The present technology relates to a pneumatic tire, and particularly relates to a pneumatic tire with enhanced electrostatic suppression performance.
Some pneumatic tires employ a structure provided with an earthing tread that suppresses electrostatic charging by discharging to the road surface static electricity produced in the vehicle when traveling. Such an earthing tread is an electrically conductive rubber disposed passing through the tread cap and is exposed to the ground contact surface. This electrostatic suppressing structure can suppress electrostatic charging in the vehicle by discharging static electricity in the vehicle from the belt layer to the road surface via the earthing tread.
However in recent years, the amount of silica contained in rubber compounds constituting tread caps, undertreads, sidewall rubbers, and the like has been increasing for the purpose of improving the fuel economy of tires. Because silica is a good insulator, the resistance value of a tread cap increases when the amount of silica contained therein increases. Consequently, the electrostatic suppression performance decreases.
In order to enhance the electrostatic suppression performance, conventional pneumatic tires provided with an electrically conductive layer extending in a region from a bead portion to the belt layer are known. Examples of conventional pneumatic tires with such a configuration include the technologies disclosed in Japanese Unexamined Patent Application Publication Nos. 2009-154608A and 2013-528525A.
The present technology provides a pneumatic tire with enhanced electrostatic suppression performance.
A pneumatic tire is provided that comprises:
a pair of bead cores;
at least one carcass layer extending between the pair of bead cores continuously or with a divided portion at a tread portion;
a belt layer disposed outward of the carcass layer in a tire radial direction;
a tread rubber disposed outward of the belt layer in the tire radial direction;
a pair of sidewall rubbers disposed outward of the carcass layer in a tire width direction;
an innerliner disposed on an inner circumferential surface of the carcass layer; and
an electrically conductive portion extending continuously at least from a bead portion to the belt layer; wherein
the electrically conductive portion has a linear structure, the linear structure including an electrically conductive linear member made of a linear electrically conductive material with an electric line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm.
The pneumatic tire according to the present technology can suppress a reduction in electrical conductivity of the electrically conductive portion caused when the tire is manufactured or in service by the electrically conductive linear member of the electrically conductive portion being linearly formed of electrically conductive material with an electrical line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm. As a result, there is an advantage that the electrostatic suppression performance of the tire is appropriately secured.
The technology is described in detail below, with reference to the accompanying drawings. However, the technology is not limited to the embodiments. In addition, the components of the embodiments include components that are replaceable while maintaining consistency with the technology, and obviously replaceable components. Furthermore, a plurality of modified examples described in the embodiments may be freely combined within the scope of obviousness to a person skilled in the art.
[Pneumatic Tire]
Note that for
A pneumatic tire 1 has an annular structure with the tire rotation axis as its center and includes a pair of bead cores 11, 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, a tread rubber 15, a pair of sidewall rubbers 16, 16, a pair of rim cushion rubbers 17, 17, an innerliner 18, and chafers 20 (see
The pair of bead cores 11, 11 constitute the cores of the left and right bead portions, and are annular members made of a plurality of bead wires bundled together. The pair of bead fillers 12, 12 are disposed on the outer periphery of the pair of bead cores 11, 11 in the tire radial direction and reinforce the bead portions.
The carcass layer 13 extends between the left and right side bead cores 11, 11 in a toroidal form, forming the framework for the tire. Additionally, both ends of the carcass layer 13 are folded outwardly in the tire width direction so as to wrap around the bead cores 11 and the bead fillers 12, and fixed. The carcass layer 13 is constituted by a plurality of carcass cords formed from steel or organic fibers (e.g. aramid, nylon, polyester, rayon, or the like) covered by a coating rubber and subjected to a rolling process, and has a carcass angle (inclination angle of the fiber direction of the carcass cords with respect to the tire circumferential direction), as an absolute value, from 80 to 95 degrees, both inclusive.
