Pogo pin connector

Information

  • Patent Grant
  • 12015226
  • Patent Number
    12,015,226
  • Date Filed
    Tuesday, July 26, 2022
    2 years ago
  • Date Issued
    Tuesday, June 18, 2024
    5 months ago
Abstract
The application is directed to various connector and sensor assemblies are described. The connector can have an opening that has a first surface and second surface that are opposite each other. The connector can include a plurality of retractable electrical connectors that extend from the first surface and a lock structure that is located on the second surface. The sensor assembly can include a body portion and a proximal end. The proximal end has a top side and a bottom side. The top side includes a plurality of electrical contacts that is configured to interact with the plurality of retractable electrical connectors. The bottom side includes a key structure that is configured to interact with the lock structure in the connector.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to electrical connectors. More specifically, the present disclosure relates to the connection of medical sensors to instruments responsive to signals from the sensors.


BACKGROUND

Energy is often transmitted through or reflected from a medium to determine characteristics of the medium. For example, in the medical field, instead of extracting material from a patient's body for testing, light or sound energy may be caused to be incident on the patient's body and transmitted (or reflected) energy may be measured to determine information about the material through which the energy has passed. This type of non-invasive measurement is more comfortable for the patient and can be performed more quickly


Non-invasive physiological monitoring of bodily function is often required. For example, during surgery, blood pressure and the body's available supply of oxygen, or the blood oxygen saturation, are often monitored. Measurements such as these are often performed with non-invasive techniques where assessments are made by measuring the ratio of incident to transmitted (or reflected) light through a portion of the body, for example a digit such as a finger, or an earlobe, or a forehead.


Durable and disposable sensors are often used for such physiological measurements. These sensors have connectors which allow detachment from the instrument or cable from the instrument.


SUMMARY OF THE DISCLOSURE

The present disclosure relates to a connector that is configured to attach both disposable and durable sensors to instruments that are responsive to signals from the sensors or the cables from the instruments. To ensure proper operation, the connector is designed to prevent incorrect attachment of the probe to the connector. Additionally, the connector allows for easy connection and release, yet prevents accidental disconnection.


In some aspects of the present disclosure are disclosed a sensor that has a low profile structure and a connector that can be configured to accommodate various sensors that measure different bodily functions. In one embodiment, the connector can accommodate a plurality of staggered retractable contacts that interact with a sensor with a plurality of staggered electrical contacts on the sensor.


In some embodiments, the present disclosure involves a connector and sensor assembly. The sensor assembly includes a connector with an opening that has a first surface and a second surface that are opposite each other. In this example, a plurality of retractable electrical connectors can extend from the first surface and a lock structure can be located on the second surface. In this embodiment, the sensor assembly includes a body portion and a proximal end. The proximal end includes a top side and a bottom side, wherein the top side includes a plurality of electrical contacts and the bottom side comprises a key structure and detent structure configured to fit into the lock structure of the connector. In this example, the proximal end of the sensor assembly is configured to be removably inserted into the opening of the connector.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D illustrate perspective views of a complete assembly including one embodiment of a sensor assembly and one embodiment of a connector.



FIGS. 2A-2B illustrate a perspective and top view of one embodiment of a connector.



FIG. 3 illustrates side perspective view of one embodiment of a connector of FIGS. 2A-2B with the outer jacket removed.



FIGS. 4A-4B illustrate a side and front perspective view of one embodiment of a connector of FIG. 3 with the outer shield removed.



FIGS. 4C-4D illustrate a side and front perspective view of another embodiment of a connector of FIG. 3 with the outer shield removed.



FIG. 5A illustrates a perspective bottom view of one embodiment of the printed circuit board.



FIG. 5B illustrates a perspective bottom view of another embodiment of the printed circuit board.



FIG. 6A illustrates a perspective view of one embodiment of the inner shield with pogo pins disposed within each of the pogo pin holes.



FIG. 6B illustrates a perspective view of another embodiment of the inner shield with pogo pins disposed within each of the pogo pin holes.



FIG. 6C illustrates a perspective view of the embodiment of the inner shield of FIG. 6B with the pogo pins removed.



FIG. 7A illustrates a bottom view of one embodiment of the connector of FIGS. 5A & 6A with the pogo pins removed.



FIG. 7B illustrates a bottom view of another embodiment of the connector of FIGS. 5B & 6B with the pogo pins removed.



FIGS. 8A-8B illustrate a bottom perspective view of one embodiment of the connector of FIGS. 4A-4B with the inner shield removed.



FIGS. 8C-8D illustrate a bottom perspective view of another embodiment of the connector of FIGS. 4C-4D with the inner shield removed.



FIGS. 9A-9C illustrate perspective and cross-sectional views of one embodiment of a pogo pin.



FIGS. 9D-9E illustrate cross-sectional views of one embodiment of a plurality of pogo pins retained between the inner shield and the printed circuit board.



FIGS. 10A-10K illustrate various views of five embodiments of sensor assembly receivers.



FIGS. 11A-11H illustrate various views of five embodiments of sensor assemblies.



FIGS. 11I-11K illustrate bottom views of alternative embodiments of the sensor assemblies illustrated in FIGS. 11F-11H.



FIGS. 11L-11M illustrate a proximal end view of two embodiments of the sensor assembly.



FIG. 12A illustrates a top view of a sensor assembly proximal end configured with one embodiment of a sensor with a plurality of electrical contacts.



FIGS. 12B-12C illustrate a proximal end view of another embodiment of the sensor assembly proximal end configured with embodiments of a sensor with a plurality of electrical contacts wherein a ground trace is included.



FIGS. 13A-13B illustrate top views of one embodiment of a sensor assembly and a connector that are configured to interact.



FIGS. 14A-14I illustrate various cross-sectional views of embodiments of sensor assemblies inserted into corresponding embodiments of sensor assembly receivers.





DETAILED DESCRIPTION

The present disclosure discloses a connector for attaching a sensor or probe to a monitor or processor so that signals from the sensor are transmitted to the processor or monitor. The connector provides easy connection and removal of the sensor to the connector while maintaining a solid connection. To ensure proper operation, the connector is designed to prevent incorrect attachment of the probe to the connector. Further, in some embodiments, the connector and sensor are configured such that both the connector and sensor structures can be adjusted to accommodate a variety of sensors that measure a variety of bodily functions.


As used in the specification, the terms “proximal” and “distal” should be understood as being relative to the contact point between the connector and sensor assembly described. Hence, the term distal means a portion of the connector and/or sensor assembly that is furthest away from the point of contact (connection point) between the connector and/or sensor. The term proximal means a portion of the connector and/or sensor assembly that is closest to the point of contact (connection point) between the connector and/or sensor assembly.



FIGS. 1A-1D illustrate a side perspective of an embodiment of the assembly 100 which includes a connector 200 and a sensor assembly 800a. The connector 200 is configured to connect with the sensor assembly 800a through the opening 420a at the proximal end of the connector 200. This allows the sensor tab 810a to be secured by the sensor assembly receiver 400a. Connector 200 can be configured to have electrical connectors that are configured to interact with a specific sensor assembly or a plurality of sensor assemblies. In one embodiment, to ensure that the proper sensor assembly is connected to the corresponding connector 200, the sensor assembly receiver 400a of the connector 200 can have an internal structure that is configured to accept only sensor assemblies with corresponding structures. This prevents errors in attaching sensors with incompatible connectors. In some examples, the connector 200 has a receptor that only accepts sensor assemblies with a corresponding key. As can be seen in FIGS. 1A-1D, the sensor assembly receiver 400a has a receptor 445a located along the bottom inner surface of the sensor assembly receiver 400a and the sensor tab 810a has a key 860a located on the underside of the sensor tab 810a. As discussed, the receptor 445a only allows a sensor assembly with a corresponding key 860a to fit into the connector 200. The location of the receptor 445a and the key 860a ensures that the user connects the sensor tab 810a with the connector 200 in the correct configuration such that the sensor side 812a sits face up.


In some embodiments, the connector 200 and the sensor assembly 800a are further configured with a surface to facilitate the connection of the sensor assembly 800a with the connector 200. For example, the proximal end of the connector 200 has a front edge 220 and a tapered surface 430a which angles into the opening 420a of the sensor assembly receiver 400a. Similarly, as shown in FIG. 1D the sensor assembly 800a has a proximal end with a tapered surface 820a that is distal to the sensor tab 810a with the connector tab 840a. The angle of the tapered surface 820a corresponds with the angle of the tapered surface 430a of the connector 200 and provides a surface that allows the user to easily slide the sensor assembly 800a into the sensor assembly receiver 400a of the connector 200. The front edge 220 of the connector 200 extends to enclose the tapered surface 820a of the sensor assembly 800a such that the front edge 220 lies flush over the outer edge of the distal end of the tapered surface 820a. The flush connection between the connector 200 and the sensor assembly 800a provides a continuous structure or seal that indicates to the user that the connector 200 and the sensor assembly 800a are properly connected. The aforementioned structures allow the user to correctly attach the sensor with the connector by feel alone. This assists patients and medical practitioners in attaching the connector 200 with the sensor assembly 800a in situations where light is insufficient; thereby allowing the user to connect the connector 200 with the sensor assembly 800a without needing to look at the connector itself.



FIGS. 2A-2B provide various views of an embodiment of the connector 200. As well, FIGS. 2A-2B provide a perspective and front view of the connector 200. FIG. 3 illustrates the connector 200 with the outer jacket 210 removed such that additional internal structures of the connector 200 are visible. FIGS. 4A-4B illustrate two views of the connector 200 with the outer shield 300 removed such that the printed circuit board 500 and part of the inner shield 600 are visible. FIGS. 4A-4B also illustrate the plurality of pogo pins 1000 disposed in the holes of the printed circuit board 500 and inner shield 600. FIG. 5A illustrates a perspective view of the printed circuit board 500. FIG. 6A shows the embodiment shown in FIGS. 4A-4B with the printed circuit board 500 removed. FIG. 7A shows a bottom perspective view of the printed circuit board 500 and the inner shield 600. FIGS. 8A-8B illustrate a bottom and top perspective view of the embodiment shown in FIGS. 4A-4B with the inner shield 600 removed.



FIGS. 2A-2B illustrates a perspective and front view of the connector 200. The connector 200 includes a number of features that will be described in more detail below. The connector 200 has an outer jacket 210, a front edge 220 on the proximal end, and a cable attachment 230 at the distal end. As discussed above, the front edge 220 is configured to be disposed about the outer edge of the distal end of the tapered surface 820a. The cable attachment 230 at the distal end of the connector 200 is configured to be connected to and disposed about a cable. In some examples, the cable connects the connector 200 to a patient monitor. In some embodiments, the cable attachment 230 can be disposed about a cable with a diameter sufficient to surround a corresponding cable attachment.



