The present teachings relate to pneumatically actuated hand tools, and, more particularly, to hand tools that have the general structure of a manually actuated hand tool and include a pneumatic actuator that is structured and operable to actuate a mechanical force generation and delivery mechanism of the respective tool.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Known manually actuated hand tools require the operator to expend considerable manual energy when using the respective hand tool repetitiously over a long period of time. For example, many known hand tools can require 15-20 lbs of hand-squeezing force for each actuation. Hence, if the operator is required to repeatedly actuate the respective hand tool many times over a long period of time, considerable operator fatigue can occur.
For example, one such exemplary hand tool is a manually actuated tacking tool. A tacking tool is a tool that can be used for fastening wrapping material, roofing tar paper or other applications including but not limited to the installation of ceiling tiles, insulation, crafts, decorative lights and, flyers. Most known manually actuated tacking tools typically require 15-20 lbs of hand-squeezing force to actuate the mechanical force generation and delivery mechanism within the tool to drive a single fastener. As such, in applications where such manually-actuated tacking tools are used, over time, the repetitious manual actuation can cause considerable operator fatigue.
Typical pneumatically operated tools that pneumatically generate and deliver a fastener driving force are complex, and thus expensive. For example, a typical pneumatic hand tool generally requires an expensive die cast housing that functions as an air pressure vessel and two signal valves, e.g., a head valve and a trigger valve, to control the air pressure within the pressure vessel that is utilized to generate and deliver the fastener driver force. Such fabrication, components and structure are complex and expensive.
The present disclosure provides a hand tool for mechanically generating and delivering a driving force to a fastener. In various embodiments, the hand tool comprises a mechanical force delivery system that is structured and operable to mechanically generate and deliver a driving force to a fastener. In such embodiments, the tool additionally comprises a pneumatic actuation device that operatively connected to the mechanical force delivery system. The pneumatic actuation device is structured and operable to actuate the mechanical force delivery system such that the mechanical force delivery system mechanically generates and delivers the driving force.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure, its application and/or uses in any way.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
The following description is merely exemplary in nature and is in no way intended to limit the present teachings, application, or uses. Throughout this specification, like reference numerals will be used to refer to like elements.
The hand tool 10 can be any hand held fastener delivery tool, such as a tacking tool, a finish nailer, a brad stapler, etc. While the embodiments disclosed herein will be exemplarily described with reference to a tacking tool, the teachings of the present disclosure can be applied with equal advantage to any other hand tool, e.g., finish nailers, brad staplers, etc., without departing from the scope of the present disclosure.
Referring to
In various embodiments, the mechanical force generation and delivery system 12 includes a spring lifter assembly 22, at least one leaf spring 26, a fork connector 30, and a driver blade 42, disposed within the tool housing 14. The driver blade 42 is fixedly connected to a distal end 44 of the leaf spring(s) 26. Additionally, in such embodiments, the pneumatic actuation device 13 includes a body 18, a piston 82 slidably disposed within the body 18, and an air inlet 68 formed in a proximal end of the body 18 and fluidly connectable to the forced air source. The piston 82 is operatively connected to the mechanical force generation and delivery system 12 via a piston rod 86 extending orthogonally from the piston. Particularly, the piston rod 86 is operatively connected to the mechanical force generation and delivery system 12 such that forced air controllably flowing into the body 18 from the forced air source forces the piston 82 from a Home position (shown in
As shown in the various embodiments of
In various embodiments, the spring lifter assembly 22 includes a lifter housing 108, a spring lifter pawl 110, a fork pivot pin 114, a swing fork 118, and a lifter pivot 122. The swing fork 118 includes engagement arms 126 which are structured and operable to slidably engage the lifter pivot 122. The spring lifter pawl 110, the swing fork 118, and the lifter pivot 122 are generally disposed within the lifter housing 108. The spring lifter assembly 22 further includes a return spring 134. A first end of the return spring 134 engages the lifter housing 108 and an opposing end of the return spring 134 engages a stop block 146 disposed within housing 14. The swing fork 118 is rotatably mounted within the tool housing 14, via the fork pivot pin 114, and includes a lifter stop pin 148.
