example, a belt ply having a belt angle of not less than 45° and not more than 70° as an absolute value, and disposed between a carcass layer and an inner-side cross belt) can be omitted. This has the advantage of making the tire more lightweight.
Additionally, the pair of cross belts 142, 143, with belt angles highly inclined in the tire width direction, and the circumferential reinforcing layer 145 and supplemental belt 144, with belt angles highly inclined in the tire circumferential direction, are laminated alternating in the tire radial direction in the configuration described above. Thus, the stiffness distribution in the tire radial direction in these belt plies 142, 143, 144, 145 is made more uniform than a configuration in which a circumferential reinforcing layer is disposed on the inner side or outer side in the tire radial direction of the pair of cross belts (not illustrated on the drawings). This has the advantage of improving the belt durability of the tire.
Moreover, in the configuration described above, since the supplemental belt 144 is disposed on the outer side in the tire radial direction of the pair of cross belts 142, 143, the cross belts 142, 143, having high belt angles, are disposed farther from the neutral axis of out-of-plane-bending (farther inside in the tire radial direction) of the tire when in contact with the ground than a configuration in which a supplemental belt is disposed on the inner side in the tire radial direction of the pair of cross belts (not illustrated on the drawings). This has the advantage of being able to effectively reinforce stiffness in the tire width direction.
Additionally, since the mutually adjacent supplemental belt 144 and outer-side cross belt 143 have belt angles of opposite signs, the fastening effect from the supplemental belt 144 and outer-side cross belt 143 is greater than a configuration in which a supplemental belt and outer-side cross belt have belt angles of the same sign (not illustrated on the drawings). This suppresses radial growth of the tire in the region in which the supplemental belt 144 is disposed, making the ground contact pressure more uniform between the center region and shoulder region of the tread. This has the advantage of improving the uneven wear resistance performance (especially the shoulder wear resistance performance) of the tire.
Additionally, in the pneumatic tire 1, the inner-side cross belt 142 is disposed adjacent to the carcass layer 13 (see
Moreover, in the pneumatic tire 1, the width Wb4 of the supplemental belt 144 and the width Ws of the circumferential reinforcing layer 145 have a relationship such that 1.02≦Wb4/Ws (see
Additionally, the width Wb4 of the supplemental belt 144 and the width Wb3 of the outer-side cross belt 143 in this pneumatic tire 1 have a relationship such that 0.75≦Wb4/Wb3≦0.95 (see
Additionally, the belt cords of the supplemental belt 144 in the pneumatic tire 1 are constituted by steel wire, and the number of ends in the supplemental belt 144 is not less than 15 ends/50 mm and not more than 25 ends/50 mm. This has the advantage of ensuring an appropriate stiffness of the supplemental belt 144 in the tire circumferential direction.
Moreover, in the pneumatic tire 1, the difference Dr=R1−R2 between the radius R1 of the circumferential reinforcing layer 145 at the tire equatorial plane CL and the radius R2 at the outer end portion in the tire width direction thereof, and the width Ws of the circumferential reinforcing layer 145 preferably have a relationship such that −0.010≦Dr/Ws≦0.010 (see
Moreover, in the pneumatic tire 1, the outer radius Hcc of the tread profile at the tire equatorial plane CL and the outer diameter Hsh of the tread profile at the tire ground contact edge T have a relationship such that 0.010≦(Hcc−Hsh)/Hcc≦0.015 (see
In the pneumatic tire 1, the distance Gcc from the tread profile to the tire inner circumferential surface along the tire equatorial plane CL, and the distance Gsh from the tread edge P to the tire inner circumferential surface have a relationship such that Gsh/Gcc≦1.20 (see
Additionally, in the pneumatic tire 1, the ground contact width Wcc of the land portion 3 closest to the tire equatorial plane CL and the ground contact width Wsh of the outermost land portion 3 in the tire width direction have a relationship such that 0.80≦Wsh/Wcc≦1.30 (see
Moreover, in the pneumatic tire 1, the outermost land portions 3 in the tire width direction have chamfered portions 31 at edge portions on the circumferential main groove 2 sides (see
Additionally, the hardness of the tread rubber 15 in the pneumatic tire 1 is not less than 60. This has the advantage of ensuring the stiffness of the tread portion to improve the uneven wear resistance performance of the tire.