FIG. 2B provides a frontal view of the connector 200. As can be seen, inside the front edge 220 of the connector 200, connector 200 has a tapered surface 430b that leads to the opening 420b of the sensor assembly receiver 400b. The top tab 450b of the sensor assembly receiver 400b protrudes from an opening on top of the outer jacket 210. This helps to retain the outer jacket 210 to the outside of the connector 200. In some embodiments, the sensor assembly receiver 400b can be one of a plurality of colors that corresponds with the color of the sensor assembly. In one example, the protruding top tab 450b can serve as a visual indicator to the user as to what sensor assembly the connector 200 can receive. The inside surface of the sensor assembly receiver 400b contains a receptor 445b that has a raised structure. As was discussed earlier, in some examples, the receptor 445b can couple with a keyed structure on the underside surface of a sensor tab such that the correct sensor assembly is connected to the proper connector 200. In some embodiments, the inside surface of the sensor assembly receiver 400b can include a detent 440b. As illustrated here, the detent 440b forms a groove on the sensor assembly receiver 400b. In some examples, the detent 440b can receive a key detent 865b. In some variants, the purpose of the detent 440b and key detent 865b is to provide the user with a tactile or mechanical feedback (e.g. a “click”) to indicate to the user that the sensor assembly has been properly inserted. As will be seen and described further below, in some embodiments the connector 200 can be configured with a number of different sensor assembly receivers, each with a different receptor that is configured to accept a different shaped sensor key and different shaped detents. This provides certain manufacturing and assembly efficiencies as the outer jacket 210 and other internal components of the connector 200 can be used with sensors requiring different numbers of electrical contacts.


Connector 200 can also be structured such that it can be configured for a number of different sensors because of the manner in which the electrical connection is established between the sensor and the connector 200. As can be seen in FIG. 2B, the connector 200 can contain a plurality of electrical connectors that extend downward from the top surface of the connector 200. In some embodiments, the electrical connectors are pogo pins 1000. The configuration of the pogo pins 1000 can be adapted to connect to sensors with one of a number of electrical contacts. As will be discussed in further detail below, the pogo pins 1000 of the connector 200 can be in a staggered configuration. This configuration allows the connector 200 to accommodate sensors with varying numbers of electrical contacts.



FIGS. 3A and 4A-4B illustrate various views of the connector 200 with various parts of the connector 200 removed so as to better visualize the internal connections between the parts of the connector 200. FIG. 3A shows the connector 200 with the outer jacket 210 removed such that the outer shield 300, sensor assembly receiver 400b, and the hot melt 700 are visible.



FIGS. 4A-4B show the connector 200 with the outer shield 300 removed. In this figure, the outer shield 300, sensor assembly receiver 400b, printed circuit board 500, and inner shield 600 are visible. FIG. 4A shows a side perspective view of the connector 200 with the outer shield 300 removed. FIG. 4B shows a back perspective view of the connector 200 with the outer shield 300 removed.


As can be seen in FIG. 3, in some embodiments, the outer shield body 340 of the outer shield 300 is disposed about the various parts of the connector 200. The outer shield body 340 is disposed about the sensor assembly receiver 400b such that the proximal end 410b of the sensor assembly receiver 400b extends past the proximal end of the outer shield body 340. The top tab 450b can be located on the top of the proximal end 410b of the sensor assembly receiver 400b. At the distal end, the outer shield body 340 has a distal end holder 350. In some embodiments, the distal end holder 350 has a circular structure that can be disposed about the surface of a cable. As discussed above, the cable enters the outer jacket 210 of the connector 200 through the cable attachment 230 where it is held in place by the distal end holder 350 of the outer shield body 340. In some embodiments, to secure the cable to the connector 200, the cavity of the distal end of the connector 200 includes a hot melt 700 that secures the cable to the distal end holder 350 of the outer shield body 340. In some embodiments, the hot melt distal end 710 of the hot melt 700 secures the cable attachment 230 at the distal end of the outer jacket 210 to the cable. Depending on the internal cavity of the distal end of the connector 200, the hot melt 700 can come in a variety of sizes and shapes and can be made of a variety of materials so long as it serves to secure the cable to the connector 200.


The outer shield body 340 of the outer shield 300 can have a plurality of openings on the top surface of the outer shield body 340 in order to secure the plurality of parts of the connector 200 together. The outer shield body 340 can have two proximal openings—a first proximal opening 310 and a second proximal opening 320—located on either side of the proximal end of the outer shield body 340 and a distal opening 330 located near the distal end of the top surface of the outer shield body 340. As will be seen in subsequent figures, the sensor assembly receiver 400b has a plurality of arms that retain the plurality of interior parts of the connector 200. Each of these arms can have an end that protrudes from the outer openings of the outer shield 300 discussed above so as to retain the interior parts of the connector 200. In the embodiment pictured in FIG. 3, the sensor assembly receiver 400b has a first arm 465b with a first proximal tab 460b and a second arm 475b with a second proximal tab 470b. Both the first proximal tab 460b and the second proximal tab 470b has a top end that protrudes from the first proximal opening 310 and the second proximal opening 320 respectively. Similarly, the distal arm 485b has a pointed end 480b. The pointed end 480b has a top end that protrudes from the distal opening 330. Each of the openings of the sensor assembly receiver 400b help to contain the top ends of the first proximal tab 460b, second proximal tab 470b, and the pointed end 480b to keep the sensor assembly receiver 400b retained in the proper configuration. In some embodiments, the outer shield 300 can provide electrical shielding to the connector 200. In some embodiments, the outer shield 300 shields the connector 200 from other noise in the surrounding area.



FIGS. 4A-4B illustrate a perspective side and back view of the connector 200 with the outer shield 300 removed. As discussed above, the outer shield 300 retains a plurality of interior parts of the connector 200. In some embodiments, this includes the sensor assembly receiver 400b, the printed circuit board 500, and the inner shield 600. As will be discussed in more detail, the proximal and distal arms of the sensor assembly receiver 400b extend through openings in the printed circuit board 500 and the inner shield 600 to retain and secure the parts within the connector 200. As pictured here, the inner shield 600 and the printed circuit board 500 are stacked and located above the sensor assembly receiver 400b. In some configurations, the inner shield 600 is sandwiched between the printed circuit board 500 and the sensor assembly receiver 400b.


Similar to the outer shield body 340 discussed above, the printed circuit board 500 has a plurality of openings so as to secure the inner shield 600 and sensor assembly receiver 400b together through the arms of the sensor assembly receiver 400b. The printed circuit board 500 can have two proximal openings—a first proximal opening 540 and a second proximal opening 550—located on either side of the proximal end of the printed circuit board 500. The printed circuit board 500 can also have a distal opening 530 located at the distal end of the printed circuit board 500. As will be seen in subsequent figures, the arms of the sensor assembly receiver 400b extend through a plurality of openings in the inner shield 600 and then through the plurality of openings of the printed circuit board 500. The first arm 465b and the second arm 475b each include a lipped end—the first proximal tab 460b and the second proximal tab 470b respectively. As seen in FIG. 4B, in one embodiment, the lip 462b of the first proximal tab 460b and the lip 472b of the second proximal tab 470b extend over the first proximal opening 540 and the second proximal opening 550 and onto the outer surface of the printed circuit board 500. The lip 462b and lip 472b help to secure the sensor assembly receiver 400b to the printed circuit board 500 and the inner shield 600.


The distal opening 530 of the printed circuit board 500 and the distal arm 485b of the sensor assembly receiver 400b can also be configured to secure the printed circuit board 500 and inner shield 600 together with the sensor assembly receiver 400b. The printed circuit board 500 and the inner shield 600 can have structures that interact with the distal arm 485b. In one embodiment, the distal arm 485b has a pair of legs 482b that form an opening 484b. In this example, the printed circuit board 500 has a distal opening 530 with a distal tab 570 and the inner shield 600 has a distal tab 690. As seen in FIG. 4B, the opening 484b is disposed about the distal tab 690 and distal tab 570 that protrude from the distal ends of the inner shield 600 and printed circuit board 500 respectively. The legs 482b of the distal arm 485b extend from the base of the body 490b of the sensor assembly receiver 400b past the surface of the printed circuit board 500 to form the pointed end 480b. In one example, the size of the opening 484b is the distance between the top surface of the body 490b of the sensor assembly receiver 400b and the top surface of the distal tab 570. The opening 484b can be configured such that it contains the distal tab 570 and distal tab 690 in order to prevent the printed circuit board 500 and inner shield 600 from moving relative to each other.



FIGS. 5-8 provide various views of the printed circuit board 500 and inner shield 600 with and without the pogo pins 1000 inserted through the printed circuit board 500 and inner shield 600. FIG. 5 shows a bottom perspective view of the printed circuit board 500. FIG. 6 shows a perspective view of the inner shield 600 with a plurality of pogo pins 1000 located through the holes of the printed circuit board 500. FIG. 7 shows a bottom view of the interconnected printed circuit board 500 and inner shield 600 without the pogo pins 1000. Finally, FIGS. 8A-8B illustrate a top and bottom perspective view of the interconnected printed circuit board 500 and inner shield 600 with a plurality of pogo pins 1000 inserted in the aligned holes of the printed circuit board 500 and inner shield 600.


As shown in FIGS. 5-8, in some embodiments, the printed circuit board 500 and inner shield 600 house can retain the pogo pins 1000 that form the electrical connections between the electrical contacts in the connector 200 and the sensor. In order to retain the pogo pins 1000 and provide for their movement, the printed circuit board 500 and inner shield 600 have a plurality of holes. The holes for the printed circuit board 500 and inner shield 600 must be aligned in the connector 200 to allow for movement of the pogo pins 1000. In some embodiments, as discussed above, the printed circuit board 500 and inner shield 600 are retained in the proper configuration in the connector 200 by the plurality of arms of the sensor assembly receiver 400b.


As seen in FIG. 5, the printed circuit board 500 can be thin with a flat proximal end and a curved distal end. As discussed above, the printed circuit board 500 can have a first proximal opening 540 and a second proximal opening 550 on either side of the proximal end of the printed circuit board 500. As shown in FIG. 4A, each of these openings is configured to be disposed about the arms of the sensor assembly receiver 400b. As well, the printed circuit board 500 has a distal opening 530 at the distal end of the printed circuit board 500. In the distal opening 530, a distal tab 570 protrudes into the distal opening 530. As was discussed earlier with regard to FIG. 4B, the distal tab 570 fits in the opening 484b of the distal arm 485b. The opening 484b can secure both the distal tab 570 and the distal tab 690 against the sensor assembly receiver 400b to prevent the printed circuit board 500 and inner shield 600 from moving relative to each other.


The printed circuit board 500 can also include a plurality of small holes 510, large holes 520, and outer holes 560. In one embodiment, the small holes 510 accommodate the plurality of pogo pins 1000. In some embodiments, the large holes 520 can accommodate the plurality of connector pins 660 of the inner shield 600. The plurality of connector pins 660 can retain the printed circuit board 500 to the inner shield 600. This can provide additional structure to secure the inner shield 600 with the circuit board. As seen in FIG. 5, in one embodiment, the small holes 510 are located on the printed circuit board 500 in a staggered configuration. In some embodiments, electrical contacts can be located on top side of the printed circuit board 500. Finally, in some embodiments, the printed circuit board 500 can include a plurality of outer holes 560 located near the border of the printed circuit board 500 for ease in manufacturing and assembly.