The spring lifter pawl 110 includes at least one finger 150 having a catch tooth 154 formed at a distal end thereof. Each catch tooth 154 is structured and operable to engage the distal end 44 of the leaf spring(s) 26 in order to pull or lift the leaf spring distal end(s) 44 in an A+ direction to mechanically generate the mechanical driving force, as described further below. The spring lifter pawl 110 further includes at least one tail 162 structured and operable to engage the lifter stop pin 148 of the swing fork 118, thereby assisting in the pulling or lifting of the leaf spring distal end(s) 44. The spring lifter assembly 22 is slidably mounted within the housing 14 via slide channels 166 formed within tool housing 14 and are structured and operable to control the travel of the spring lifter pawl 110 in the A+ and A− directions, as described herein. The leaf spring(s) 26 is/are fixedly mounted at a proximal end 170 within the housing 14 such that the leaf spring(s) 26 is/are engaged with a fulcrum 174 disposed within the housing 14. As described further below, as the spring lifter pawl 110 pulls/lifts the leaf spring distal end(s) 44, the leaf spring(s) 26 are forced to bend at the fulcrum 174, thereby mechanically generating the mechanical driving force.
Referring now to
The trigger valve stem 214 is slidably disposed within the valve housing center bore 236 and is formed to include a pair of annular channels that are structured and operable to retain an upper O-ring 266 and a lower O-ring 270. An upper end of the trigger valve stem 214 is sized and shaped to receive a lower end of the valve spring 218 and an opposing lower end of the valve stem 214 protrudes through a hole 278 formed in the valve plate 210 such that the valve stem lower end is engageable with the primary trigger 194. The valve spring 218 is disposed within the cap internal cavity 226 such that the valve spring 218 is retained in engagement with the upper end of the valve stem 214. The hole 278 is structured and operable to provide a guide for the motion of the trigger valve stem 214 in the X+ and X− directions within the valve housing center bore 236. The upper O-ring 266 and lower O-ring 270 are each structured and operable to selectably provide, depending on a position of the valve stem 214 within the center bore 236, a substantially air-tight seal between the valve stem 214 and an interior wall of the valve housing defined by the center bore 236.
The primary trigger 194 is pivotally mounted within the tool housing 14 such that a distal end portion 286 extends past a proximal end portion 290 of the secondary trigger 198. Additionally, the secondary trigger 198 is pivotally mounted within, or to, the tool housing 14 and is biased away from the tool housing 14 via a biasing member 298. The primary trigger 194 is formed to include a stop bump 308 and recess 310, and the secondary trigger 198 is formed to include a protuberance 314. When the secondary trigger 198 is in a non-depressed position (shown in
However, if the secondary trigger 198 is depressed prior to depression of the primary trigger 194, the protuberance 314 of the secondary trigger 198 is aligned with the recess 310 of the primary trigger 194 such that the primary trigger 194 can be depressed. As described further below, when the primary trigger 194 is depressed the valve stem 214 is moved in the X+ direction allowing forced or compressed air from the forced air source to flow into the pneumatic actuation device 13, whereby the pneumatic actuation device operates the mechanical force generation and delivery system 12 such that the mechanical force generation and delivery system 12 mechanically generates and delivers the mechanical driving force.
Referring now to
The flow of forced or compressed air through the charge supply line 54 and into the housing 18 of the pneumatic action device 13 causes the piston 82 to rapidly move within the housing from Home position toward the Actuated position. The movement of the piston 82 from the Home position toward the Actuated position drives the piston rod 86 in the Y+ direction, whereby the piston rod 86 exerts a force on the fork connector proximal end 94, thereby causing the fork connector distal end 102 to move generally in the X+ direction. Movement of the fork connector distal end 102 in the X+ direction causes the swing fork 118 to rotate about the fork pivot pin 114 in a clockwise direction (relative to the orientation of the tool 10 shown in 2-5). Importantly, as the swing fork 118 rotates about the fork pivot pin 114, a lower one of swing fork engagement arms 126 (i.e., the engagement arm 126 located closest to the leaf spring(s) 26) exerts a force on the lifter pivot 122 causing the lifter housing 108 and the spring lifter pawl 110 to move in the A+ direction. As piston 82 moves toward the Actuated position and the spring lifter pawl 110 moves in the A+ direction the catch tooth 154 of each pawl finger 150 engages the leaf spring distal end(s) 44, thereby pulling the leaf spring distal end(s) 44 in the X+ direction. As should be readily understood by one skilled in the art, movement of the leaf spring distal end(s) 44 in the X+ direction bends the leaf spring(s) 26 about the fulcrum 174 thereby generating mechanical energy stored in the leaf spring(s) 26 and placing the leaf spring(s) 26 in the Energized position.