Additionally, in the pneumatic tire 1, the supplemental belt 144 has a split construction (see
Moreover, in the pneumatic tire 1, the supplemental belt 144 is disposed so as to cover the region in which the outermost circumferential main grooves 2 are disposed (see
Additionally, in the pneumatic tire 1, the tread width TW and the cross-sectional width Wca of the carcass layer 13 have a relationship such that 0.82≦TW/Wca≦0.92 (see
Also, in the pneumatic tire 1, the belt cords that constitute the circumferential reinforcing layer 145 is constituted by steel wire, and the circumferential reinforcing layer 145 has not less than 17 ends/50 mm and not more than 30 ends/50 mm. This has the advantage of ensuring an appropriate effect of suppressing radial growth in the center region due to the circumferential reinforcing layer 145.
In the pneumatic tire 1, the elongation of the belt cords is preferably not less than 1.0% and not more than 2.5% when the tensile load on the belt cords as components that constitute the circumferential reinforcing layer 145 is from 100 N to 300 N. This has the advantage of ensuring an appropriate effect of suppressing radial growth in the center region of the tread due to the circumferential reinforcing layer 145.
In the pneumatic tire 1, the elongation of the belt cords is not less than 0.5% and not more than 2.0% when the tensile load on the belt cords as components that constitute the circumferential reinforcing layer 145 is from 500 N to 1000 N. This has the advantage of properly ensuring the effect of suppressing radial growth in the center region due to the circumferential reinforcing layer 145.
Additionally, in the pneumatic tire 1, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction of the left and right edge portions of the narrower cross belt (in
In such a configuration, there is an advantage that fatigue rupture of the periphery rubber at the edge portion of the circumferential reinforcing layer 145 is suppressed due to the circumferential reinforcing layer 145 being disposed on the inner side in the tire width direction of the left and right edge portions of the narrower cross belt 143 of the pair of cross belts 142, 143. Since the stress relief rubber 191 is disposed on the outer side in the tire width direction of the circumferential reinforcing layer 145, shearing strain of the periphery rubber between the edge portion of the circumferential reinforcing layer 145 and the cross belts 142, 143 is alleviated. Moreover, since the end portion relief rubber 192 is disposed at a position corresponding to the edge portions of the cross belts 142, 143, shearing strain of the periphery rubbers at the edge portions of the cross belts 142, 143 is alleviated. Accordingly, there is an advantage that separation of the periphery rubber of the circumferential reinforcing layer 145 is suppressed.
Additionally, in the pneumatic tire 1, the modulus Ein at 100% elongation of the stress relief rubber 191 and the modulus Eco at 100% elongation of the coating rubber of the pair of cross belts (inner-side cross belt 142 and outer-side cross belt 143) have a relationship such that Ein<Eco (see
Additionally, in the pneumatic tire 1, the modulus Ein at 100% elongation of the stress relief rubber 191 and the modulus Eco at 100% elongation of the coating rubber of the pair of cross belts 142, 143 (inner-side cross belt 142 and outer-side cross belt 143) have a relationship such that 0.60≦Ein/Eco≦0.90 (see
Additionally, in the pneumatic tire 1, the modulus Ein at 100% elongation of the stress relief rubber 191 satisfies 4.0 MPa≦Ein≦5.5 MPa (see
Moreover, in the pneumatic tire 1, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction of the left and right edge portions of the narrower cross belt (in
[Target of Application]
The pneumatic tire 1 is preferably applied to a heavy duty tire with an aspect ratio of not less than 40% and not more than 75% when assembled on the regular rim, inflated to the prescribed internal pressure, and loaded with the regular load. A heavy duty tire has a higher load under use than a passenger car tire. Thus, a difference in radius occurs easily between the region where the circumferential reinforcing layer is disposed and the region on the outer side in the tire width direction of the circumferential reinforcing layer. Moreover, a ground contact shape having an hourglass shape occurs easily in the tire having the above-mentioned low aspect ratio. Therefore, making such heavy duty tires the object of applications allows for pronounced demonstration of the effects of the circumferential reinforcing layer 145.