FIG. 6 illustrates the inner shield 600 with a plurality of pogo pins 1000 located in the inner shield 600. In some embodiments, the inner shield 600 includes a plurality of structures that ensures the proper positioning of the inner shield 600 in the connector 200. Like the printed circuit board 500 and the outer shield 300, the inner shield 600 can include a plurality of openings and tabs to interact with the arms of the sensor assembly receiver 400b such that the inner shield 600 is retained in a proper configuration on the sensor assembly receiver 400b and in the connector 200. The inner shield 600 has a first opening 630, a second opening 640, and a distal tab 690. As discussed earlier, the first opening 630 and second opening 640 are aligned with the first proximal opening 540 and second proximal opening 550 of the printed circuit board 500 respectively. These openings are disposed about the first arm 465b and second arm 475b of the sensor assembly receiver 400b. As well, the printed circuit board 500 and inner shield 600 are secured by the first proximal tab 460b and the second proximal tab 470b. The inner shield 600 further has a distal tab 690. The distal tab 690 protrudes from the distal end of the inner shield 600 and, as described above, can be retained by the opening 484b of the distal arm 485b of the sensor assembly receiver 400b.


The inner shield 600 can also include a plurality of legs to secure the inner shield 600 on the sensor assembly receiver 400b. As shown in FIG. 6, the inner shield 600 has a first leg 610 and a second leg 620 located at the proximal end of the inner shield 600. As can be seen in FIG. 4A, the sensor assembly receiver 400b has a plurality of gaps 492b that are located on either side of the proximal end of the sensor assembly receiver 400b. In some embodiments, the gaps 492b are formed on the side of the sensor assembly receiver 400b by the space between the proximal end of the arm (e.g. the first arm 465b or the second arm 475b) and the distal side of the proximal end 410b of the sensor assembly receiver 400b. The gaps 492b can be configured to fit the width of the legs (e.g. the first leg 610 and second leg 620) and secure the inner shield 600 in place to prevent it from moving relative to the sensor assembly receiver 400b. In this embodiment, the first leg 610 and second leg 620 bring the proximal shelf 670 such that it lies flush against the distal side of the proximal end 410b of the sensor assembly receiver 400b.


The inner shield 600 can also include a number of structures so as to retain and properly position the printed circuit board 500 on the surface of the printed circuit board 500. As shown in FIG. 6, the inner shield 600 can have a plurality of connector pins 660 and a proximal shelf 670. As discussed above the plurality of connector pins 660 can align with the plurality of large holes 520 of the printed circuit board 500 such that the large holes 520 are configured to be disposed about the connector pins 660. The inner shield 600 also includes a plurality of pogo pin holes 650. The plurality pogo pin holes 650 are located in a staggered configuration such that each of the plurality of the pogo pin holes 650 can be aligned to correspond with the small holes 510 of the printed circuit board 500. The connector pin 660 of the inner shield 600 can interact with the large holes 520 to maintain the passageway created by the small holes 510 and pogo pin holes 650. This connection can be further seen in FIG. 7. FIG. 7 shows a bottom view of the inner shield 600 with the printed circuit board 500 aligned over it. The pogo pin holes 650 of the inner shield 600 can be larger in diameter than the small holes 510 of the printed circuit board 500. In the embodiment shown in FIG. 7, each of the small holes 510 can be coaxially aligned with each of the pogo pin holes 650 so as to allow a pogo pin 1000 to be retained and move within the passage (e.g. channel, pathway) created by the pogo pin hole 650 and small hole 510.


As can be seen in FIGS. 8A and B, the pogo pin holes 650 are configured such that the plurality of pogo pins 1000 are positioned in the pogo pin holes 650 such that both ends of each of the pogo pins 1000 can protrude from the inner shield 600. The distal end 1110 of the pogo pins 1000 contacts the printed circuit board 500 and allows for an electrical connection to be formed between the printed circuit board 500 and the pogo pins 1000. As will be further discussed below, the small holes 510 of the printed circuit board 500 and the internal structure of each of the pogo pin holes 650 help to retain each of the pogo pins 1000 to prevent it from moving out of the pogo pin holes 650 of the inner shield 600. Also, as will be discussed below, the pogo pins 1000 are retained in a staggered configuration that can accommodate sensors with a range of electrical contacts. This staggered configuration can help to reduce the profile of the connector 200 and allow the same connector 200 structure to be used in a large number of sensors.


In some examples, the connector 200 can have internal components (e.g. the sensor assembly receiver, printed circuit board, and inner shield) with different configurations. FIGS. 4C-4D, 5B, 6B, 7B, and 8C-8D, illustrate another embodiment of the internal components of the connector 200.



FIGS. 4C-4D illustrate a perspective side and back view of another embodiment of connector 200 with the outer shield 300 removed. As discussed above, the outer shield 300 retains a plurality of interior parts of the connector 200. In some embodiments, this includes the sensor assembly receiver 400c, the printed circuit board 500b, and the inner shield 600b. As pictured here, the inner shield 600b and the printed circuit board 500b can be stacked and located above the sensor assembly receiver 400c. In some configurations, the inner shield 600b can be sandwiched between the printed circuit board 500b and the sensor assembly receiver 400c.


The printed circuit board 500b can have a plurality of openings so as to secure the printed circuit board 500b on the inner shield 600b. As will be discussed in more detail below, the printed circuit board 500b can include a plurality of large holes 520b that are disposed about the connector pin 660b of the inner shield 600b.


The sensor assembly receiver 400c can include a plurality of arms that secure the inner shield 600b to the sensor assembly receiver 400c so as to prevent movement of the inner shield 600b relative to the sensor assembly receiver 400c. In some embodiments the sensor assembly receiver 400c can include a first arm 460c, a second arm 470c, and a distal arm 480c. As seen in FIGS. 4C and 4D, in some embodiments the first arm 460c and second arm 470c can be located on the proximal end 410c of the sensor assembly receiver 400c. In one embodiment, the first arm 460c and second arm 470c extend away from the body 490c.


Similarly, in some embodiments, the inner shield 600b can include a plurality of arms that are configured to engage with the sensor assembly receiver 400c in order to secure the sensor assembly receiver 400c to the inner shield 600b. In one embodiment, the inner shield 600b can include a first arm 610b, a second arm 620b, and a distal arm 630b. In some embodiments, the first arm 610b and second arm 620b can be located on the proximal end of the inner shield 600b and the first arm 610b and second arm 620b extend outward from the inner shield 600b. The distal arm 630b can be located on the distal end of the first arm 610b. In some embodiments, the distal arm 630b can be composed of two legs 635b that extend away from the distal end of the inner shield 600b. In some embodiments, the two legs 635b bend away from the distal end of the inner shield 600b. In some embodiments, the ends of the two legs 635b have a connected end 640b and form an opening.



FIGS. 4C-4D illustrate one example of the connections between the sensor assembly receiver 400c and the inner shield 600b on the proximal end. In some embodiments, the first arm 460c and second arm 470c can extend outward to engage the proximal end of the inner shield 600b. In some variants, this engagement can allow the proximal shelf 670b to lie flush against the distal surface of the proximal end 410c of the sensor assembly receiver 400c. In some embodiments, the proximal shelf 670b is located between the first arm 460c and the second arm 470c.



FIG. 4D provides an illustration of one example of the connection between the sensor assembly receiver 400c and the inner shield 600b. As illustrated, the two legs 635b of the connected end 640b of the distal arm 630b can form an opening. As seen in FIG. 4D, the opening can allow the distal tab 485c of the distal arm 480c to protrude over the top surface of the connected end 640b. In some embodiments, this connection can prevent the inner shield 600b and sensor assembly receiver 400c from moving relative to each other. As well, as was discussed above, this securement can ensure the proper placement of the plurality of pogo pins 1000 within the body of the sensor assembly receiver 400c.



FIGS. 5B, 6B-6C, 7B, and 8C-8D provide various views of alternative embodiments of the printed circuit board 500b and inner shield 600b with and without the pogo pins 1000 inserted through the printed circuit board 500b and inner shield 600b. FIG. 5B shows a bottom perspective view of the printed circuit board 500b. FIG. 6B shows a perspective view of the inner shield 600b with a plurality of pogo pins 1000 located through the holes of the printed circuit board 500b. FIG. 6C illustrates another perspective view of the inner shield 600b with the pogo pins 1000 removed. FIG. 7B shows a bottom view of the interconnected printed circuit board 500b and inner shield 600b without the pogo pins 1000. Finally, FIGS. 8C-8D illustrate a top and bottom perspective view of the interconnected printed circuit board 500b and inner shield 600b with a plurality of pogo pins 1000 inserted in the aligned holes of the printed circuit board 500b and inner shield 600b.


The printed circuit board 500b is similar to the printed circuit board 500 described above in FIG. 5. Like the printed circuit board 500, the printed circuit board 500b can include a plurality of small holes 510b, large holes 520b, and outer holes 540b. Like the printed circuit board 500, the printed circuit board 500b can include small holes 510b that can accommodate the plurality of pogo pins 1000. As well, like the large holes 520 of the printed circuit board 500, the large holes 520b can accommodate the plurality of connector pins 660b of the inner shield 600b. As noted above, in some embodiments, the plurality of connector pins 660b can retain the printed circuit board 500b to the inner shield 600b. As seen in FIG. 5B, the small holes 510 can be located on the printed circuit board 500b in a staggered configuration. Each of the small holes 510b can be disposed about a pogo pin 1000 and allow for a portion of the pogo pin 1000 to protrude through the printed circuit board 500b. In some embodiments, electrical contacts 515b can be located on the inside surface of each of the small holes 510b. Finally, in some embodiments, the printed circuit board 500b can include a plurality of outer holes 540b located near the border of the printed circuit board 500b. In some embodiments, each of the outer holes 540b can include electrical contacts 545b on the inside surface of the outer holes 540b. In some examples, the electrical contacts 545b can provide an electrical connection between the printed circuit board 500b and the attached cable.



FIG. 6B illustrates another embodiment of the inner shield. FIG. 6B illustrates an inner shield 600b with a plurality of pogo pins 1000 located inner shield 600b. In some embodiments, the inner shield 600b can include a plurality of structures that ensures the proper positioning of the inner shield 600b in the connector 200b. As discussed above, the inner shield 600b can include a plurality of structures to interact with sensor assembly receiver 400c and the printed circuit board 500b such that the inner shield 600b is retained in a proper configuration on the sensor assembly receiver 400c and in the connector 200.


The inner shield 600b can also include a number of structures so as to retain and properly position the printed circuit board 500b on the surface of the printed circuit board 500b. As shown in FIG. 6C, the inner shield 600b can have a plurality of connector pins 660b and a proximal shelf 670b. As discussed above the plurality of connector pins 660b can align with the plurality of large holes 520b of the printed circuit board 500b such that the large holes 520b are configured to be disposed about the connector pins 660b. The inner shield 600b can also include a plurality of pogo pin holes 650b. The plurality pogo pin holes 650b can be located in a staggered configuration such that each of the plurality of the pogo pin holes 650b can be aligned to correspond with the small holes 510b of the printed circuit board 500b. The connector pin 660b of the inner shield 600b can interact with the large holes 520b to maintain the passageway created by the small holes 510b and pogo pin holes 650b.