The cord rubber of the carcass cord preferably has a value of tan δ at 60° C. of 0.20 or less. In addition, the cord rubber of the carcass cord preferably has a volume resistivity of 1×10{circumflex over ( )}8 Ω·cm or greater. The cord rubber having such a volume resistivity is made using a compound with low exothermic properties and low carbon content, or alternatively by increasing the silica content to improve the volume resistivity. Such a configuration is preferable because a low value of tan δ at 60° C. means low tire rolling resistance.
The value of tan δ at 60° C. is measured using a viscoelasticity spectrometer manufactured by Toyo Seiki Seisaku-sho, Ltd. under the following conditions: 10% initial distortion, ±0.5% amplitude, 20 Hz frequency.
The volume resistivity is measured in accordance with the method specified in JIS (Japanese Industrial Standard) K6271 “Rubber, vulcanized or thermoplastic—Determination of volume and/or surface resistivity”. Typically, a member with a volume resistivity of less than 1×10{circumflex over ( )}8 Ω·cm can be considered to have electrical conductivity sufficient to suppress a buildup of static electricity.
Note that the configuration illustrated in
However, the carcass layer 13 is not limited to such a configuration and may be divided in the tire width direction into a pair of left and right carcass plies, i.e. have a divided carcass structure (not illustrated). Specifically, radially inward end portions of the left-right pair of carcass plies are folded outwardly in the tire width direction so as to wrap around the left and right bead cores 11 and bead filler 12, and fixed. In addition, radially outward end portions of the left-right pair of carcass plies are disposed separated at the center region of the tread portion.
Such a divided carcass structure includes an open section (region without carcass plies) formed at the center region of the tread portion. In such a case, the tension of the tire at this open section is supported by the belt layer 14, and the rigidity at the left and right sidewall portions is ensured by the left and right carcass layers 13, 13. Thus, the tire internal pressure holding capacity and rigidity of the sidewall portions can be maintained, and reduction in tire weight achieved.
The belt layer 14 includes a pair of cross belts 141, 142 and a belt cover 143 layered together, and is disposed around the outer periphery of the carcass layer 13. The pair of cross belts 141, 142 are constituted by a plurality of belt cords formed from steel or organic fibers, covered by coating rubber, and subjected to a rolling process, having a belt angle, as an absolute value, from 20 to 55 degrees, both inclusive. Furthermore, the pair of cross belts 141, 142 have belt angles (inclination angle of the fiber direction of the belt cord with respect to the tire circumferential direction) of opposite signs, and the belts are layered so that the fiber direction of the belt cords intersect each other (cross-ply configuration). The belt cover 143 is configured by a plurality of cords formed from steel or an organic fiber material, covered by coating rubber, and subjected to a rolling process, having a belt angle, as an absolute value, from 0 to 10 degrees, both inclusive. Moreover, the belt cover 143 is disposed outward of the cross belts 141, 142 in the tire radial direction.
The tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14, and configures a tread portion of the tire. The tread rubber 15 includes a tread cap 151 and an undertread 152.
The tread cap 151 is a rubber member that constitutes the ground contact surface and may have a single layer structure (see
The undertread 152 is a member layered inward of the tread cap 151 in the tire radial direction and preferably has a volume resistivity less than that of the tread cap 151.
The pair of sidewall rubbers 16, 16 are disposed outward of the carcass layer 13 in the tire width direction and constitute left and right sidewall portions. The sidewall rubber 16 preferably has a value of tan δ at 60° C. of 0.20 or less. In addition, the sidewall rubber 16 preferably has a resistivity of 1×10{circumflex over ( )}8 Ω·cm or greater, more preferably of 1×10{circumflex over ( )}10 Ω·cm or greater, and even more preferably of 1×10{circumflex over ( )}12 Ω·cm or greater. The sidewall rubber 16 having such a resistivity is made using a compound with low exothermic properties and low carbon content, or alternatively by increasing the silica content to improve the volume resistivity. Such a configuration is preferable because a low value of tan δ at 60° C. means low tire rolling resistance.
