Not applicable.
Not applicable.
The present invention relates generally to plumbing fixtures, more particularly to a pneumatically actuated drain stopper apparatus for basins, tubs, sinks, and toilets.
The typical modern sink, tub, or water basin employs a pop-up linkage for controlling the stopper that blocks its drain. Most commonly the pop-up linkage is purely mechanical and consists of a lever connected to a stopper lift up control, which is connected to a pivot rod, which in turn is pivotally connected to a plunger to move it up and down. A user moves the lever to selectively retain water before discharge as waste.
The physical and functional elements comprising the typical sink include several intersecting sharp abrasive surfaces that are not shielded and which, over time, loosen and become mechanically compromised. They then present to a user a less-than-ideal drain stopper control device. Over time, the typical pop-up linkage can become so loose that when the control rod is pushed or pulled to its fully usable length, the stopper may not rise from the drain sufficiently to enable its basin to be evacuated of its contained waste water in a reasonably short period of time; additionally, it will not sufficiently seat upon the drain inlet to provide a substantially water-tight seal to retain water within the basin. Moreover, wearing of the parts, corrosion, friction at the insertion of the pivot rod, and so forth, can combine to make actuation of the assembly physically difficult.
Hydraulic stopper actuators have been proposed as an alternative to the mechanical devices described above. For instance, Patentschrift Nr. 179,269, to Lachner, discloses a hydraulically powered drain stopper for a wash basin. And JP Pat. No. 405346030, to Ota, shows a similar apparatus. Efficient hydraulic systems, however, generally employ an oil for system fluid, and because hydraulic systems are prone to leaks, they are entirely unsuitable for use in drains that release into municipal sewer mains. Furthermore, neither reference shows a system including check valves that would provide for push button release of pressure to lower a stopper, whether the stopper is disposed below or above the basin drain strainer.
A pneumatic power system is ideally suited for use in actuation drain stopper movement. While an electrical motor powering a drain stopper would be considerably more responsive, it would also introduce an element of risk of injury into a simple plumbing fixture. While a hydraulically powered stopper would be more powerfully driven, the hydraulic system imports a risk of environmental contamination. And while a mechanical system can be more economical (at least potentially), they are prone to failure, as described above.
Accordingly, it would be desirable to provide a power apparatus for actuating drain stopper vertical movement that overcomes the disadvantages of the foregoing systems. A pneumatic system is ideally suited for the purpose: pneumatic systems are highly reliable due to a minimization of moving parts; they are economical; they do not introduce contaminants into the atmosphere if there is a breach of the system; they can be used in wet conditions without creating an electrical shock hazard; they are compact; and they provide easily variable torques and speeds that can be tailored to the specific functional demands.
In view of the foregoing, it is an object of the present invention to provide a pneumatic system for actuating one or more stopper devices not having mechanical linkages.
It is yet another object of the present invention to provide a stopper device system which operates smoothly and reliably and which, over time, is as fully functional after considerable time as it was when new.
Still another object of the present invention is to provide a button actuated pneumatic stopper device.
Yet another object of the present invention is to provide an improved push button sink actuated pneumatic stopper device system and apparatus that employs dual check valves and a two way switch to enable a user to raise and lower a stopper with only the push of a button.
The present invention is directed to a pneumatically powered stopper device system and apparatus for selectively blocking a drain to the passage of water. The drain is provided with a drain inlet, a drain outlet, and a substantially cylindrical throat between the drain inlet and drain outlet. A pressurized gas source is provided together with a means for selectively feeding and regulating pressurized control gas to a stopper assembly. The stopper assembly comprises a stopper having a drain blocking surface with dimensions such that when seated on the drain inlet or within the cylindrical throat, the drain-blocking surface acts to block water from passing into and through the drain. The stopper assembly further includes a connecting rod which is attached to the drain-blocking surface and which extends within the cylindrical throat.
In a first preferred embodiment of the present invention, a pneumatic line, which may include a jacket, is also located within the cylindrical throat for receiving the control gas and the connecting rod. As pressurized gas is fed to the jacket or line, the connecting rod extends outwardly to cause the drain blocking surface to elevate off from the drain inlet, and as the pressurized gas is withdrawn from the jacket, the connecting rod is caused to extend back into the line or jacket to cause the drain-blocking surface to seat upon the drain inlet.
In several other preferred embodiments, a constellation of pneumatic lines, push-button controls, values, pressure regulators, and actuators are configured to allow a user to selectively raise and lower a drain stopper or toilet flapper or other moveable device, either through push rod manipulation alone, or through push rod manipulation in conjunction with a push button or switch.
Other novel features which are characteristic of the invention, as to organization and method of operation, together with further objects and advantages thereof will be better understood from the following description considered in connection with the accompanying drawings, in which preferred embodiments of the invention are illustrated by way of example. It is to be expressly understood, however, that the drawings are for illustration and description only and are not intended as a definition of the limits of the invention. The various features of novelty that characterize the invention are pointed out with particularity in the claims annexed to and forming part of this disclosure. The invention does not reside in any one of these features taken alone, but rather in the particular combination of all of its structures for the functions specified.