This connection can be further seen in FIG. 7B. FIG. 7B shows a bottom view of the inner shield 600b with the printed circuit board 500b aligned over it. The pogo pin holes 650b of the inner shield 600b can be larger in diameter than the small holes 510b of the printed circuit board 500b. In the embodiment shown in FIG. 7B, each of the small holes 510b can be coaxially aligned with each of the pogo pin holes 650b so as to allow a pogo pin 1000 to be retained and move within the passage (e.g. channel, pathway) created by the pogo pin hole 650b and small hole 510b.


As can be seen in FIGS. 8C-8D, as was illustrated above in FIGS. 8A-8B, the pogo pin holes 650b can be configured such that the plurality of pogo pins 1000 are positioned in the pogo pin holes 650b such that both ends of each of the pogo pins 1000 can protrude from the inner shield 600b. The distal end 1110 of the pogo pins 1000 contacts the printed circuit board 500b and allows for an electrical connection to be formed between the electrical contacts 545b of the printed circuit board 500b and the pogo pins 1000. As will be further discussed below, the small holes 510b of the printed circuit board 500b and the internal structure of each of the pogo pin holes 650b can help to retain each of the pogo pins 1000 to prevent it from moving out of the pogo pin holes 650b of the inner shield 600b. Also, as will be discussed below, the pogo pins 1000 are retained in a staggered configuration that can accommodate sensors with a range of electrical contacts. This staggered configuration can help to reduce the profile of the connector 200 and allow the same connector 200 structure to be used in a large number of sensors. This is partly because the staggered configuration allows more separate connection points than would otherwise fit in the same space without a staggered configuration.


Each connector 200 contains a plurality of pogo pins 1000 that help to establish the electrical connection between the electrical contacts of the sensor assembly 800a and the connector 200 as seen in the complete assembly 100 of FIG. 1. Pogo pins can be made in a variety of shapes and sizes and usually take the form of a slender cylinder containing two spring loaded pins.



FIG. 9A-9C illustrate multiple views of some embodiments of a pogo pin 1000. FIG. 9A shows a perspective view of a pogo pin 1000, FIG. 9B shows a cross section of the pogo pin 1000, and FIG. 9C shows the inside components of the pogo pins 1000. FIG. 9D-9E illustrate two figures showing the pogo pins 1000 retained between the printed circuit board 500 and inner shield 600. FIG. 9D provides a cross-sectional example of the inner shield 600 with a plurality of pogo pins 1000 disposed within the pogo pin holes 650 of the inner shield 600. FIG. 9E provides a cross-sectional example of a plurality of pogo pins 1000 contained between the printed circuit board 500 and inner shield 600.


As can be seen in FIGS. 9A-9C, in one embodiment the pogo pin 1000 can include four structures—a plunger 1100, a hollow barrel 1140, a spring 1180, and a contact tip 1170. The hollow barrel 1140 houses the plunger 1100, spring 1180, and contact tip 1170. Further, the hollow barrel 1140 disposed about the spring 1180. The pogo pins 1000 can be made of a conductive material and are configured such that the spring 1180 can push against both the plunger 1100 and the contact tip 1170 to move both parts such that an electrical connection is established through the pogo pin 1000.


The hollow barrel 1140 has a distal opening 1150 and proximal opening 1160 to allow the plunger 1100 and contact tip 1170 to protrude from the hollow barrel 1140 respectively. As can be seen in FIG. 9A-9B, the hollow barrel 1140 includes a distal edge 1142 and a proximal edge 1144 that helps to contain the pogo pins 1000 in the interior structure of the pogo pin holes 650 of the inner shield 600. As will be discussed further below, the interior structure of the pogo pin holes 650 along with the location of the small holes 510 of the printed circuit board 500 retain the pogo pins 1000 between the printed circuit board 500 and inner shield 600. The hollow barrel 1140 can also include an inner lip 1146 on the inside surface of the hollow barrel 1140 near the proximal opening 1160. As will be discussed in more detail, the inner lip 1146 can interact with the outer surface of the distal end of the contact tip 1170 to prevent the contact tip 1170 from exiting out from the proximal opening 1160 of the hollow barrel 1140.


The plunger 1100 includes a distal end 1110, stopper 1120, and cylindrical proximal end 1130. As is seen in FIGS. 9B and 9C, the cylindrical proximal end 1130 is disposed within the coils of the spring 1180. The stopper 1120 is located distal to the cylindrical proximal end 1130 and has a cylindrical structure with a diameter that can be greater than the diameter of the coils of the spring 1180 but smaller than the diameter of the inside surface of the hollow barrel 1140. The diameter of the stopper 1120 allows the spring 1180 to collapse against the surface of the stopper 1120. The distal end 1110 of the plunger 1100 can have a cylindrical shape that has a diameter less than or equal to the diameter of the inside surface of the hollow barrel 1140. In one embodiment, the diameter and length of each of the distal ends 1110 of the pogo pins 1000 is configured to be coaxially disposed within one of the small holes 510 of the printed circuit board 500. In some embodiments, distal end 1110 is configured to engage with an electrical contact within the connector 200.


The spring 1180 can be disposed coaxially within the hollow barrel 1140 and assists in the driving of the plunger 1100 and the contact tip 1170. The spring 1180 can be made of a conductive material which allows the spring 1180 to connect the sensor with the electrical contacts on the printed circuit board 500. As seen in FIG. 9B, the spring 1180 is partially disposed within the hollow barrel 1140 and can extend past the proximal opening 1160 of the hollow barrel 1140. As discussed earlier, the cylindrical proximal end 1130 of the plunger 1100 is coaxially disposed within the coils of the spring 1180. The stopper 1120 of the plunger 1100 maintains the distal most position of the distal end of the spring 1180. A proximal portion of the spring 1180 extends out from the proximal opening 1160 of the hollow barrel 1140 and is coaxially disposed within the hollow center 1174 of the contact tip 1170. As will be discussed in more detail, the contact tip 1170 can interact with the spring 1180 (e.g. compressing, shortening, extending, lengthening) as the contact tip 1170 moves axially along the inside surface of the hollow barrel 1140.


The contact tip 1170 can protrude from the proximal opening 1160 of the hollow barrel 1140. The contact tip 1170 has a distal end opening 1172, a hollow center 1174 with an internal surface, a proximal end 1176, and a distal lip 1178 on the outer surface of the distal end of the contact tip 1170. The contact tip 1170 can be made of a conductive material. The distal end opening 1172 of the contact tip 1170 allows the spring 1180 to extend coaxially into the hollow center 1174 of the contact tip 1170. As discussed above, the hollow center 1174 of the contact tip 1170 is disposed about the proximal end of the spring 1180 and movement of the contact tip 1170 within the hollow barrel 1140 causes the interaction of the inside surface of the contact tip 1170 with the proximal end of the spring 1180. This interaction causes the spring 1180 to either compress (e.g. shorten) or extend (e.g. lengthen). The proximal end 1176 of the contact tip 1170 can be configured such that it can interact with the electrical contact of the sensor assembly 800a. In some configurations, the proximal end 1176 can be tapered to provide a consistent connection with the electrical contact of the sensor assembly 800a. In other configurations, the proximal end 1176 has a rounded end in order to prevent damaging the surface of the electrical contact on the sensor assembly 800a. Finally, the distal lip 1178 can have a structure that retains the contact tip 1170 within the hollow barrel 1140. As seen in FIG. 9B, the distal lip 1178 of the distal end of the contact tip 1170 interacts with the inner distal lip 1178 of the hollow barrel 1140 such that a distal portion of the contact tip 1170 is retained in the hollow barrel 1140. In one embodiment, the diameter of the inner surface of the hollow barrel 1140 at the inner lip 1146 is configured to be narrower than the diameter of the distal lip 1178 but wide enough to allow the body of the contact tip 1170 to fit through. In this configuration, the interaction between the distal lip 1178 of the contact tip 1170 and the inner lip 1146 of the hollow barrel 1140 prevent the contact tip 1170 from fully exiting from the proximal opening 1160 of the hollow barrel 1140.



FIGS. 9D-9E illustrate how the pogo pins 1000 are retained between the printed circuit board 500 and inner shield 600. As can be seen in FIG. 9D, each of the pogo pin holes 650 of the inner shield 600 has a distal opening 652 and a proximal opening 654. The diameter of the distal opening 652 is wider than the diameter of the proximal opening 654 and the pogo pin holes 650 is configured to retain the hollow barrel 1140 of the pogo pin 1000. In one configuration, the distal opening 652 is configured to retain the distal edge 1142 of the hollow barrel 1140 and the proximal opening 654 is configured to retain the proximal body portion of the hollow barrel 1140. This configuration retains the pogo pin 1000 in the inner shield 600. To prevent the pogo pins 1000 from moving out of the inner shield 600 in a distal direction, the printed circuit board 500 is placed over inner shield 600. The small holes 510 of the printed circuit board 500 are configured to retain the distal end 1110 of the plunger 1100. This can serve a multitude of purposes. For example, because the small holes 510 have a diameter that accommodates the distal end 1110 but is not wide enough to accommodate the stopper 1120 of the plunger 1100, this retains the components of the pogo pins 1000 that are contained within the hollow barrel 1140. As well, the small holes 510 are configured to allow the plunger 1100 to come in contact with the electrical contacts on the printed circuit board 500.


In operation, the position of both the printed circuit board 500 and the inner shield 600 allow the establishment of a secure electric connection between the electrical contact on the printed circuit board 500 and the electrical contact on the sensor assembly 800a. As will be discussed in further detail below, as the sensor assembly 800a is positioned in the connector 200, the profile of the sensor assembly 800a pushes the contact tip 1170 in a distal direction such that the contact tip 1170 further retracts into the hollow barrel 1140. This movement causes the proximal end of the hollow center 1174 of the contact tip 1170 to compress the spring 1180. This compression force can then, in turn, force the stopper 1120 in a distal direction that brings the distal end 1110 of the plunger 1100 in contact with the electrical contacts on the printed circuit board 500. As the pogo pins 1000 are made of a conductive material, this ensures that an electrical connection is established between the electrical contacts on the printed circuit board 500 of the connector 200 and the electrical contact on the sensor assembly.


The connector and sensor of the complete assembly 100 are designed such that the same general assembly of the connector and sensor could be used for a number of different types of sensors. As discussed previously, the configuration of the plurality of pogo pins 1000 in the connector 200 allows the connector 200 to be adapted to accommodate a sensor with a wide range of electrical contacts. This design provides a manufacturing benefit as the general design of the complete assembly 100 does not need to be redesigned to accommodate every individual sensor. Instead, the configuration of the small holes 510 and pogo pin holes 650 of the printed circuit board 500 and inner shield 600 can vary depending on the location of the electrical contacts on the sensor.


Because the same complete assembly 100 can be used for a number of different sensors, to assist a patient and/or medical practitioner in connecting the correct sensor with the correct connector, the connector and sensor of the complete assembly 100 can be configured with a number of helpful structures and/or characteristics. FIGS. 10A-10D and FIGS. 11A-11E illustrate two examples of corresponding connectors and sensors respectively that are configured to assist a user with properly connecting the correct connector to the correct sensor. FIGS. 10A-10D illustrate two examples of connectors that are configured to only accept the proper sensor assembly. Similarly, FIGS. 11A-11E illustrate two examples of corresponding sensor assemblies that are configured to only connect with the proper connector.