The pair of rim cushion rubbers 17, 17 are disposed inward in the tire radial direction of the left and right bead cores 11, 11 and the folded portion of the carcass layer 13 and constitute the contact surface of the left and right bead portions with the rim flange portion of the rim R. The rim cushion rubber 17 preferably has a resistivity of 1×10{circumflex over ( )}7 Ω·cm or less.
Note that the upper limit value for the resistivity of the tread cap 151, the lower limit value for the resistivity of the undertread 152, the upper limit value for the resistivity of the sidewall rubber 16, and the lower limit value for the resistivity of the rim cushion rubber 17 are not particularly limited to the above-mentioned values, but are subject to physical constraints specific to being a rubber member.
The innerliner 18 is an air penetration preventing layer covering the carcass layer 13 disposed on the tire inner surface. The innerliner 18 also suppresses oxidation caused by exposure of the carcass layer 13 and prevents the air in the tire from leaking. In addition, the innerliner 18 is constituted by, for example, a rubber composition with butyl rubber as a main component, thermoplastic resin, thermoplastic elastomer composition made by blending an elastomer component with a thermoplastic resin, and the like. In particular, by using a thermoplastic resin or a thermoplastic elastomer composition to form the innerliner 18, the innerliner 18 can be made thinner than in the case in which butyl rubber is used for the innerliner 18. As such, tire weight can be greatly reduced. Note that the innerliner 18 is typically required to have an air penetration coefficient at of 100×10{circumflex over ( )}12 cc·cm/cm{circumflex over ( )}2·sec·cmHg or less when measured in accordance with JIS K7126-1 at a temperature of 30° C. In addition, the innerliner 18 preferably has a resistivity of 1×10{circumflex over ( )}8 Ω·cm or greater, and typically 1×10{circumflex over ( )}9 Ω·cm or greater.
Examples of a rubber composition with butyl rubber as a main component that can be used include butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), and the like. Butyl rubber is preferably a halogenated butyl rubber such as chlorinated butyl rubber and brominated butyl rubber.
Examples of a thermoplastic resin that can be used include polyamide resins (nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12), nylon 610 (N610), nylon 612 (N612), nylon 6/66 copolymers (N6/66), nylon 6/66/610 copolymers (N6/66/610), nylon MXD6, nylon 6T, nylon 9T, nylon 6/6T copolymers, nylon 66/PP copolymers, and nylon 66/PPS copolymers); polyester resins (aromatic polyesters such as polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), polybutylene terephthalate/tetramethylene glycol copolymers, PET/PEI copolymers, polyarylate (PAR), polybutylene naphthalate (PBN), liquid crystal polyester, and polyoxyalkylene diimidic diacid/polybutylene terephthalate copolymers); polynitrile resins (polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile/styrene copolymers (AS), (meth)acrylonitrile/styrene copolymers, and (meth)acrylonitrile/styrene/butadiene copolymers); poly(meth)acrylate resins (polymethylmethacrylate (PMMA), polyethylmethacrylate, ethylene ethyl acrylate copolymers (EEA), ethylene acrylate copolymers (EAA), and ethylene methyl acrylate resins (EMA)); polyvinyl resins (vinyl acetate (EVA), polyvinyl alcohol (PVA), vinyl alcohol/ethylene copolymers (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride/vinylidene chloride copolymers, and vinylidene chloride/methylacrylate copolymers); cellulose resins (cellulose acetate and cellulose acetate butyrate); fluorine resins (polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorofluoroethylene (PCTFE), and tetrafluoroethylene/ethylene copolymers (ETFE)); imide resins (aromatic polyimide (PI)); and the like.