There has thus been broadly outlined the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form additional subject matter of the claims appended hereto. Those skilled in the art will appreciate that the conception upon which this disclosure is based readily may be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the Abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The Abstract is neither intended to define the invention of this application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
Certain terminology and derivations thereof may be used in the following description for convenience in reference only, and will not be limiting. For example, words such as “upward,” “downward,” “left,” and “right” would refer to directions in the drawings to which reference is made unless otherwise stated. Similarly, words such as “inward” and “outward” would refer to directions toward and away from, respectively, the geometric center of a device or area and designated parts thereof. References in the singular tense include the plural, and vice versa, unless otherwise noted.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
Referring to
Washbasin 100 is shown having a drain inlet 130, a drain outlet 140, and a substantially cylindrical throat 150 between the drain inlet and drain outlet.
A pressurized fluid source 210 is provided in the form of a mechanical pump configured in a syringe-like, or plunger and cylinder, configuration. As will be appreciated, virtually any means of feeding pressurized fluid to the stopper device of the present invention can be employed, and other embodiments of the present invention, as described herein, employ alternative means. The stopper assembly itself is provided with a drain-blocking surface 160, preferably including a disk having a substantially circular circumference dimensioned to seat tightly on the drain inlet 130 or within the cylindrical throat 150, thereby effectively blocking the passage of water contained within internal volume 110 (
The stopper assembly further comprises connecting rod 170 functionally connected to and supporting drain-blocking surface 160. Preferably the drain-blocking surface 160 is substantially horizontally disposed and connecting rod 170 is normal thereto, thus being substantially vertically disposed.
Connecting rod 170 extends within cylindrical throat 150 and further extends within pneumatic line 200. When needed for support, pneumatic line 200 can be provided with a jacket 180 also located within cylindrical throat 150 as shown. Jacket 180, which may be nothing more than the terminal end of pneumatic line 200, is configured to receive control fluid, such as pressurized air, and contains piston head 190 dimensioned to prevent the passage of control fluid between its periphery and the inner walls of jacket 180, yet sized to slidably travel within line 200 or jacket 180 as schematically shown by directional arrows 260 (
Referring again to
Conversely, in viewing
As noted from the above discussion, by simply applying the withdrawing pressure upon control element 220, the drain-blocking surface 160 can be caused to selectively block drain 120 at drain inlet 130 without the use of any previously employed mechanical linkage.
The first preferred embodiment of the present invention thus provides a reliable and smoothly operable control device which provides the user a smoothly actuated stopper which is both reliable and less costly to produce and maintain than current configurations. Further, the first preferred embodiment of the present invention can be installed in present installations by retrofitting basins.
Referring now to
The gas source 310 preferably provides compressed gas, which is ideally a non-toxic, environmentally safe fluid that may be provided in generally small gas cylinders and which may be employed repeatedly to provide a long useful life. Presently, it is preferred to employ HFC-134a aerosol (1,1,1,2-tetrafluoroethane) as the compressed gas from the gas source. A suitable product is available from several suppliers, including DuPont (DYMEL® HFC-134a), and Honeywell (GENETRON® 134a). Alternatively, any of a number of functionally equivalent compressible gases may be employed, most notably including air and CO2. Testing and trials related to the present invention show that very low cost cylinders of compressed HFC-134a aerosol can provide up to 15,000 cycles of raising and lowering a conventional bathroom sink drain stopper.
The piston drain is actuated in response to selective depression of the push-button 370 of switch 350. The piston drain includes a pneumatic housing 400 having a gas inlet 410 disposed in the lower portion of the pneumatic housing and connected to the pneumatic line 380, and a piston 420 having a piston head 430 slidingly disposed within the interior side 440 of the pneumatic housing 400, and substantially sealed to prevent the passage of gas by means of one or more rings 450. The pneumatic housing includes the interior side, as well as a floor 460 and a ceiling 470. A compression spring 480 is disposed between the piston head 430 and the ceiling 470 of the pneumatic housing, so as to urge the piston downwardly when gas pressure is released by actuation of the switch. The piston further includes a connecting rod 490 disposed between and connecting the piston head and a drain stopper 500.
As will be readily apparent by reference to
Referring now to
It will be immediately appreciated that such a system could be employed on a large scale for use in large buildings. Indeed, such a system could be employed to actuate numerous devices well beyond plumbing devices. For instance, a large system could be employed for opening and closing windows and doors, raising and lowering blinds, setting and opening locks, and so forth.
The above disclosure is sufficient to enable one of ordinary skill in the art to practice the invention, and provides the best mode of practicing the invention presently contemplated by the inventor. While there is provided herein a full and complete disclosure of the preferred embodiments of this invention, it is not desired to limit the invention to the exact construction, dimensional relationships, and operation shown and described. Various modifications, alternative constructions, changes and equivalents will readily occur to those skilled in the art and may be employed, as suitable, without departing from the true spirit and scope of the invention. Such changes might involve alternative materials, components, structural arrangements, sizes, shapes, forms, functions, operational features or the like.
Therefore, the above description and illustrations should not be construed as limiting the scope of the invention, which is defined by the appended claims.
The present application claims the benefit of the filing date of U.S. Utility patent application Ser. No. 09/888,186, filed Jun. 21, 2001 (Jun. 21, 2001); and U.S. Provisional Patent Application Ser. Nos. 60/665,615, and 60/665,610, each filed Mar. 24, 2005 (Mar. 24, 2005). Each of the foregoing patent applications are incorporated in their entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
60665615 | Mar 2005 | US | |
60665610 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09888186 | Jun 2001 | US |
Child | 11219548 | Sep 2005 | US |