FIGS. 10A-10B show a front and top view of the sensor assembly receiver 400a. As described above, the sensor assembly receiver (here the sensor assembly receiver 400a) has a body 490a to accommodate the male connector portion of the sensor assembly. As discussed above, the sensor assembly receiver 400a also has a plurality of arms—the first arm 465a, second arm 475a, and distal arm 485a—that help to retain the printed circuit board 500 and inner shield 600 as discussed above. The body 490a has a proximal end 410a with a tapered surface 430a that leads to the opening 420a of the body 490a. As discussed earlier, the tapered surface can help to guide the sensor into the opening 420a of the body 490a. The body 490a can include a receptor 445a that accommodates a key on the sensor. This is further shown in FIG. 10B, wherein the body 490a can only accommodate a sensor with a key in the shape of the receptor 445a. Further, the body 490a can also include a detent 440a that can interact with a similarly shaped detent on the sensor. As discussed below, the detent 440a and the detent located on the underside of the sensor can provide mechanical feedback to the user.



FIGS. 11A-11C shows a front and bottom view of the sensor assembly 800a that is configured to fit into the body 490a of the sensor assembly receiver 400a. The sensor assembly 800a has a connector assembly 840a that can accommodate a sensor. As can be seen in FIGS. 11A-11B, the connector assembly 840a includes a top connector assembly 842a and a bottom connector assembly 844a. The top connector assembly 842a can connect with the distal portion of the bottom connector assembly 844a. As the top connector assembly 842a and bottom connector assembly 844a are connected, the distal end 850a and the opening 880a can accommodate a sensor between the two parts of the connector assembly 840a. The proximal end of the top connector assembly 842a has a tapered surface 820a that is configured to fit against the tapered surface 430a of the sensor assembly receiver 400b. The top connector assembly 842a can accommodate a label 830a. As will be discussed further below, the label 830a can vary so as to indicate the type of sensor accommodated by the sensor assembly 800a. As can be seen in FIGS. 11A-11C, the proximal end 870a of the bottom connector assembly 844a includes a sensor tab 810a that has a sensor side 812a, lip 814a, and a key 860a and a key detent 865a on the bottom of the sensor side 812a. The sensor side 812a has an opening that accommodates for the sensor and the lip 814a on the proximal end of the sensor tab 810a ensures the placement of the sensor on the sensor side 812a. On the reverse side of the sensor tab 810a is a key 860a. As will be discussed in further detail, the key 860a is configured to fit the detent 440a of the sensor assembly receiver 400a discussed above. As well, as will be discussed in further detail below, the key 860a is configured to engage with the receptor 445a of the sensor assembly receiver 400a.


In operation, as discussed earlier, the sensor assembly 800a can have a number of configurations to facilitate the connection between the sensor assembly 800a and the sensor assembly receiver 400a. Further, the sensor assembly 800a and sensor assembly receiver 400a can have a number of other configurations to ensure that the correct sensor assembly 800a is connected to the proper sensor assembly receiver 400a. As discussed above, the tapered surface 820a corresponds with the tapered surface 430a of the sensor assembly receiver 400a and can help to guide the sensor tab 810a into the opening 420a of the body 490a. As discussed above, each sensor assembly has a key that corresponds with the detent of the corresponding sensory assembly receiver of the connector 200. Here, the key 860a from FIG. 11C is configured to fit the receptor 445a of the sensor assembly receiver 400a. As can be seen in FIGS. 10B and 11C, the shape of the receptor 445a is shaped to receive the key 860a of the sensor assembly 800a. The location of the key 860a and the receptor 445a also ensure that the sensor assembly 800a is inserted into the sensor assembly receiver 400a with the sensor side 812a up. Further, as discussed above, the underside of the sensor tab 810a includes a key detent 865a that can be engaged with the detent 440a located on the bottom surface of the sensor assembly receiver 400a. Once inserted, the sensor tab 810a and the detent 440a can engage to provide mechanical feedback to the user. As will be discussed in further detail below, the sensor has a number of electrical contacts that will interact with the pogo pins 1000 shown in previous figures. This connection will ensure that an electrical connection is created between the connector 200 and the sensor assembly.


Finally, in some embodiments, the sensor assembly receiver 400a can have the same color as the label 830a of the sensor assembly 800a. For example, the sensor assembly receiver 400a and the label 830a of the sensor assembly 800a can both have a red color, a blue color, a black color, or a gray color. In this embodiment, when the sensor assembly receiver 400a is assembled inside the connector 200, the colored top tab 450a and the colored tapered surface 430a are visible from the outer jacket 210 of the connector 200. The matching colors of the visible portions of the sensor assembly receiver 400a and the label 830a allow the user to identify visually whether the correct connector 200 is attached to the correct sensor assembly. In some embodiments, the sensor assembly receiver 400a can have a color indicator on the tapered surface 430a and the top tab 450a. In some examples, this provides the user with a visual indicator as to what sensor assembly can be properly inserted into the connector. Because the tapered surface 430a of the sensor assembly receiver 400a is no longer visible once the sensor assembly 800a is inserted, in some embodiments, the top tab 450a can serve as a visual indicator to the user regarding the type of sensor the complete assembly 100 includes.


In order to prevent improper connections between different connectors and sensor assemblies, different connectors can have different detents. The corresponding sensor assemblies, in turn, will have keys that correspond with the connecting detent. FIGS. 10C-10D and FIGS. 11D-11E illustrate another example complete assembly 100 where the sensor assembly receiver 400b and sensor assembly 800b have corresponding receptor 445b and key 860b and corresponding detent 440b and key detent 865b. As seen in FIGS. 10C-10D, the sensor assembly receiver 400b has the same construction as the sensor assembly receiver 400a except the receptor 445b and detent 440b of the body 490b have a different configuration than the receptor 445a and detent 440a of the sensor assembly receiver 400a. FIGS. 11D-11E illustrate the sensor assembly 800b that has the same construction as the sensor assembly 800a except the key 860b has a different configuration than the key 860a. The key 860b is configured to interact with the receptor 445b. Therefore, the sensor assembly receiver 400b is configured such that it can only be inserted into a connector 200 with a sensor assembly 800b. Further, as discussed earlier, the label 830b has a different design than the label 830a and can help a user identify the sensor attached to the sensor assembly 800b. As well, the sensor assembly receiver 400b can have the same color as the label 830b of the sensor assembly 800b. As discussed earlier, the sensor assembly receiver 400b and label 830b of the sensor assembly 800b can both have a red color, a blue color, a black color, or a gray color. Because the top tab 450b and the 320b are visible from the outer jacket 210 of the connector 200, the user is readily able to identify that the sensor assembly 800b can be properly inserted into the connector 200 with a sensor assembly receiver 400b.


As discussed above, the detent can provide the user with a mechanical “locking” feel as the proximal end of the sensor assembly is inserted into the connector. In addition to the interaction between the detent located on the sensor assembly and sensor assembly receiver, this is accomplished by the interaction between the pogo pins 1000 and the sensor side 812a of the sensor tab 810a. In the connector 200, as seen in FIG. 2B, the pogo pins 1000 extend from the inner shield 600 into the body 490a of the sensor assembly receiver 400a. As the sensor tab 810a is inserted into the body 490a the key detent 865a of the sensor assembly 800a begins to engage with the detent 440a of the sensor assembly receiver 400a. The insertion of the sensor tab 810a causes the surface of the sensor side 812a to contact the proximal end 1176 and retract the contact tip 1170 distally into the hollow barrel 1140. Once the proximal end of the sensor assembly 800a is fully inserted into the body 490a, the spring force of the springs 1180 in the plurality of pogo pins 1000 can push the contact tip 1170 in a proximal direction—causing the contact tip 1170 to extend out of the proximal opening 1160 of the hollow barrel 1140. As the contact tip 1170 of the plurality of pogo pins 1000 extend outwards, the proximal end of the sensor assembly receiver 400a will be pushed downward such that the key detent 865a and detent 440a are activated (e.g. fully engaged). This interaction can further provide the user with a mechanical “locking” feel which provides a tactile indication to the user that the sensor assembly has been properly inserted into the connector 200.



FIGS. 10E-10K and FIGS. 11F-11H provide an alternative embodiment of the engagement between the sensor assembly and sensor assembly receiver. In some embodiments, the sensor assembly receiver and sensor assembly can engage to reduce the wear on the electrical contacts on the surface of the sensor assembly. In some embodiments, the sensor assembly includes a structure on the proximal end to prevent jamming and to ensure that the sensor assembly enters the sensor assembly receiver at the correct angle.


In some embodiments, the sensor assembly receiver and sensor assembly can be configured to reduce the wear on the surface of the sensor assembly. As discussed above, as the sensor assembly is inserted into the sensor assembly receiver, the pogo pins can contact the traces located on the surface of the sensor assembly. As will be discussed below, because the pogo pins can be spring loaded in order to better contact the traces located on the surface of the sensor assembly, repeated insertions of the sensor assembly can cause significant wear on the surface of the sensor assembly receiver. FIGS. 10E-10K, 11F-11I, and 14A-14I illustrate an embodiment of the sensor assembly and sensor assembly receiver that can be configured to reduce the wear on the sensor surface of the sensor assembly.



FIGS. 10E-10G illustrates one embodiment of a sensor assembly receiver configured to reduce the wear of the sensor surface of the sensor assembly. As can be seen, in some embodiments, the sensor assembly receiver 400c is very similar to the sensor assembly receiver illustrated in FIGS. 10A-10D. The sensor assembly receiver 400c can include a proximal end 410c and a body 490c. In some embodiments, the proximal end 410c can include a tapered surface 430c and an opening 420c. In some embodiments, the proximal end 410c includes a top tab 450c. As discussed above, the top tab 450c and the tapered surface 430c of the proximal end 410c can have a color that corresponds with a portion of the sensor assembly in order to provide a visual indication to the user that the correct sensor assembly has been attached to the property connector with the corresponding sensor assembly receiver. In some embodiments, as discussed above, the sensor assembly receiver 400c can include a plurality of arms that allow the sensor assembly receiver 400c to be secured within the connector 200. Like the sensor assembly receivers discussed above, the sensor assembly receiver 400c can include a first arm 460c, a second arm 470c, distal arm 480c, and distal tab 485c. FIGS. 10H-10K illustrates two additional embodiments of sensor assembly receivers configured to reduce the wear of the sensor surface of the sensor assembly. FIGS. 10H-10I illustrates the sensor assembly receiver 400d and FIGS. 10J-10K illustrates the sensor assembly receiver 400e. The sensor assembly receiver 400d and sensor assembly receiver 400e can similarly include the parts described with regard to sensor assembly receiver 400a, sensor assembly receiver 400b, and sensor assembly receiver 400c described above.


The sensor assembly receiver embodiments illustrated in FIGS. 10E-10K, like the sensor assembly receivers illustrated in FIGS. 10A-10D, is configured to receive a key from a corresponding sensor assembly. In some embodiments, the sensor assembly receiver embodiments are also configured to include a detent structure that can interact with a corresponding detent structure on the underside of the sensor assembly to provide mechanical feedback. In some embodiments, the sensor assembly receiver includes a ramp that can raise the sensor assembly within the sensor assembly receiver.