Examples of an elastomer that can be used include diene rubbers and hydrogenates thereof (NR (natural rubber), IR (isoprene rubber), epoxidized natural rubber, SBR (styrene butadiene rubber), BR (butadiene rubber) (high-cis BR and low-cis BR), NBR (nitrile rubber), hydrogenated NBR, and hydrogenated SBR); olefin rubbers (ethylene propylene rubber (EPDM, EPM), maleated ethylene propylene rubber (M-EPM); butyl rubber (IIR); isobutylene and aromatic vinyl or diene monomer copolymers; acrylic rubber (ACM); ionomer; halogen-containing rubbers (Br-IIR, Cl-IR, brominated copolymer of isobutylene/para-methyl styrene (Br-IPMS), chloroprene rubber (CR), hydrin rubber (CHC, CHR), chlorosulfonated polyethylene (CSM), chlorinated polyethylene (CM), and maleated chlorinated polyethylene (M-CM)); silicone rubbers (methyl vinyl silicone rubber, di-methyl silicone rubber, and methyl phenyl vinyl silicone rubber); sulfur-containing rubbers (polysulfide rubber); fluororubbers (vinylidene fluoride rubbers, fluorine-containing vinyl ether rubbers, tetrafluoroethylene-propylene rubbers, fluorine-containing silicone rubbers, and fluorine-containing phosphazene rubbers); thermoplastic elastomers (styrene elastomers, olefin elastomers, polyester elastomers, urethane elastomers, and polyamide elastomers); and the like.
Electrostatic Suppressing Structure
Some pneumatic tires employ a structure including an earthing tread that suppresses electrostatic charging by discharging to the road surface static electricity produced in the vehicle when traveling. Such an earthing tread is an electrically conductive rubber disposed passing through the tread cap and is exposed to the ground contact surface. This electrostatic suppressing structure can suppress electrostatic charging in the vehicle by discharging static electricity in the vehicle from the belt layer to the road surface via the earthing tread.
However in recent years, as described above, the amount of silica contained in rubber compounds constituting tread caps, undertreads, sidewall rubber, and the like has been increasing in order to reduce the tire rolling resistance and thus improve the fuel economy of tires. Because silica is a good insulator, the resistance value of a tread cap increases when the amount of silica contained therein increases. Consequently, the electrostatic suppression performance decreases.
In light of the above, the pneumatic tire 1 employs the following configuration to enhance the electrostatic suppression performance.
As illustrated in
As illustrated in
In addition, the earthing tread 51 is made of electrically conductive rubber material having a lower volume resistivity than the tread rubber 15. Specifically, the earthing tread 51 preferably has a volume resistivity of less than 1×10{circumflex over ( )}8 Ω·cm, and more preferably of 1×10{circumflex over ( )}6 Ω·cm or less.
The electrically conductive portion 52 extends at least from the bead portion to the belt layer 14, as illustrated in
“Bead portion” refers to the region from the rim diameter measuring position to a position at one third of the cross-sectional height SH of the tire.
“Cross-sectional height SH of the tire” refers to a height half of the difference between the tire external diameter and the rim diameter, and measured when the tire is assembled on a specified rim, inflated to a specified inner pressure, and no load is applied.
Here, “specified rim” refers to an “applicable rim” as defined by the Japan Automobile Tyre Manufacturers Association (JATMA), to a “Design Rim” as defined by the Tire and Rim Association (TRA), or to a “Measuring Rim” defined by the European Tyre and Rim Technical Organization (ETRTO). In addition, “specified internal pressure” refers to “maximum air pressure” as defined by JATMA, to a maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” as defined by TRA, and to “INFLATION PRESSURES” as defined by ETRTO. Also, “specified load” refers to a “maximum load capacity” defined by JATMA, to a maximum value in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” as defined by TRA, and to a “LOAD CAPACITY” as defined by ETRTO. However, according to JATMA, for a passenger vehicle tire, the specified internal pressure is an air pressure of 180 kPa, and a specified load is 88% of maximum load capacity.
