This application claims priority to Taiwanese Application No. 101125824, filed on Jul. 18, 2012.
1. Field of the Invention
The invention relates to a pneumatic tool, and more particularly to a pneumatic tool with a power regulation feature. 2. Description of the Related Art
Referring to
When the control valve 14 closes the regulation passage 113, the air fully flows into the air-motor portion 121 of the cylinder 12 for generating power. On the other hand, when the control valve 14 opens the regulation passage 113, the reversing valve 13 guides the air to flow from the air-feeding passage 111 into the first passage 123, with a portion of the air entering the regulation passage 113 before entering the air-motor portion 121 of the cylinder 12, so that the power generated by the conventional pneumatic tool 1 is relatively small. In this manner, power regulation can be implemented.
Since the reversing valve 13 and the regulation passage 113 are formed outside of the cylinder 12, the shell body 11 must be big enough for containing the reversing valve 13 and the regulation passage 113 therein, resulting in difficulty in reduction of product size. In addition, it is difficult to use the control valve 14 for precise control of power variation through adjustment of cross-sectional area for air discharge (i.e., open/close the regulation passage 113). Furthermore, since a great amount of air enters the air-motor portion 121, it is hard to obtain a small power output.
There are also pneumatic tools that regulate power through adjustment of cross-sectional area for air feed-in. However, when the desired power output is small, the cross-sectional area for air feed-in must be small enough, which may increase pressure at the air-feeding position, and result in difficulty of power control and operation of the pneumatic tool (e.g., high pressure may make it difficult to press a trigger of the pneumatic tool).
Therefore, an object of the present invention is to provide a pneumatic tool that enables relatively good control of power regulation while having a relatively small size.
According to the present invention, a pneumatic tool comprises:
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings, of which:
Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The shell body 2 includes a first seat 21 and a second seat 22 that are configured to be mounted together along an X-axis direction, i.e., a longitudinal direction of the cylinder 3. The first seat 21 is formed with first, second and third positioning portions 211, 212, 213 in a Y-axis direction transverse to the X-axis direction at a side facing the second seat 22. In this embodiment, each of the first, second and third positioning portions 211, 212, 213 is an indent. The second seat 22 has a shell cover 221, a grip 222 disposed adjacent to the shell cover 221 and extending along a Z-axis direction transverse to both of the X-axis and Y-axis directions, an exhausting passage 223 formed in the shell body 22, and an air-feeding path 224 formed in the grip 222 for receiving air from an air source (not shown). In this embodiment, the exhausting passage 223 extends along the Z-axis direction and passes through the grip 222.
The cylinder 3 is disposed in the second seat 22 of the shell body 2, and includes a cylinder wall 31 that extends along the X-axis direction to define an air chamber 30, a valve seat 32 that is connected to the cylinder wall 31 and that is spatially communicated with the air chamber 30, first and second air passages 33, 34 formed in a lower portion of the cylinder wall 31, at least an air-exiting port 35 formed at an upper portion of the cylinder wall 31, and a rotor 36 rotatably disposed in the air chamber 30. Each of the first and second air passages 33, 34 is configured to be spatially communicated with the air chamber 30 through the valve seat 32. The air-exiting port 35 spatially communicates the air chamber 30 with the outside.
The rotary valve 4 is rotatable about a valve axis parallel to the X-axis direction, extends through the valve seat 32, and has a pinion portion 41 formed around the valve axis, an intermediate air passage 42 extending along the X-axis direction and spatially inter-communicating the air-feeding path 224 and at least one of the first and second air passages 33, 34, and a notch 43 formed around the valve axis and spatially communicated with the exhausting passage 223. The rotary valve 4 is operable to rotate among a first angular position at which the intermediate air passage 42 spatially inter-communicates the air-feeding path 224 and the first air passage 33 (as shown in
The valve control component 5 extends movably through the shell cover 221 of the shell body 2 in the Y-axis direction, and is formed with an engagement portion 51 that is engaged with one of the positioning portions 211, 212, 213 of the shell body 2 at an outer surface thereof, and a rack portion 52 that is engaged with the pinion portion 41 of the rotary valve 4. In this embodiment, the engaging portion 51 of the valve control component 5 is a protrusion.
Referring to
Therefore, the air will flow from the air-feeding path 224 into the air chamber 30 through only a corresponding one of the first air passage 33 and the second air passage 34, so as to provide maximum airflow to drive the rotor 36 to rotate in a corresponding direction, resulting in maximum output power.
Referring to
At this time, a first airflow through the first air passage 33 is larger than a second airflow through the second air passage 34 since the first portion 421a of the air outlet 421 is larger than the second portion 421b of the air outlet 421 in cross-sectional area. When the first and second airflows interact in the air chamber 30, a torque generated from the first airflow will be weakened by a torque generated from the second airflow since the directions of the first and second airflows are different with respect to the rotor 36, thereby reducing the output power.
In addition, after the first airflow drives the rotor 36, it goes from a region with a higher pressure to a region with a lower pressure, and a portion thereof is discharged via the air-exiting port 35, so that the pressure of the first airflow is lowered. At this time, the pressure of the second airflow forms a back pressure, so as to weaken the torque generated from the first airflow. Then, the first airflow is discharged out of the cylinder 3 from the second air passage 34, passes through the notch 43, and is exhausted from the exhausting passage 223.
Referring to
To sum up, the pneumatic tool according to the present invention uses the opposite first and second airflows to obtain a weakened torque, has a relatively simple structure and is easy to operate. In addition, the output power is adjustable through the same action of changing rotation direction of the rotor 36 (i.e., pushing the valve control component 5), so as to facilitate user operation of the pneumatic tool.
While the present invention has been described in connection with what are considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
101125824 | Jul 2012 | TW | national |