The present invention relates to a pneumatically operated power tool, such as a pneumatically operated screw driver driven by compressed air to perform a prescribed operation.
Pneumatically operated screw drivers are well known in the art as a type of pneumatically operated power tool. In the examples of Japanese Patent Application Publications Nos. H11-300639 and 2005-118895, the screw driver includes a rotating body driven to rotate by a pneumatic motor, a rotation slide member accommodated in the rotating body so as to be capable of sliding up and down therein, a driver bit mounted on the lower end of the rotation slide member, and a piston formed circumferentially around the lower end of the rotation slide member and fitted into a cylinder so as to be capable of moving vertically therein.
With this type of screw driver, the rotation of the pneumatic motor is transmitted to the driver bit through the rotation slide member, and air compression applied to the piston moves the rotation slide member within the cylinder, thereby applying rotational and axial movement to the driver bit mounted on the rotation slide member in order to drive a screw into a workpiece. After the screw driving operation is completed, compressed air accumulated in a return chamber returns the rotation slide member and the driver bit to their initial states.
Although this screw driver is applied to applications for fastening a gypsum plaster board, for example, to a base member formed of wood, a steel plate, or the like, the amount of energy required for driving the screw in the case of the steel plate varies considerably depending on the thickness and hardness of the steel plate. If the steel plate is considerably thick or hard, the screw driver cannot drive the screw into the plate, as the tip of the screw does not penetrate the plate in some cases. Hence, the pressure of the supplied compressed air is set sufficiently high to produce a large driving force for penetrating the steel plate. However, since this driving force is too large when driving a screw into a thinner steel plate, the screw will penetrate the steel plate too far so that the gypsum plaster board or the like is not securely fastened. Hence, this conventional screw driver requires means for adjusting the force of the compressed air to suit the type of base member.
Conventionally, a pressure reduction valve has been used to change the force of compressed air. Normally, the pressure reduction valve is mounted on or disposed near the compressor at a position separated from the working position. Therefore, the operator of the screw driver must walk to the location, in which the compressor is positioned, to change the pressure reduction valve when the type of base member requires a different driving force, resulting in cumbersome work for the operator.
Hence, some screw drivers that are now available commercially incorporate a pressure changing mechanism having a pressure reduction valve in the body of the screw driver.
However, normally the pressure changing mechanism provided in these conventional screw drivers cannot be changed in steps, but are configured of an adjustment knob that the operator rotates to change the pressure. Consequently, the operator cannot instantaneously switch the pressure changing mechanism to a desired pressure, resulting in poor operability and user-friendliness for situations in which work conditions change frequently.
Therefore, it is an object of the present invention to provide a pneumatically operated power tool having improved operability by allowing the operator to switch between desired pressures easily and instantaneously.
In order to attain the above and other objects, the present invention provides a pneumatically operated power tool including an outer frame, driving components, a pressure reduction valve, and a switching valve. The outer frame has a compressed air intake portion and defines therein a compressed air chamber. The driving components are disposed in the outer frame and are driven by a compressed air in the compressed air chamber. The pressure reduction valve defines a pressure receiving space and allows a compressed air to flow from the air intake portion to the compressed air chamber and to the pressure receiving space. The switching valve is movable between a first position where the compressed air flows from the compressed air intake portion to the pressure receiving space, and a second position where a communication between the compressed air intake portion and the pressure receiving space is blocked. The pressure reduction valve is configured to set a compressed air pressure in the compressed air chamber to a first pressure level if the switching valve is located at the first position and to set the compressed air pressure to a second pressure level lower than the first pressure level if the switching valve is located at the second position.