FIGS. 10E-10G, illustrates a sensor assembly receiver 400c that can include a receptor 445c and a detent 440c. As can be better seen in FIGS. 10F-10G, the sensor assembly receiver 400c includes a receptor 445c that is located on two sides of the bottom surface 443c of the sensor assembly receiver 400c. The receptor 445c of the sensor assembly receiver 400c can include receptor protrusions 447c near the distal end of the sensor assembly receiver 400c. The receptor protrusion 447c creates a raised portion from the receptor 445c. The receptor 445c can also include a receptor end 449c located at the distal end of the sensor assembly receiver 400c that is no longer elevated. The sensor assembly receiver 400c can also include a detent 440c. As can be seen in FIG. 10F, the detent 440c can be located near the proximal end of the sensor assembly receiver 400c and form a groove in the bottom surface 443c of the sensor assembly receiver 400c. As well, in some embodiments, the sensor assembly receiver 400c can include an angled surface 441c. As can be seen in FIG. 10G, the angled surface 441c raises the bottom surface 443c.


The two embodiments illustrated in FIGS. 10H-10K provide similar structures as discussed above. FIGS. 10H-10I illustrates a sensor assembly receiver 400d that has a receptor 445d that is located at the center of the bottom surface 443d of the sensor assembly receiver 400d. The receptor 445d of the sensor assembly receiver 400d can include receptor protrusion 447d near the distal end of the sensor assembly receiver 400d. The receptor protrusion 447d creates a raised portion from the receptor 445d. The receptor 445d can also include a receptor end 449d located at the distal end of the sensor assembly receiver 400d that is not elevated. The sensor assembly receiver 400d can also include a detent 440d. As can be seen in FIG. 10H, the detent 440d is composed of two portions that are located on either side of the proximal end of the receptor 445d and form grooves in the bottom surface 443d of the sensor assembly receiver 400d. As well, in some embodiments, the sensor assembly receiver 400d can include an angled surface angled surface 441d. As can be seen in FIG. I, the angled surface 441d raises the bottom surface 443c. FIGS. 10J-10K illustrates a sensor assembly receiver 400e that has a similar configuration to the sensor assembly receiver 400d described above. In the embodiment illustrated in sensor assembly receiver 400e, compared to the sensor assembly receiver 400d, the receptor 445e is narrower and the two detents 440e are longer.


As discussed above, the sensor assembly can be configured to include a key and detent structures that are structured to engage with the sensor assembly receiver that the sensor on the sensor assembly is configured to form an electrical connection with. FIGS. 11F—H illustrate three embodiments of the sensor assembly. FIG. 11F illustrates a sensor assembly 800c that is configured to be inserted into a connector 200 with a sensor assembly receiver 400c as illustrated in FIGS. 10E-10G. FIG. 11G illustrates a sensor assembly 800d that is configured to be inserted into a connector 200 with a sensor assembly receiver 400d as illustrated in FIGS. 10H-10I. FIG. 11H illustrates a sensor assembly 800e that is configured to be inserted into a connector 200 with a sensor assembly receiver 400e as illustrated in FIGS. 10J-10K.



FIG. 11F illustrates the underside of the sensor tab 810c of the sensor assembly 800c. The sensor assembly 800c can include a key 860c. In this embodiment, the key 860c is composed of two rectangular structures on the underside of the sensor tab 810c. As will be discussed in more detail below, the key 860c is configured to engage with the receptor 445c of the sensor assembly receiver 400c. On the proximal end 870c of the key 860c, the key 860c can include a curved bottom receptor 876c and a protruding bottom protrusion 874c. The bottom receptor 876c and bottom protrusion 874c can be configured to engage with the receptor protrusion 447c and the receptor end 449c respectively. The sensor assembly 800c can also include a key detent 865c. In some embodiments, the key detent 865c is located near the distal end of the sensor tab 810c between the two structures making up the key 860c. As will be discussed in more detail below, the key detent 865c is configured to engage with the detent 440c of the sensor assembly receiver 400c.



FIG. 11G illustrates sensor assembly 800d, another embodiment of the underside of the sensor tab of a sensor assembly and FIG. 11M illustrates a perspective view of the sensor tab 810d. The sensor assembly 800d can also include a key 860d. In this embodiment, the key 860d is composed of a rectangular structure centered on the underside of the sensor tab 810d. As will be discussed in more detail below, the key 860d is configured to engage with the receptor 445d of the sensor assembly receiver 400d. On the proximal end 870d of the key 860d, the key 860d can include a curved bottom receptor 876d and a protruding bottom protrusion 874d. The bottom receptor 876d and bottom protrusion 874d can be configured to engage with the receptor protrusion 447d and the receptor end 449d respectively. The sensor assembly 800d can also include two key detents 865d. In some embodiments, the two key detents 865d are located near the distal end of the sensor tab 810d on either side of the key 860d. As will be discussed in more detail below, the two key detents 865d is configured to engage with the detents 440d of the sensor assembly receiver 400d. FIG. 11H illustrates a sensor assembly 800e that has a similar configuration to the sensor assembly 800d described above. In the embodiment illustrated in sensor assembly 800e, compared to the sensor assembly 800d, the key 860e is wider and the two key detents 865e are longer in order to engage with the receptor 445e and detents 440e of sensor assembly receiver 400e. As well, the bottom receptor 876d and bottom protrusion 874d are configured to engage with the receptor protrusion 447e and receptor end 449e respectively.


In some embodiments, the sensor assemblies can include additional structures that allow the sensor assemblies to be further secured within the connector 200. For example, FIGS. 11I-11L illustrates embodiments of sensor assemblies from FIGS. 11F-11H that further include structures on either side of the sensor tab that can be secured by the connector 200. In some embodiments, the structures on either side of the sensor tab can be configured to serve as a locking structure that secures the sensor tab to the connector exhaust line 200. FIG. 11I illustrates the sensor assembly 800c with a sensor tab 810c that includes an indentation 890c on either side of the sensor tab 810c. As noted above, in some embodiments, the indentations 890c can serve as a locking structure that engages the connector 200. FIG. 11J illustrates the sensor assembly 800d with a sensor tab 810d that includes an indentation 890d on either side of the sensor tab 810d. In some embodiments, the indentations 890d can serve as a locking structure that engages the connector 200. FIG. 11K illustrates the sensor assembly 800e with a sensor tab 810e that includes an indentation 890e on either side of the sensor tab 810e. In some embodiments, the indentations 890e can serve as a locking structure that engages the connector 200.


In operation, the connector 200 can include a locking structure that can be configured to interact with the indentations on either side of the sensor tab. In some embodiments, this locking structure prevents movement within the connector 200. In some variants, the connector 200 further includes an unlocking mechanism that releases the locking structure from the sensor tab. In some examples, the sensor assembly cannot be removed from the connector 200 without first actuating the unlocking mechanism. In other embodiments, the sensor tab can include other structures that allow the connector 200 to secure the sensor assembly within the connector 200.


In some embodiments, the sensor assembly can include a sensor tab with protrusions located on either side of the proximal end. In some variants, the protrusion can ensure that the sensor assembly is inserted into the sensor assembly receiver parallel to the pogo pins 1000 that extend through the sensor assembly receiver. In some embodiments, this can prevent the sensor assembly from being inserted at an angle and jamming the pogo pins 1000. FIG. 11L illustrates an example of the proximal end 870c of the sensor assembly 800c. As illustrated, in some embodiments, the proximal end 870c of the sensor assembly 800c includes a proximal protrusion 872c on either side of the top surface of the proximal end 870c of the sensor tab 810c. In some embodiments, the height of the proximal protrusion 872c ensures that the sensor tab 810c is inserted through the opening 420c at a distance from the top of the opening 420c and therefore at a distance from the pogo pins 1000.


The sensor assembly receiver embodiments illustrated in FIGS. 10E-10K can reduce the wear on the surface sensor assembly through the configuration of the receptor and detent located on the insides surface of the sensor assembly receiver. As discussed above, the sensor assembly receiver includes a receptor that is configured to receive a key located on the underside of the sensor assembly. As discussed above, this ensures that the sensor assembly receiver can only receive certain sensor assemblies. As well, it ensures that the sensor assembly is attached to the sensor assembly receiver with the sensor side facing up so as to properly form an electrical connection with the pogo pins located inside the connector. In some embodiments, the detent located inside the sensor assembly receiver can engage with a corresponding detent located on the underside of the sensor assembly. As discussed above, the detent provides the user with a tactile or mechanical feedback to indicate to the user that the sensor assembly has been properly inserted. In the embodiments of the sensor assembly receivers illustrated in FIGS. 10E-10K, the sensor assembly receiver includes a ramp that brings the surface of the sensor assembly receiver



FIGS. 14A-14I illustrate the interaction between the sensor assembly receiver and sensor assembly discussed above in FIGS. 10E-10K and 11F-11I respectively. FIGS. 14A-14C illustrate the sensor assembly 800c as it is inserted into the sensor assembly receiver 400c. FIGS. 14A-14B provide a side cross-sectional view of the sensor assembly 800c as it is incrementally inserted into the sensor assembly receiver 400c. FIG. 14C provides a top perspective two-thirds cross-sectional view of the sensor assembly 800c as it is partially inserted into the sensor assembly receiver 400c. FIGS. 14D-14F illustrate the sensor assembly 800d as it is inserted into the sensor assembly receiver 400d. FIGS. 14D-E provide a side cross-sectional view of the sensor assembly 800d as it is incrementally inserted into the sensor assembly receiver 400d. FIG. 14F provides a top perspective two-thirds cross-sectional view of the sensor assembly 800e as it is partially inserted into the sensor assembly receiver 400e. FIGS. 14G-14I illustrate the sensor assembly 800e as it is inserted into the sensor assembly receiver 400e. FIGS. 14G-14H provide a side cross-sectional view of the sensor assembly 800e as it is incrementally inserted into the sensor assembly receiver 400e. FIG. 14I provides a top perspective two-thirds cross-sectional view of the sensor assembly 800c as it is partially inserted into the sensor assembly receiver 400e.