As illustrated in
The electrically conductive linear member 521 is a linear member made of electrically conductive material linearly formed and has an electrical line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm. The electrically conductive linear member 521 may represent a monofilament, a strand, or a cord made of electrically conductive material. Accordingly, for example, the electrically conductive linear member 521 may correspond to a cord made of metal or carbon fiber, a metal fiber of fiberized metal such as stainless steel, and the like. However, the electrically conductive linear member 521 does not correspond to a non-electrically conductive linear member made of non-electrically conductive material with an electrical line resistivity of 1×10{circumflex over ( )}8 Ω/cm or greater, a linear member made of such a non-electrically conductive linear member with its surface coated with electrically conductive material, or the like.
Examples of the stranded wire structure of the electrically conductive portion 52 (see
(1) an intertwined plurality of carbon fibers;
(2) an electrically conductive linear member 521 with an electrical line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm and a non-electrically conductive linear member 522 with an electrical line resistivity of 1×10{circumflex over ( )}8 Ω/cm or greater intertwined together. The stranded wire structure of the linear members is not limited to any particular structure, and any structure can be applied.
As the non-electrically conductive linear member 522 of above-mentioned (2), for example polyester fiber, nylon fiber, and the like can be used. In particular, the electrically conductive portion 52 is preferably a blended yarn of the electrically conductive linear member 521 made of metal fiber and the non-electrically conductive linear member 522 made of polyester fiber intertwined together.
The electrical line resistivity Ω/cm is measured by:
preparing a sample piece of the fiber 3 cm or greater in length in the filament length direction;
applying a voltage of 500 V across the sample piece (between both ends);
carrying out measurement using ohmmeter SME-8220 manufactured by Toa Dempa Kogyo K.K under conditions of measurement environment temperature 20° C. and 20% RH.
The electrically conductive portion 52 preferably has a total linear density from 20 to 1000 dtex, both inclusive, and more preferably from 150 to 350 dtex, both inclusive. Setting this lower limit of the total linear density to a value within the range described above ensures that the electrically conductive portion 52 is prevented from breaking when the tire is manufactured. In addition, setting this upper limit of total linear density to a value within the range described above ensures that the electrically conductive portion 52 is prevented from breaking when the tire is driven.
The total linear density is measured in accordance with JIS L 1017-8.3 “Test methods for chemical fibre tire cords—Fineness based on corrected weight”.
The electrically conductive portion 52 preferably has an elongation ratio of from 1.0 to 70.0%, both inclusive. Setting this lower limit of the elongation ratio to a value within the range described above ensures that the electrically conductive portion 52 is prevented from breaking when the tire is manufactured. In addition, setting this upper limit of the elongation ratio to a value within the range described above ensures that the electrically conductive portion 52 is prevented from breaking when the tire is driven.
The elongation ratio of the linear members is measured in accordance with JIS L 1017-8.5 “Test methods for chemical fibre tire cords—Tensile strength and Elongation ratio”.
In the configuration illustrated in
As illustrated in
In such a case, a lap width La with which the belt layer 14 and the electrically conductive portion 52 overlap is preferably 3 mm or greater. The upper limit of the lap width La is not particularly limited to any value, and the electrically conductive portion 52 may extend, crossing the tire equatorial plane CL, to reach both left and right bead portions.
The lap width La, in a cross-sectional view in the tire meridian direction, is taken as the surface length of the electrically conductive portion 52. This surface length of the electrically conductive portion 52 is measured from the bottom point of a vertical line drawn from the laterally outward end portion of belt ply 141, which is the widest belt ply in the belt layer 14, to the conductive portion 52 to the end portion of the electrically conductive portion 52.
The electrically conductive portion 52 of the configuration illustrated in
The yarn is a linear member disposed along the surface of the carcass layer 13 (see
For example, the electrically conductive portion 52 of the configuration illustrated in
In such a case, the distance from the electrically conductive portion 52 to the innerliner 18 is preferably 1.0 mm or less, and more preferably 0.5 mm or less. In particular, when the innerliner 18 is constituted by thermoplastic resin, static electricity is produced by friction when the tire is driven and the innerliner 18 builds up charge. Thus, by disposing the electrically conductive portion 52 approximate to the innerliner 18, an electrically conductive path from the innerliner 18 to the electrically conductive portion 52 is appropriately ensured.