In the performance testing, a plurality of mutually differing pneumatic tires were evaluated for uneven wear resistance performance. In the evaluation, test tires having a size of 315/60R22.5 were assembled on rims having a size of 22.5″×9.00″ and inflated to 900 kPa air pressure.
Test tires were mounted on the front axle of a 4×2 tractor trailer which is a test vehicle, and driven for 100,000 km on normal paved roads with a 34.81 kN load applied on the test tires. The difference between the amount of wear at the outer edge portions in the tire width direction of the shoulder land portion and the amount of wear at the edge portions on the outermost circumferential main groove sides was then measured as the amount of shoulder rounding wear. Evaluations were performed by indexing the measurement results with the conventional example set as the standard score (100). In these evaluations, higher scores were preferable. Specifically, an evaluation of 105 or greater (+5 points or more over the standard value of 100) indicates sufficient superiority over the conventional example, and an evaluation of 110 or greater indicates dramatic superiority over the conventional example.
The test tires of Working Example 1 had the configuration illustrated in
The test tire of the conventional example does not include the circumferential reinforcing layer 145 in the configuration in
As shown in the test results, it can be seen that the uneven wear resistance performance of the tire is improved in the test tires of Working Examples 1 to 32.
Number | Date | Country | Kind |
---|---|---|---|
PCT/JP2012/068025 | Jul 2012 | JP | national |
PCT/JP2012/068026 | Jul 2012 | JP | national |
PCT/JP2012/068027 | Jul 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/065842 | 6/7/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/010348 | 1/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3557858 | Lugli et al. | Jan 1971 | A |
3999585 | Grawey | Dec 1976 | A |
4688615 | Lee | Aug 1987 | A |
4934430 | Koseki et al. | Jun 1990 | A |
6129128 | Fukumoto | Oct 2000 | A |
7735534 | Manno et al. | Jun 2010 | B2 |
20030201047 | Rayman et al. | Oct 2003 | A1 |
20040026000 | Shimizu | Feb 2004 | A1 |
20060169380 | Radulescu et al. | Aug 2006 | A1 |
20060169381 | Radulescu et al. | Aug 2006 | A1 |
20060169383 | Radulescu et al. | Aug 2006 | A1 |
20080156410 | Isobe | Jul 2008 | A1 |
20080230164 | Nishitani | Sep 2008 | A1 |
20090211685 | Kabe et al. | Aug 2009 | A1 |
20100289232 | Daghini et al. | Nov 2010 | A1 |
20110192516 | Yamaguchi et al. | Aug 2011 | A1 |
20140166178 | Sato | Jun 2014 | A1 |
20140196826 | Kobayashi | Jul 2014 | A1 |
20140305566 | Mashiyama | Oct 2014 | A1 |
20140345766 | Wang | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
2006-111217 | Apr 2006 | JP |
2006-183211 | Jul 2006 | JP |
2009-001092 | Jan 2009 | JP |
4642760 | Mar 2011 | JP |
4642760 | Apr 2011 | JP |
4663638 | Apr 2011 | JP |
4663639 | Apr 2011 | JP |
4911267 | Apr 2012 | JP |
4918948 | Apr 2012 | JP |
4952864 | Jun 2012 | JP |
4973810 | Jul 2012 | JP |
WO 2005016666 | Feb 2005 | WO |
WO 2005016667 | Feb 2005 | WO |
WO 2005016668 | Feb 2005 | WO |
WO 2010041720 | Apr 2010 | WO |
Entry |
---|
International Search Report for International Application No. PCT/JP2013/065842 dated Jul. 9, 2013, 4 pages, Japan. |
Number | Date | Country | |
---|---|---|---|
20150151582 A1 | Jun 2015 | US |