Not applicable.
Not applicable.
Not applicable.
The present invention relates generally to a pneumatic tool, and more particularly to a device that has a check valve for an air inlet and outlet between the first and second cylinder.
The conventional pneumatic nail gun uses a single cylinder and piston to accomplish the nailing function.
Some nail guns have other functions besides a nailing function, such as sending the pad to the nail outlet when nailing so that there is an extra padding effect after the nail is sent. These nail guns satisfy multiple needs of the users, and there is a typical embodiment. So as to implement these multiple functions, the industry usually adds a second cylinder and piston on one side of the original cylinder (hereafter referred to as first cylinder) to drive the component of the other function mentioned above. Moreover, it creates the air channel between the second cylinder and the first cylinder so that the piston inside the second cylinder can create displacement while the first cylinder is nailing.
Among them, the conventional check valve that is placed between the second cylinder and the first cylinder is shown in
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement in the art to provide an improved structure that can significantly improve the efficacy.
To this end, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The present invention uses the unique built-in check valve, with regard to the conventional external style mentioned previously, to achieve the features of the pneumatic tool. The invention avoids the external force so as to extend the life the product and makes the appearance of the product show unity.
In addition, the present invention uses structures, such as the internal and external valve base 3040 and traveling valve 50 of built-in check valve B, so that the internal and external tapered protruding end 5152 for the traveling valve 50 can induce and block the air as expected, making simpler manufacturing, convenient assembly and stable movement.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The features and the advantages of the present invention will be more readily understood upon a thoughtful deliberation of the following detailed description of a preferred embodiment of the present invention with reference to the accompanying drawings.
As shown in
A first cylinder 10 is placed inside the pneumatic tool A, and the first cylinder 10 includes an air inlet 11 and a lower air chamber 12 (the present embodiment is the through hole style that is placed on the wall of the first cylinder). A first piston 13 is placed inside the first cylinder 10, and in the present embodiment, the first piston 13 drives the striker pin 14 to make the expected nailing movement.
A second cylinder 20 is a supply cylinder, and it is placed on the first cylinder 10 inside the pneumatic tool A and spaced from the first cylinder. The air inlet 21 of the second cylinder 20 is connected to the air inlet 11 for the first side channel 22 and the first cylinder 10. A second piston 23 is placed inside the second cylinder 20, and at the bottom of the second piston 23, the second cylinder 20 in connected to the lower chamber 12 of the first cylinder 10 by a second side channel 24. The second piston 23 drives a transmission shaft 25, which is operated downward to drive a shelf 26, as shown in the present embodiment. The movement of the shelf can control the disc 05 in the direction of the nail outlet A2, and when the disc 05 moves to the nail outlet A2 of the pneumatic tool A, it uses an elastic plate 27 to press to position, so when the nail is stroked, the disc 05 is stroke out at the same time.
A built-in check valve B is placed on the first side channel 22 between the air inlets 1121 of the first and second cylinder 1020 inside the pneumatic tool A. By so doing, the inlet and outlet paths of the second cylinder 20 and controlled.
The built-in check valve B includes an internal valve base 30, which has an inlet hole 31 that is connected to the first side channel 22. The outer end of the inlet hole 31 forms an enlarged slot 32, and an annular oblique edge 33 is formed between the enlarged slot and the inlet hole 31. The enlarged slot 32 has an air hole 34 that is connected to the second cylinder 20.
The built-in check valve B also includes an external valve base 40, which has an outlet hole 41 that is connected to the external side of the pneumatic tool A. A protruding tube 42 inside the outlet hole 41 extends to the enlarged slot 32 of the internal valve base 30, and an interval space 43 is placed between the protruding tube 42 and the inlet hole 31 on the internal valve base 30.
A traveling valve 50 is traveling inside the interval space 43 mentioned above, and the traveling valve 50 includes internal and external tapered protruding ends 5152, and a tapered loop edge 53. The internal tapered protruding end 51 corresponds to the inlet hole 31 of the internal valve base 30, and the external tapered protruding end 52 corresponds to the protruding tube 42 of the external valve base 40. The tapered loop edge 53 corresponds to the annular oblique edge 33 of the internal valve base 30.
Among them, an outlet nozzle 50 is placed on the external end of the external valve base 40, and a claw 61 is placed on the internal end of the outlet nozzle, so that a groove 44 placed on the external end of the external valve base 40 can be locked in with the claw 61, positioning the outlet nozzle 50 and the external valve base 40.
Through the above structure, the operation of the present invention is disclosed and explained herein.
As shown in
As shown in
Number | Name | Date | Kind |
---|---|---|---|
942163 | Berner | Dec 1909 | A |
5259826 | Woods | Nov 1993 | A |
5944119 | Hsieh | Aug 1999 | A |
6508392 | Huang | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20070181629 A1 | Aug 2007 | US |