The configuration described above discharges static electricity produced in the vehicle through the rim R, the rim cushion rubber 17, the electrically conductive portion 52, and the belt layer 14 (and undertread 152) to the road surface via the earthing tread 51. Thus, electrostatic charge in the vehicle due to static electricity is suppressed.
Note that the rim cushion rubber 17, the coating rubber of the carcass layer 13 and the belt layer 14 constitute the electrically conductive path from the rim R to the earthing tread 51. Thus, these rubbers preferably have low volume resistivity. This causes the electrically conductive efficiency from the rim R to the earthing tread 51 to be improved.
The electrically conductive portion 52 of the configuration illustrated in
In addition, as illustrated in
However, the electrically conductive portion 52 is not limited to these configurations, and the radially inward end portion of the electrically conductive portion 52 may, for example, end in the vicinity of the bead filler 12 without coming into contact with the rim cushion rubber 17 (not illustrated). Such a configuration can ensure necessary and sufficient electrical conductivity from the rim fitting surface to the electrically conductive portion 52.
The electrically conductive portion 52 of the configuration illustrated in
However the electrically conductive portion 52 is not limited to such a configuration and, as illustrated in
For example, the electrically conductive portion 52 of the configuration illustrated in
In such a case, the radially inward end portion of the electrically conductive portion 52 may be located inward of the bead core 11 or the bead filler 12 in the tire width direction (see
As described above, the electrically conductive portion 52 of the configuration illustrated in
However the electrically conductive portion 52 is not limited to this configuration. The electrically conductive portion 52 may be a member that is not a yarn and may be disposed with a portion or the entirety thereof separated from the carcass layer 13.
For example, the electrically conductive portion 52 of the configuration illustrated in
In addition, in the configuration illustrated in
In the configuration illustrated in
The electrically conductive portion 52 of the configuration illustrated in
However, the electrically conductive portion 52 is not limited to this configuration and may be disposed exposed to the tire inner circumferential surface or the tire outer circumferential surface.
For example, the electrically conductive portion 52 of the configuration illustrated in
In the configuration illustrated in
In the configuration illustrated in
Additionally, for example, the electrically conductive portion 52 of the configuration illustrated in
The electrically conductive portion 52 of the configuration illustrated in
In contrast, as illustrated in
As illustrated in
In contrast to the configuration illustrated in
In relation to the configuration illustrated in
Note that in
As described above, the pneumatic tire 1 is provided with the pair of bead cores 11, 11, the at least one carcass layer 13 extending between the pair of bead cores 11, 11 continuously or with a divided portion at the tread portion, the belt layer 14 disposed outward of the carcass layer 13 in the tire radial direction, the tread rubber 15 disposed outward of the belt layer 14 in the tire radial direction, the pair of sidewall rubbers 16, 16 disposed outward of the carcass layer 13 in the tire width direction on both sides, and the innerliner 18 disposed on the inner circumferential surface of the carcass layer 13 (see
(1) is advantageous because the electrically conductive portion 52 ensures that an electrically conductive path from the bead portion to the belt layer 14 is formed, and thus the electrostatic suppression performance of the tire is effectively improved; and
(2) is advantageous because by the electrically conductive linear member 521 of the electrically conductive portion 52 being linearly formed of electrically conductive material with an electrical line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm, a reduction in electrical conductivity of the electrically conductive portion 52 caused when the tire is manufactured or in service is suppressed. Consequently, electrostatic suppression performance of the tire is appropriately ensured. A configuration, for example, in which the electrically conductive portion is a non-electrically conductive linear member coated with electrically conductive material is not preferable because the coating is susceptible to separation due to heat or strain that occurs when the tire is manufactured or in service, and thus the electrical conductivity of the electrically conductive portion may be reduced. In particular, in the case of a configuration in which the innerliner 18 is made of thermoplastic resin or a thermoplastic elastomer composition made by blending an elastomer component with a thermoplastic resin, the thin gauge of the innerliner 18 causes the electrically conductive portion 52 (for example, see
The electrically conductive portion 52 of the pneumatic tire 1 includes a plurality of intertwined linear members, the plurality of linear members including at least one electrically conductive linear member 521 (see
In addition, the electrically conductive portion 52 of the pneumatic tire 1 includes the electrically conductive linear member 521 with an electrical line resistivity of less than 1×10{circumflex over ( )}8 Ω/cm and the non-electrically conductive linear member 522 with an electrical line resistivity of 1×10{circumflex over ( )}8 Ω/cm or greater intertwined together (see
The electrically conductive linear member 521 of the pneumatic tire 1 is a metal fiber (in particular, stainless steel fiber), and the non-electrically conductive linear member 522 is an organic fiber (in particular, polyester fiber) (see
The electrically conductive linear member 521 of the pneumatic tire 1 includes a plurality of carbon fibers intertwined together. This configuration is advantageous because reduction in weight can be achieved.