According to another aspect, the invention also provides a pressure changing mechanism for use in a pneumatically operated power tool including an outer frame having a compressed air intake portion and defining therein a compressed air chamber, and driving components disposed in the outer frame and driven by a compressed air in the compressed air chamber. The pressure changing mechanism includes a pressure reduction valve and a switching valve. The pressure reduction valve defines a pressure receiving space and allows a compressed air to flow from the air intake portion to the compressed air chamber and to the pressure receiving space. The switching valve is movable between a first position where the compressed air flows from the compressed air intake portion to the pressure receiving space, and a second position where a communication between the compressed air intake portion and the pressure receiving space is blocked. The pressure reduction valve is configured to set a compressed air pressure in the compressed air chamber to a first pressure level if the switching valve is located at the first position and to set the compressed air pressure to a second pressure level lower than the first pressure level if the switching valve is located at the second position.
In the drawings:
A pneumatically operated power tool according to a first embodiment of the present invention will be described with reference to
A magazine 5 capable of accommodating a plurality of screws (not shown) linked to one another is mounted on the lower end of the outer frame 2. The screw driver 1 also includes an operation valve 8 and a trigger 6. The operation valve is provided in the region where the handle 2a connects to the outer frame 2 and has a plunger 7. The trigger 6 moves the plunger 7 up and down.
A pneumatic motor 9 having a rotor 9a is accommodated in a top section of the outer frame 2. A planetary gear mechanism 10 is disposed beneath the pneumatic motor 9. A cylindrical rotary member 11 having a closed bottom is rotatably supported in the outer frame 2 by a bearing 12. The rotary member 11 is connected to the rotor 9a of the pneumatic motor 9 via the planetary gear mechanism 10. A rotation of the rotor 9a is decelerated by the planetary gear mechanism 10 and transmitted to the rotary member 11. A damper plate 41 is provided below the rotary member 11 to close the bottom of the rotary member 11.
A plurality of air holes 13 is formed in a side wall of the rotary member 11 near a axial center of the rotary member 11. A main valve 15 having a cylindrical shape and being capable of moving in a axial direction of the rotary member 11 is disposed in a groove formed in the outer frame 2 at a position corresponding to the air holes 13. The main valve 15 is formed with an air hole 17. A spring 16 urges the main valve 15 upward.
An air hole 18 in communication with the operation valve 8 is formed below the groove in the outer frame 2.
A rotation slide member 20 is fitted into the rotary member 11 so as to be axially movable relative to the rotary member 11 in the axial direction. A raised portion provided on the periphery of the rotation slide member 20 is fitted into a recessed portion formed in the inner peripheral surface of the rotary member 11. Thus, the rotation slide member 20 is rotatable together with the rotary member 11. A piston 20a is provided around the lower end of the rotation slide member 20. The rotation slide member 20 defines a blocking surface 20b for sealing a fluid communication between the inside of the rotary member 11 and the inside of the pneumatic motor 9. A driver bit 21 is provided on the bottom end of the rotation slide member 20 and extends downward therefrom.
A cylinder 22 formed with an opening in the top surface thereof extends along the axial direction in the lower section of the outer frame 2. The piston 20a fits into the cylinder 22 so as to be capable of sliding in the axial direction along the inner peripheral surface of the cylinder 22. A return chamber S2 is defined by the cylinder 22 and a lower outer frame part 2B. A piston damper 23 is provided in the bottom of the cylinder 22.
A screw feeder 24 is provided on the bottom of the outer frame 2 for automatically supplying the screws accommodated in the magazine 5. A push lever 25 is provided below the screw feeder 24, with one end extending near the trigger 6.
Next, the operations of the screw driver 1 having the above structure will be described.
Compressed air is introduced into the groove below the main valve 15 through the compressed air chamber S1, operation valve 8, and air hole 18. At this time, the air pressure and the biasing force of the spring 16 push the main valve 15 upward, closing off the air holes 13 that provide the fluid communication between the compressed air chamber S1 and the rotary member 11 and sealing the supply of compressed air into the rotary member 11 and toward the pneumatic motor 9.