In operation, as discussed above, in some embodiments the sensor assembly and sensor assembly receiver can interact to reduce the wear on the top surface of the sensor assembly as its received in the sensor assembly receiver. As illustrated in FIG. 14A, as the sensor assembly 800c is inserted into the sensor assembly receiver 400c, the sensor side 812c of the sensor tab 810c can interact with the plurality of pogo pins 1000 that extend downward into the sensor assembly receiver 400c. Because each of the plurality of pogo pins 1000 can be spring loaded, the closer the sensor side 812c is to the pogo pins 1000, the greater the pressure is exerted on the sensor side 812c of the sensor tab 810c as the sensor assembly 800c is inserted. In some embodiments, this can cause increased wear of the sensor on the sensor assembly 800c. In some examples, as illustrated in FIGS. 14A-14B, wear on the sensor side 812c of the sensor tab 810c is reduced by creating two levels on the bottom surface 443c of the sensor assembly receiver 400c for the sensor assembly 800c to move against. As is illustrated in FIG. 14A, when the sensor assembly 800c is first inserted into the sensor assembly receiver 400c, the sensor tab 810c moves adjacent to the bottom surface 443c. In some embodiments, the bottom surface 443c is configured such that it reduces the interaction and pressure placed on the sensor side 812c by the plurality of pogo pins 1000. Then, as illustrated in FIG. 14B, as the sensor tab 810c of the sensor assembly 800c is further inserted into sensor assembly 800c, an angled surface 441c of the bottom surface 443c serves as a ramp to move the sensor tab 810c to an elevated level. In some embodiments, the sensor tab 810c further includes a ramp 815c on the distal end that can also serve to move the sensor tab 810c to an elevated level. This elevated level brings the sensor tab 810c closer against the plurality of pogo pins 1000 in order to provide a more secure electrical connection with the sensor assembly receiver 400c. In some embodiments, the key detent 865c and detent 440c, in addition to providing the user with a mechanical feedback, can serve to lock the sensor tab 810c of the sensor assembly 800c in the elevated configuration. In addition, in some examples, as illustrated in FIG. 14C, the bottom receptor 876c and bottom protrusion 874c located at the proximal end 870c of the sensor tab 810c can interact with the receptor protrusion 447c and receptor end 449c of the sensor assembly receiver 400c to secure the sensor assembly 800c in the sensor assembly receiver 400c. As illustrated in FIGS. 14D-14F and 14G-14I, the sensor assembly 800d and sensor assembly receiver 400d and sensor assembly 800e and sensor assembly receiver 400e interact in a similar or identical manner as discussed above. These embodiments further illustrate the goal of reducing wear on the sensor side of the sensor tab in various embodiments. The numbering convention of FIGS. 14A-14C applies to FIGS. 14D-14F except the “c” is replaced with a “d” and FIGS. 14G-14I except the “c” is replaced with an “e.”


As discussed above, one of the advantages of the present design is the ability of the connector and sensor assembly to accommodate various sensors with a wide range of electrical contacts. This is accomplished through the use of pogo pins 1000 and a sensor with a plurality of electrical contacts on its surface. As will discussed more fully below, because the connector 200 can accommodate a large number of electrical contacts, the configuration of the pogo pins 1000 in the connector 200 is important to prevent short circuiting.


As discussed above, the sensor assembly can accommodate different sensors. For example, as shown in FIGS. 11A-11C, the sensor assembly 800a has a connector assembly 840a has a top connector assembly 842a and bottom connector assembly 844a that can accommodate and retain the sensor. The proximal end of the sensor has a plurality of electrical contacts on the sensor that are located on the sensor side 812a of the sensor tab 810a. FIG. 12A illustrates an example of a sensor assembly proximal end 900 with the sensor placed on the sensor tab. The sensor assembly proximal end 900 includes the connector assembly 970 with a sensor tab 910 and lip 930 on the proximal end. The sensor 940 is retained between the two parts of the connector assembly 970 such that the sensor 940 protrudes from both the opening 990 of the top connector assembly 960 and also from the distal end 980 of the connector assembly 970. The proximal end of the sensor 940 has a plurality of electrical contacts on its surface (e.g. electrical contact 900a1, electrical contact 900b1, electrical contact 900c1, electrical contact 900c2, electrical contact 900d1, electrical contact 900d2, electrical contact 900e1, electrical contact 900f1, electrical contact 900g1, electrical contact 900g2) that are configured to engage the contact tips 1170 of the plurality of pogo pins 1000.


As can be seen in FIG. 12A, the staggered electrical contacts on the surface of the sensor 940 are arranged in a plurality of rows. In the example shown in FIG. 12A, electrical contact 900a1 is in one row, electrical contact 900b1 is in a second row, electrical contact 900c1 and electrical contact 900c2 are in a third row, electrical contact 900d1 and electrical contact 900d2 are in a fourth row, electrical contact 900e1 is in a fifth row, electrical contact 900f1 is in a sixth row, and sensor assembly proximal end 900 electrical contact g1 and electrical contact 900g2 is in a seventh row. As will be further shown below, the plurality of pogo pins 1000 are arranged and retained in a similar configuration in the inner shield 600.



FIG. 12B illustrates an embodiment of the sensor assembly proximal end 900 wherein the plurality of traces 950 includes a ground trace 955. As seen in FIG. 12B, the ground trace 955—labeled as trace 9503”—has portions that extend from the proximal end of the sensor tab to the proximal end of the lip 930. As illustrated in FIG. 12C, in some embodiments, the ground trace 955b is electrically connected entirely on the surface of the sensor tab. In other embodiments, as illustrated in FIG. 12B, the ground trace 955 has portions that are electrically connected beneath the surface of the sensor. In other embodiments, the ground trace 955 is intermittently connected across the surface of the sensor.


In some embodiments, the ground trace 955 can serve as a grounding line to discharge any buildup of static electricity in the sensor assembly. In some embodiments, to prevent damage to the connector 200 or the sensor assembly, the sensor assembly can be discharged before certain electrical connections are formed between the plurality of pogo pins 1000 and the traces 950 (e.g. whether some or all of the traces 950). In some examples, in order to ground the sensor assembly before any of the plurality of pogo pins 1000 contacts any of the plurality of traces 950, the ground trace 955 can be configured such that a portion of the connector 200 will contact the ground trace 955 before any of the other traces 950. For example, as illustrated in FIG. 12B, in some embodiments, the ground trace 955 extends further in a proximal direction than the other traces in the same row (e.g. trace “10”, trace “11”, and trace “12”). In this way, as the sensor side 920 of the sensor assembly proximal end 900 is inserted into the connector 200, a structure within the connector 200 will contact the ground trace 955 to first discharge the sensor assembly before the plurality of pogo pins 1000 contact the remaining traces 950 on the sensor side 920.


In order to ground the sensor assembly, a portion of the connector 200 can be grounded. In some embodiments the outer shield 300 is connected to ground. In other embodiments, the inner shield 600 is connected to ground. As discussed above, in some examples, a portion of the connector 200 that is configured to contact the sensor side 920 of the sensor assembly is connected to the grounded portion of the connector 200 (for example, the outer shield 300 or the inner shield 600). In some examples, one of the plurality of pogo pins 1000 is connected to ground and can be configured to contact the ground trace 955. In other examples, the inside surface of the connector 200 includes a structure (for example, a protrusion or extended piece such as a flexible wire or contact) near the opening of the connection which is configured to contact the ground trace 955 to ground the sensor assembly before contact is made with any other electrically conductive portion of the connector 200.



FIGS. 13A-13B show an example of a connector with pogo pins 1000 that correspond with the electrical contacts on the sensor of the corresponding sensor assembly. The sensor assembly proximal end 1300 shown in FIG. 13A has a connector assembly 1310 with a top connector assembly 1320 that has an opening 1360 from which the sensor 1340 protrudes from. The sensor 1340 is contained on the sensor tab 1330 and has a plurality of electrical contacts 1350. FIG. 13B shows a cross-sectional view of the connector 1400 with a plurality of pogo pins 1000. In the example sensor assembly and connector shown in FIGS. 13A-13B, the configuration of the electrical contacts on the sensor 1340 and pogo pins 1000 in the connector 1400 are arranged to establish a plurality of electrical connections between the sensor 1340 and the connector 1400. The sensor 1340 has a plurality of electrical contacts—electrical contact a, electrical contact b1, electrical contact b2, electrical contact c1, electrical contact c2, electrical contact d1, electrical contact d2, electrical contact e1, electrical contact e2, electrical contact e3, electrical contact e4, electrical contact f1, electrical contact f2, electrical contact g1, and electrical contact g2. The connector 1400 has a plurality of pogo pins 1000—pogo pin contact a′, pogo pin contact b1′, pogo pin contact b2′, pogo pin contact c1′, pogo pin contact c2′, pogo pin contact d1′, pogo pin contact d2′, pogo pin contact e1′, pogo pin contact e2′, pogo pin contact e3′, pogo pin contact e4′, pogo pin contact f1′, pogo pin contact f2′, pogo pin contact g1′, and pogo pin contact g2′. These pogo pins 1000 contact the plurality of electrical contacts 1350 to establish a plurality of electrical connections. In the present example, once the sensor tab 1330 is fully inserted into the connector 1400, the following pogo pins contact the following electrical contacts: pogo pin contact a′ with electrical contact a, pogo pin contact b1′ with electrical contact b1, pogo pin contact b2′ with electrical contact b2, pogo pin contact c1′ with electrical contact c1, pogo pin contact c2′ with electrical contact c2, pogo pin contact d1′ with electrical contact d1, pogo pin contact e1′ with electrical contact e1, pogo pin contact f1′ with electrical contact f1, pogo pin contact f2′ with electrical contact f2, pogo pin contact g1′ with electrical contact g1, and pogo pin contact g2′ with electrical contact g2.


As the sensor tab 1330 is inserted into the opening 1410 of the sensory assembly receiver 1420, the pogo pins 1000 proximal to the opening 1410 will contact the length of the sensor 1340 before connecting with its corresponding electrical contacts. For example, pogo pin contact a1′ will contact the proximal end of the sensor 1340 before reaching the electrical contact a. Therefore, in one configuration, to prevent short circuiting, the electrical contacts on the sensor 1340 and the corresponding pogo pins 1000 in the connector 1400 are arranged in staggered rows to minimize the electrical contacts that the proximal end of each of the pogo pins 1000 will touch as the sensor tab 1330 is inserted into the connector 1400. For example, as seen in FIG. 13A, the electrical contact b1 is located proximal and between the electrical contact a and electrical contact c1. In this way, the pogo pin contact a1′ and pogo pin contact c1′ on either side of the pogo pin contact b1′ will not contact the electrical contact b1 as the sensor tab 1330 is inserted.


Another potential benefit of the staggering of the electrical contacts on the sensor tab 1330 and the pogo pins 1000 in the connector 1400 is the increase in electrical connections that a sensor can have given the configuration of the sensor tab 1330 and the inner shield 600 of the connector 1400. As discussed earlier, because of the configuration of the pogo pins 1000 and the electrical contacts on the sensor tab 1330, the disclosed configuration of the sensor assembly and connector can accommodate sensors requiring a large number of electrical contacts.


Although this disclosure has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the disclosure and obvious modifications and equivalents thereof. In addition, while a number of variations of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed.