In addition, the electrically conductive linear member 521 of the pneumatic tire 1 is a monofilament cord made of carbon fiber. This configuration is advantageous because reduction in weight can be achieved.
The electrically conductive portion 52 of the pneumatic tire 1 is disposed between the carcass layer 13 and the adjacent member (examples include in
In the pneumatic tire 1, the cord rubber of the carcass layer 13 has a volume resistivity of 1×10{circumflex over ( )}8 Ω·cm or greater. Such a configuration is advantageous because, by being able to reduce the amount of carbon blended in the cord rubber, the release of heat from the cord rubber when the tire is driven can be suppressed, and thus the tire rolling resistance can be reduced.
The innerliner 18 of the pneumatic tire 1 is constituted by a thermoplastic resin or a thermoplastic elastomer composition made by blending an elastomer component with a thermoplastic resin. Such a configuration is advantageous because air permeability of the innerliner 18 can be more favorably reduced than a configuration in which butyl rubber constitutes the innerliner 18, and thus tire weight and tire rolling resistance are reduced. In the pneumatic tire 1, the distance from the innerliner 18 to the electrically conductive portion 52 is 1.0 mm or less (see
In the pneumatic tire 1, the total linear density of the electrically conductive portion 52 is from 20 to 1000 dtex, both inclusive. This configuration is advantageous because the total linear density of the electrically conductive portion 52 is made appropriate. In other words, when the total linear density is 20 dtex or greater, breaking of the electrically conductive portion 52 upon manufacture of the tire is prevented. When the total linear density is 1000 dtex or less, breaking of the electrically conductive portion 52 when the tire is driven is prevented.
In addition, the electrically conductive portion 52 of the pneumatic tire 1 has an elongation ratio of from 1.0 to 70.0%, both inclusive. This configuration is advantageous because the elongation ratio of the electrically conductive portion 52 is made appropriate. In other words, because the elongation ratio is 1.0% or greater, breaking of the electrically conductive portion 52 upon manufacture of the tire is prevented. Because the elongation ratio is 70.0% or less, breaking of the electrically conductive portion 52 when the tire is driven is prevented.
The tread rubber 15 of the pneumatic tire 1 includes the tread cap 151 constituting the ground contact surface, and the undertread 152 layered inward of the tread cap 151 in the tire radial direction (see
The tread rubber 15 of the pneumatic tire 1 includes the tread cap 151 constituting the ground contact surface, and the undertread 152 disposed inward of the tread cap 151 in the tire radial direction. The tread rubber 15 has an volume resistivity of less than 1×10{circumflex over ( )}8 Ω·cm and is provided with the earthing tread 51 that passes through at least the tread cap 151 and is exposed to the ground contact surface (see
In the pneumatic tire 1, the value of tan δ at 60° C. of the sidewall rubber 16 is 0.20 or less, and the volume resistivity of the sidewall rubber 16 is 1×10{circumflex over ( )}8 Ω·cm or greater. Such a configuration is advantageous because the tire rolling resistance is reduced when the amount of silica contained in the sidewall rubber 16 is increased.