The mechanical energy generated and stored in the leaf spring(s) 26 is referred to herein as the mechanical driving force. Hence, activation of pneumatic actuation device 13, via flow of forced or compressed air into the actuation device 13, causes the piston 82 to move from the Home position to the Actuated position. This, in turn, via the piston rod 86 and fork connector 30, causes rotation of the swing fork 118 and movement of the spring lifter pawl 110 in the A+ direction, thereby engaging the lifter pawl catch tooth/teeth 154 with the distal end(s) 44 of the leaf spring(s) 26 and bending and energizing the leaf spring(s) 26. Subsequently, as the forced or compressed air flowing into the actuation device 13 causes the piston 82 to move further in the Y+ direction, past the Actuated position, to a Full-Stroke position. As the piston 82 moves past the Actuated position to the Full-stroke position, the spring pawl arms 150 rotate slightly in the clock-wise direction (relative to the orientation of the tool 10 shown in 2-5) by the lifter stop pin 148 such that the spring lifter pawl catch tooth/teeth 154 disengage the leaf spring distal end(s) 44. Upon disengagement of the leaf spring distal end(s) 44, due to the bending of the leaf spring(s) 26 about the fulcrum 174, the leaf spring distal end(s) 44 rapidly and forcefully move in the X− direction and return to the Non-energized position. More specifically, upon disengagement of the leaf spring distal end(s) 44, the mechanical energy stored in the leaf spring(s) 26, i.e., the generated mechanical driving force, is released as the leaf spring distal end(s) 44 rapidly and forcefully returns to the Non-energized position.
As described above, in the exemplary embodiments illustrated in
Once the fastener is dispensed, the user can release the primary and secondary triggers 194 and 198, whereby the biasing member 298 returns the primary and secondary triggers 194 and 198 to a non-depressed state, as shown in
The hand tool 10, as described herein, is structured and operable to mechanically generate and deliver a mechanical driving force by utilizing the pneumatic actuation device 13 to actuate the mechanical force generation and delivery system 12, as opposed to utilizing manual force to actuate the mechanical force generation and delivery system 12, as is done with known hand tools. Accordingly, the present hand tool 10 allows a user to apply less manual force (all that is needed is that the user apply manual force to depress the triggers 194 and 198) to actuate a mechanical force delivery system to mechanically generate and deliver the mechanical driving force to dispense/drive the fasteners.
The description herein is merely exemplary in nature and, thus, variations that do not depart from the gist of that which is described are intended to be within the scope of the teachings. Such variations are not to be regarded as a departure from the spirit and scope of the teachings.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 61/659,819, filed Jun. 14, 2012. The disclosure of the above application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2294463 | Krantz | Sep 1942 | A |
2558403 | Wandel | Jun 1951 | A |
2625682 | Cristiano | Jan 1953 | A |
2775765 | Klopstock | Jan 1957 | A |
2792571 | Klopstock | May 1957 | A |
3480193 | Ralston | Nov 1969 | A |
4606487 | Douri | Aug 1986 | A |
5335839 | Fealey | Aug 1994 | A |
5366132 | Simonelli | Nov 1994 | A |
5522532 | Chen | Jun 1996 | A |
5551620 | Vallee | Sep 1996 | A |
5687897 | Fa | Nov 1997 | A |
6116488 | Lee | Sep 2000 | A |
7143918 | Aguirre | Dec 2006 | B2 |
7152773 | Ke | Dec 2006 | B2 |
7308995 | Uchiyama | Dec 2007 | B2 |
7322426 | Aguirre | Jan 2008 | B2 |
7395955 | Zins et al. | Jul 2008 | B2 |
7540400 | Zins et al. | Jun 2009 | B2 |
7810688 | Wu | Oct 2010 | B2 |
20040164120 | Boswinkel | Aug 2004 | A1 |
20050023318 | Aguirre | Feb 2005 | A1 |
20060108388 | Liu | May 2006 | A1 |
20060261121 | Uchiyama | Nov 2006 | A1 |
20080156844 | Braganza | Jul 2008 | A1 |
20080264996 | Chang | Oct 2008 | A1 |
20090108046 | Huang | Apr 2009 | A1 |
20100012700 | Perron | Jan 2010 | A1 |
20100116863 | Suda | May 2010 | A1 |
20100140314 | Tillinghast | Jun 2010 | A1 |
20110248061 | Liu | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
963415 | May 1957 | DE |
2025562 | Jan 1980 | GB |
Entry |
---|
Carmichael, Guy—Extended European Search Report—dated Aug. 29, 2013—8 pages—The Hague. |
Number | Date | Country | |
---|---|---|---|
20130334275 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61659819 | Jun 2012 | US |