Claims
  • 1. A sensor assembly comprising: a body portion; anda proximal end connected to the body portion and configured to be removably inserted into an opening of a corresponding female connector, the proximal end comprising a top side and a bottom side,wherein the top side comprises a plurality of electrical contacts, a first protrusion, and a second protrusion, the first protrusion being on an opposite side of the top side from the second protrusion,wherein the bottom side comprises a key structure configured to fit into a lock structure of the corresponding female connector; andwherein the body portion is positioned outside of the corresponding female connector.
  • 2. The sensor assembly of claim 1, wherein the plurality of electrical contacts are positioned on a flat surface of the top side.
  • 3. The sensor assembly of claim 2, wherein the plurality of electrical contacts are in a staggered configuration on the top side.
  • 4. The sensor assembly of claim 2, wherein the plurality of electrical contacts comprise 10 electrical contacts.
  • 5. The sensor assembly of claim 1, wherein the plurality of electrical contacts comprises a plurality of contact pads.
  • 6. The sensor assembly of claim 5, wherein the plurality of contact pads comprises 10 contact pads.
  • 7. The sensor assembly of claim 1, wherein the key structure comprises a bottom receptor configured to engage the lock structure.
  • 8. The sensor assembly of claim 7, wherein the key structure comprises a bottom protrusion configured to engage the lock structure.
  • 9. The sensor assembly of claim 1, wherein the key structure comprises a bottom protrusion configured to engage the lock structure.
  • 10. The sensor assembly of claim 1, wherein the key structure comprises a plurality of detents configured to engage the lock structure.
  • 11. The sensor assembly of claim 1, wherein the proximal end comprises a right side and a left side opposite the right side, the right side comprising a first indentation, the left side comprising a second indentation, the first indentation and the second indentation being configured to engage the corresponding female connector.
  • 12. The sensor assembly of claim 11, wherein the first protrusion and the second protrusion are closer to the first indentation and the second indentation than the body portion.
  • 13. The sensor assembly of claim 1, wherein the first protrusion and the second protrusion are closer to the key structure than the body portion.
  • 14. The sensor assembly of claim 1, wherein the proximal end comprises a tapered surface configured to facilitate insertion of the proximal end into the corresponding female connector.
  • 15. The sensor assembly of claim 1, wherein the proximal end comprises a tapered surface configured to fit against a tapered surface of the corresponding female connector when the proximal end is connected to the corresponding female connector.
  • 16. The sensor assembly of claim 1, wherein the proximal end comprises a lip that is configured to enter the opening prior to the key structure when the proximal end is inserted into the opening.
  • 17. The sensor assembly of claim 1, wherein the body portion comprises a plurality of grips configured to be pressed by a user while the proximal end is inserted into the opening.
  • 18. The sensor assembly of claim 1, in combination with the corresponding female connector.
  • 19. The sensor assembly of claim 1, in combination with the corresponding female connector, the corresponding female connector comprising a plurality of retractable connectors configured to electrically connect to the plurality of electrical contacts.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/998,265, filed Aug. 20, 2020, now issued as U.S. Pat. No. 11,437,768, which is a continuation of U.S. patent application Ser. No. 16/236,069, filed Dec. 28, 2018, now issued as U.S. Pat. No. 10,784,634, which is a continuation of U.S. patent application Ser. No. 15/017,349, filed Feb. 5, 2016, now issued as U.S. Pat. No. 10,205,291, which claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/113,054, filed Feb. 6, 2015, and U.S. Provisional Application No. 62/152,733, filed Apr. 24, 2015, the entire contents of which are hereby incorporated by reference and should be considered a part of this specification. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1456)
Number Name Date Kind
3786391 Mathauser Jan 1974 A
3871729 Attema Mar 1975 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4992052 Verhoeven Feb 1991 A
5021812 Kohno et al. Jun 1991 A
5026292 Pickles et al. Jun 1991 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5079578 Kohno et al. Jan 1992 A
5163438 Gordon et al. Nov 1992 A
5246003 DeLonzer Sep 1993 A
5319355 Russek Jun 1994 A
5330370 Reddersen Jul 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5477418 MacGregor et al. Dec 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5522737 Brunker et al. Jun 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5637018 Gargiulo Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5813883 Lin Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919049 Petersen et al. Jul 1999 A
5919064 Petersen et al. Jul 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954520 Schmidt Sep 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6024592 Pai et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6062889 Hyland et al. May 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6089922 Glad et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115256 Centofante Sep 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6234807 Amini et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6261130 Huynh Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6398507 Choi Jun 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6468101 Suzuki Oct 2002 B2
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6764347 Plishner Jul 2004 B1
6767252 McGrath et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6981887 Mese Jan 2006 B1
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7153155 Lee et al. Dec 2006 B1
7156683 Gupta et al. Jan 2007 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7204648 Aronson Apr 2007 B2
7207819 Chen Apr 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7322838 Chen et al. Jan 2008 B1
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
7654850 Shimizu Feb 2010 B2
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7744427 Zhang et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7798820 Hong Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909652 Yang et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7942705 Murphy May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8011950 McGrath et al. Sep 2011 B2
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8047865 Patel et al. Nov 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8162684 Sochor Apr 2012 B1
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8202127 Zhang et al. Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8241053 Slippy Aug 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8273028 Harshman Sep 2012 B2
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8287293 Gao et al. Oct 2012 B1
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8344747 Kazama Jan 2013 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414312 Hung Apr 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8439708 Colantuono et al. May 2013 B2
8454388 Song Jun 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8475211 Wang Jul 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
8535088 Gao Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8597056 Blanchfield et al. Dec 2013 B2
8597057 Yu et al. Dec 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8602801 Sylvester et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740635 Lim Jun 2014 B2
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8784123 Leiba Jul 2014 B1
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8894441 Wu et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911262 Leiba Dec 2014 B1
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8956187 He Feb 2015 B2
8961235 Little et al. Feb 2015 B2
8965471 Lamego Feb 2015 B2
8968021 Kennedy Mar 2015 B1
8968033 Little Mar 2015 B2
8983564 Al-Ali Mar 2015 B2
8986049 Kamarauskas Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9033744 Chen May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9039448 Mason May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9088108 Zhao Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9136646 Naito Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9231356 Ju Jan 2016 B1
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9318858 Saito Apr 2016 B2
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9385484 Chen Jul 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9537272 Chien Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9570842 Nordgren Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
9853402 Talalayev et al. Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9991640 Tziviskos et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
9997876 Kasar et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Kiani et al. Jan 2019 B1
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
10236632 Zhang et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10320101 Brogan et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10522943 Termini et al. Dec 2019 B1
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
10651612 Cheng et al. May 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10784634 Scruggs Sep 2020 B2
10804635 Song et al. Oct 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
11031725 Tsai et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
11063385 Gu Jul 2021 B2
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11437768 Scruggs et al. Sep 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
D999244 Indorf et al. Sep 2023 S
D999245 Indorf et al. Sep 2023 S
D999246 Indorf et al. Sep 2023 S
11766198 Pauley et al. Sep 2023 B2
D1000975 Al-Ali et al. Oct 2023 S
11803623 Kiani et al. Oct 2023 B2
11832940 Diab et al. Dec 2023 B2
11872156 Telfort et al. Jan 2024 B2
11879960 Ranasinghe et al. Jan 2024 B2
11883129 Olsen Jan 2024 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20020165440 Mason et al. Nov 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100192696 Schlitzkus Aug 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100267261 Lin Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110059642 Slippy Mar 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110098733 Huynh Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110288383 Diab Nov 2011 A1
20120041316 Al Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120052708 Herring Mar 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120123231 O'Reilly May 2012 A1
20120143062 Nordgren et al. Jun 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120227739 Kiani Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20120330112 Lamego et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130045685 Kiani Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130190581 Al-Ali et al. Jul 2013 A1
20130197328 Diab et al. Aug 2013 A1
20130211214 Olsen Aug 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130317370 Dalvi et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130337699 Chen Dec 2013 A1
20130338461 Lamego et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140058230 Abdul-Hafiz et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140094667 Schurman et al. Apr 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140121483 Kiani May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140194709 Al-Ali et al. Jul 2014 A1
20140194711 Al-Ali Jul 2014 A1
20140194766 Al-Ali et al. Jul 2014 A1
20140206963 Al-Ali Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140243627 Diab et al. Aug 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140275873 Fries Sep 2014 A1
20140275881 Lamego et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140303520 Telfort et al. Oct 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140333440 Kiani Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140343436 Kiani Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150017831 Wang Jan 2015 A1
20150018650 Al-Ali et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Muhsin et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150118868 Choi Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160029933 Al-Ali et al. Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160073967 Lamego et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224216 Al-Ali Aug 2017 A1
20170224231 Al-Ali Aug 2017 A1
20170224233 Al-Ali Aug 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216370 Schurman et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190320906 Olsen Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200021930 Iswanto et al. Jan 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210066868 Scruggs et al. Mar 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
20230284943 Scruggs et al. Sep 2023 A1
20230301562 Scruggs et al. Sep 2023 A1
20230346993 Kiani et al. Nov 2023 A1
20230368221 Haider Nov 2023 A1
20230371893 Al-Ali et al. Nov 2023 A1
20230389837 Krishnamani et al. Dec 2023 A1
20240016418 Devadoss et al. Jan 2024 A1
20240016419 Devadoss et al. Jan 2024 A1
20240047061 Al-Ali et al. Feb 2024 A1
20240049310 Al-Ali et al. Feb 2024 A1
Foreign Referenced Citations (34)
Number Date Country
2014202559 Jun 2014 AU
2 072 311 Dec 1992 CA
2 186 885 Aug 1996 CA
1336081 Feb 2002 CN
102043203 May 2011 CN
102576966 Jul 2012 CN
102914401 Feb 2013 CN
103311752 Sep 2013 CN
203300846 Nov 2013 CN
107405075 Nov 2017 CN
107431301 Dec 2017 CN
0 776 070 May 1997 EP
1 672 742 Apr 2008 EP
49-124589 Oct 1974 JP
58-153230 Sep 1983 JP
60-062163 May 1985 JP
02-100526 Apr 1990 JP
04-058981 May 1992 JP
05-200017 Aug 1993 JP
10-340758 Dec 1998 JP
2004-532526 Oct 2004 JP
2006-173107 Jun 2006 JP
2010-267512 Nov 2010 JP
10-2005-0067660 Jul 2005 KR
10-2010-0041701 Apr 2010 KR
WO 2008118993 Oct 2008 WO
WO 2009049101 Apr 2009 WO
WO 2009055091 Apr 2009 WO
WO 2010033901 Mar 2010 WO
WO 2008126682 Jul 2010 WO
WO 2011101922 Aug 2011 WO
WO 2012003174 Jan 2012 WO
WO 2016127125 Aug 2016 WO
WO 2016127131 Aug 2016 WO
Non-Patent Literature Citations (8)
Entry
US 9,579,050 B2, 02/2017, Al-Ali (withdrawn)
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
US 2024/0016391 A1, 01/2024, Lapotko et al. (withdrawn)
Invitation to Pay Additional Fees with Partial International Search dated May 2, 2016 for PCT/US2016/016883.
International Search Report and Written Opinion for PCT Application No. PCT/US2016/016890 dated Aug. 4, 2016 in 17 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2016/016883 dated Jul. 14, 2016 in 10 pages.
International Preliminary Report on Patentability and Written Opinion for PCT Application No. PCT/US2016/016890 dated Aug. 17, 2017 in 12 pages.
International Preliminary Report on Patentability and Written Opinion for PCT Application No. PCT/US2016/016883 dated Aug. 17, 2017 in 15 pages.
Related Publications (1)
Number Date Country
20230017784 A1 Jan 2023 US
Provisional Applications (2)
Number Date Country
62152733 Apr 2015 US
62113054 Feb 2015 US
Continuations (3)
Number Date Country
Parent 16998265 Aug 2020 US
Child 17874071 US
Parent 16236069 Dec 2018 US
Child 16998265 US
Parent 15017349 Feb 2016 US
Child 16236069 US