With the screw driver 1 in this state, the operator pushes the push lever 25 against a workpiece such as a wood or a gypsum plaster board, and pulls the trigger 6 to actuate the operation valve 8. At this time, the compressed air beneath the main valve 15 is discharged from the screw driver 1 through the air hole 18 and operation valve 8. Since air pressure is being applied to the top surface of the main valve 15 near the outer periphery thereof, the main valve 15 is pressed downward against the biasing force of the spring 16. Hence, compressed air flows into the rotary member 11, applying air pressure to the top surface of the piston 20a. Consequently, the rotation slide member 20 is pressed downward together with the driver bit 21, allowing compressed air to be supplied to the pneumatic motor 9 for driving the same.
As described above, upon driving the pneumatic motor 9, the planetary gear mechanism 10 transmits the rotation of the rotor 9a to the rotary member 11 at a reduced ratio, thereby rotating the rotary member 11 and rotation slide member 20. Therefore, the driver bit 21 mounted on the rotation slide member 20 rotates while being pushed downward in order to drive a screw into the workpiece (not shown).
When the driver bit 21 reaches the end of its downward drop at which the screw driving operation is complete, the piston 20a of the rotation slide member 20 collides with the piston damper 23, halting the drop of the rotation slide member 20 and driver bit 21. At the same time, the air blocking surface 20b of the rotation slide member 20 contacts the damper plate 41, thereby sealing the supply of compressed air to the pneumatic motor 9. Since the pneumatic motor 9 halts operations at this time, the rotary member 11, rotation slide member 20, and driver bit 21 cease to rotate. At this time, compressed air is collected in the return chamber S2.
After the operator subsequently releases the push lever 25 and the trigger 6 so that the operation valve 8 returns to its initial position, compressed air and the biasing force of the spring 16 push the main valve 15 upward. The compressed air flows into the groove beneath the main valve 15 from the compressed air chamber S1 via the operation valve 8 and air hole 18. At this time, the fluid communication between the compressed air chamber S1 and rotary member 11 is sealed, while the air hole 17 formed in the main valve 15 is in communication with the discharge path 42 through an air passage (not shown). Accordingly, compressed air in the rotary member 11 is discharged from the outer frame 2. Since the compressed air accumulated in the return chamber S2 is supplied into the cylinder 22, the bottom surface of the piston 20a receives the force of this compressed air so that the rotation slide member 20 rises together with the driver bit 21 and returns to its initial position. At the same time, the screw feeder 24 feeds the next screw from the magazine 5 to a position aligned with the axis of the driver bit 21 and subsequently returns to its initial state.
Next, the pressure changing mechanism 3 provided in the screw driver 1 according to the first embodiment will be described in greater detail with reference to
The piston 27 is disposed inside the third section 26A3 and, together with the third section 26A3, defines a spring chamber S3. The piston 27 also has a first seal member 27a and a second seal member 27b. The first seal 27a has an outer diameter larger than that of the second seal 27b. Both the first and second seal members 27a and 27b are configured of an O-ring. The third section 26A3 also includes a first wall 26B, and a second wall 26C. The first wall 26B has an inner diameter, which is substantially equal to the outer diameter of the first seal member 27a, while the second wall 26C has an inner diameter, which is substantially equal to the outer diameter of the second seal member 27b. Thus, the first seal member 27a slidingly moves along the first wall 26B, while the second seal member 27b slidingly moves along the second wall 26C. Accordingly, the piston 7 is slidingly movable relative to the third section 26A3. The first seal member 27a, second seal member 27b, first wall 26B, second wall 26C and piston 27 define a seal space S5.
The piston 27 also has a first pressure receiving surface 27A, formed on the rear side, in confrontation with the holder 32A, and a second pressure receiving surface 27B formed as a step part between the first seal member 27a and second seal member 27b and facing the seal space S5. A valve stem 27C extends from the first pressure receiving surface 27A. The first spring 28 is interposed between a bottom of the main body 26A and the piston 27 for urging the piston 27 toward the air plug 4.
The holder 32A is disposed on the rear side of the piston 27 for sealing fluid communication between the compressed air chamber S1 and a compressed air injection chamber S7 defined by the end cap 32 and the holder 32A. A through-hole 31 is formed in the holder 32A for allowing penetration of the valve stem 27C. Accordingly, an annular space is formed between the valve stem 27C and the through-hole 31. The valve head 29 is fixed to a distal end of the valve stem 27C and moves together with the piston 27. The valve head 29 can contact the holder 32A to close the through-hole 31 when the piston 27 moves forward.