In the performance testing, a plurality of mutually differing test tires were evaluated for (1) low rolling resistance and (2) electrostatic suppression performance (electrical resistance value). For the performance testing, test tires of tire size 195/65R15 91H were manufactured.
(1) For the evaluation for low rolling resistance, the tire rolling resistance was measured using an indoor drum type tire rolling resistance tester with a drum diameter of 1707 mm in accordance with the measurement method defined in JATMA Y/B 2012 edition. Results of the evaluations were indexed with the results of the Conventional Example set as the reference (100). Higher values indicate lower rolling resistance (preferred result).
(2) For the evaluation of electrostatic suppression performance, electrical resistance (Ω) was measured using ADVANTEST R8340A ultra high resistance meter in accordance with measurement conditions specified by JATMA. The electrical resistance was measured when the tires were new and after travelling under predetermined conditions. The electrical resistance after travelling was measured as follows:
the test tires were assembled on an applicable rim as specified by JATMA,
inflated to an air pressure of 200 kPa,
loaded with 80% of a maximum load as specified by JATMA, and
run for 60 min at 81 km/h using an indoor drum type tire rolling resistance tester with a drum diameter of 1707 mm. Lower values indicate superior discharge properties (preferred result).
The test tires of Working Examples 1 to 10 had a configuration based on that illustrated in
The test tire of the Conventional Example was the same as that of Working Example 2 except that the electrically conductive portion 52 was made of polyester fiber, which is a non-electrically conductive material, coated with a conducting polymer.
As shown in the test results, it can be seen that the low rolling resistance and electrostatic suppression performance of the test tires of Working Examples 1 to 10 are improved.
Number | Date | Country | Kind |
---|---|---|---|
JP2013-270375 | Dec 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/084167 | 12/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/098972 | 7/2/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5910544 | Ozawa et al. | Jun 1999 | A |
6021830 | Iwamura | Feb 2000 | A |
20050087275 | Zanzig | Apr 2005 | A1 |
20050103412 | Zanzig et al. | May 2005 | A1 |
20070163690 | Nobuchika et al. | Jul 2007 | A1 |
20080308203 | Kunisawa | Dec 2008 | A1 |
20110259488 | Zhao et al. | Oct 2011 | A1 |
20130092300 | Kunisawa et al. | Apr 2013 | A1 |
20130174951 | Schunack | Jul 2013 | A1 |
20140299241 | Kunisawa et al. | Oct 2014 | A1 |
20150158344 | Kishizoe | Jun 2015 | A1 |
20150328941 | Hirosue | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2 380 756 | Oct 2011 | EP |
H03-0169711 | Jul 1991 | JP |
H05-041903 | Jun 1993 | JP |
H06-080001 | Mar 1994 | JP |
H10-025375 | Jan 1998 | JP |
2000-016010 | Jan 2000 | JP |
2008-308083 | Dec 2008 | JP |
2009-154608 | Jul 2009 | JP |
2013-028195 | Feb 2013 | JP |
2013-528525 | Jul 2013 | JP |
2013-193577 | Sep 2013 | JP |
2013-193579 | Sep 2013 | JP |
2013-216115 | Oct 2013 | JP |
2013-237337 | Nov 2013 | JP |
5344098 | Nov 2013 | JP |
WO 199716485 | May 1997 | WO |
WO 2011157473 | Dec 2011 | WO |
WO 2014049862 | Apr 2014 | WO |
WO 2014109169 | Jul 2014 | WO |
Entry |
---|
Machine translation of JP2000-016010 (no date). |
Machine translation of JP03-169711 (no date). |
Japanese Office Action for Japanese Patent Application No. 2013-270375 dated Sep. 27, 2016. |
International Search Report for International Application No. PCT/JP2014/084167 dated Mar. 31, 2015, 5 pages, Japan. |
Number | Date | Country | |
---|---|---|---|
20170259626 A1 | Sep 2017 | US |