The second spring 30 is interposed between the valve head 29 and end cap 32 for urging the valve head 29 toward the piston 27. Hence, the valve head 29 is supported by the spring 30 while being allowed to move. The end cap 32 is disposed at the open edge of the third section 26A3. The holder 32A and the end cap 32 define a compressed air injection chamber S7 in communication with the air plug 4. Further, the first pressure receiving surface 27A is formed with diametrically extending cruciform grooves 43 communicating with the compressed air chamber S1 via the communication hole 26d. The spring chamber S3 is constantly in fluid communication with external air through the air hole 44.
A switching valve 33 is slidably movably fitted into the valve chamber S6. A space S4 is defined by the first section 26A1 and the switching valve 33. When the switching valve 33 is in a first position shown in
The switching valve 33 includes a first O-ring 36 for constantly sealing communication between the first through-hole 34 and external air, and a second O-ring 37 for sealing or opening communication between the space S4 and the second through-hole 35 as the switching valve 33 is moved left and right in the drawings. A spring 38 is interposed between a bottom of the first section 26A1 and the switching valve 33 in the valve chamber S6 for urging the switching valve 33 rearward in
A through-hole 33b is formed in the switching valve 33, and a knob 39 is inserted into the through-hole 33b. The knob 39 is rotated to move the switching valve 33 in the front-to-rear direction. A tapered surface 33a is formed on the rear end of the switching valve 33 and engages with a pin 40 protruding at a position eccentric to the rotational axis of the knob 39. Since a position at which the pin 40 engages the tapered surface 33a changes as the knob 39 is rotated, the switching valve 33 is moved in the front-to-rear direction (between the first position shown in
If the pressure in the compressed air chamber S1 is lowered, the piston 27 is moved toward the air plug 4 by the biasing force of the first spring 28. As a result, the valve head 29 opens the through-hole 31. Thus, a new compressed air can be introduced into the compressed air chamber S1 through the pressure reduction valve 26. In this way, the pressure in the compressed air chamber S1 can be maintained at the first setting pressure lower than the pressure level in the air plug 4.
With the first embodiment described above, the effective pressure receiving surface area of the piston 27 can be varied through a simple operation of rotating the knob 39 180° (a half rotation). In this way, the setting pressure in the compressed air chamber S1 can easily be changed in two stages (first and second setting pressure), thereby improving operability for instantaneously switching the setting pressure to a pressure suitable for different types of workpieces.
Next, a pneumatically operated power tool according to a second embodiment of the present invention will be described with reference to
A feature of the second embodiment is that a first through-hole 134 is in communication with the compressed air injection chamber S7 rather than the compressed air chamber S1 (cruciform grooves 43). The remaining structure is identical to that of the first embodiment shown in
In the second embodiment described above, the setting pressure in the compressed air chamber S1 can easily be changed in two stages (third and fourth setting pressure) through the simple operation of rotating the knob 39 180° (a half turn), thereby improving operability for instantaneously switching the setting pressure to a pressure suited to the type of workpiece.
While the invention has been described in detail with reference to specific embodiments thereof, it would be apparent to those skilled in the art that many modifications and variations may be made therein without departing from the spirit of the invention, the scope of which is defined by the attached claims. For example, it should be apparent that the present invention can similarly be applied to another type of pneumatically operated power tool other than the screw driver, such as a nail gun 201 shown in
Number | Date | Country | Kind |
---|---|---|---|
P2007-027421 | Feb 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7093743 | Oouchi et al. | Aug 2006 | B2 |
7255257 | Oouchi et al. | Aug 2007 | B2 |
20050247750 | Burkholder et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1396855 | Feb 2003 | CN |
11-300639 | Nov 1999 | JP |
2005-118895 | May 2005 | JP |
WO 0154865 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080185058 A1 | Aug 2008 | US |