The present disclosure relates to medical diagnostics, and more particularly, to point-of-care medical diagnostic systems.
Medical guidance for many medical diagnostic systems, such as hematology analyzers, recommends analyzing a sample as soon as possible after drawing the sample. This recommendation can be difficult if the sample is obtained at the point of care but the test is to be performed at an external laboratory. Therefore, many doctors and veterinarians prefer to have point-of-care (POC) systems to analyze fresh samples.
POC medical diagnostic systems use various types of reagents and fluids to perform their analyses. Various types of packages exist for the reagents and fluids, and such packages must be delivered to and installed by the POC offices. Installations requiring a multitude of steps can confuse and frustrate operators. In some cases, POC diagnostic systems may still operate even if packages are improperly installed but may produce incorrect results. Accordingly, there is continuing interest in improving POC medical diagnostic systems and reagent and fluid packages for POC medical diagnostic systems.
The present disclosure relates to point-of-care medical diagnostic systems and containers for such systems.
In accordance with aspects of the present disclosure, a medical diagnostic system includes a housing, a first receptacle in the housing for receiving a reagent container, a second receptacle in the housing for receiving a working fluid and waste container where the second receptacle is larger than the first receptacle, two reagent access needles positioned and fixed within the first receptacle with each of the two reagent access needles being substantially horizontal to horizontally access the reagent container, and a working fluid access needle and a waste access needle positioned and fixed within the second receptacle with the working fluid access needle and the waste access needle being substantially horizontal to horizontally access the working fluid and waste container.
In various embodiments, the first receptacle includes a top wall, a bottom wall, side walls, and a back wall. One of the two reagent access needles is positioned on the back wall adjacent to the bottom wall. The other of the two reagent access needles is positioned on the back wall adjacent to and above a center line between the top and bottom walls. In various embodiments, the reagent container and the first receptacle are shaped such that the reagent container must be inserted into the first receptacle in a particular orientation for the two reagent access needles to access the reagent container.
In various embodiments, the second receptacle includes a top wall, a bottom wall, side walls, and a back wall. The waste access needle is positioned on the back wall adjacent to the top wall. The working fluid access needle is positioned on the back wall adjacent to the bottom wall. In various embodiments, the working fluid and waste container and the second receptacle are shaped such that the working fluid and waste container must be inserted into the second receptacle in a particular orientation for the working fluid access needle and the waste access needle to access the working fluid and waste container. In various embodiments, a top portion of the second receptacle is narrower than a bottom portion of the second receptacle, and a top portion of the working fluid and waste container is narrower than a bottom portion of the working fluid and waste container.
In various embodiments, the medical diagnostic system includes a camera positioned such that it can view the first receptacle for imaging an encoded data-matrix code on the reagent container. In various embodiments, the medical diagnostic system uses the same camera positioned such that it can also view the second receptacle for imaging an encoded data-matrix code on the working fluid and waste container.
In various embodiments, the reagent container of the medical diagnostic system includes a top compartment and a bottom compartment that are fluidically separate. A septum between the top and bottom compartments connects them such that the top and bottom compartments are stationary relative to each other. The top compartment is defined by a housing having a top wall, a bottom wall, side walls, and an access opening positioned adjacent to the bottom wall of the top compartment. The bottom compartment is defined by a housing having a top wall, a bottom wall, side walls, and an access opening positioned adjacent to the bottom wall of the bottom compartment. In various embodiments, at least a portion of the bottom wall of the top compartment slopes downward toward the access opening of the top compartment. In various embodiments, the top wall of the bottom compartment is substantially parallel to the bottom wall of the top compartment. In various embodiments, a portion of the top wall of the bottom compartment is higher than a portion of the bottom wall of the top compartment.
In various embodiments, the working fluid and waste container of the medical diagnostic system includes a working fluid compartment having an access opening, a waste compartment having an access opening where the waste compartment is fluidically separate from the working fluid compartment, and a septum between and connecting the working fluid compartment and the waste compartment such that the working fluid compartment and the waste compartment are stationary relative to each other. In various embodiments, the second receptacle of the housing includes a top wall, a bottom wall, side walls, and a back wall. The access opening of the waste compartment is positioned adjacent to the top wall of the second receptacle, and the access opening of the working fluid compartment is positioned adjacent to the bottom wall of the second receptacle. In various embodiments, the waste compartment has an inner wall and an outer wall. The inner wall and the outer wall have a vertical cross-section in substantially a shape of a square with an open corner. The working fluid compartment has a first portion inward of the inner wall of the waste compartment and a second portion extending through the open corner where the second portion ends in the access opening of the working fluid compartment.
In accordance with aspects of the present disclosure, a container for a medical diagnostics system includes a top compartment defined by a housing having a top wall, a bottom wall, side walls, and an access opening positioned adjacent to the bottom wall of the top compartment, a bottom compartment defined by a housing having a top wall, a bottom wall, side walls, and an access opening positioned adjacent to the bottom wall of the bottom compartment, where the top compartment and the bottom compartment are fluidically separate, and a septum between and connecting the top and bottom compartments such that the top and bottom compartments are stationary relative to each other.
In various embodiments, at least a portion of the bottom wall of the top compartment slopes downward toward the access opening of the top compartment. In various embodiments, the top wall of the bottom compartment is substantially parallel to the bottom wall of the top compartment.
In accordance with aspects of the present disclosure, a container for a medical diagnostics system includes a waste compartment having an access opening, an inner wall, and an outer wall, where the inner wall and the outer wall have a vertical cross-section in substantially a shape of a square or rectangle with an open corner, a working fluid compartment having a first portion inward of the inner wall of the waste compartment and a second portion extending through the open corner, where the second portion ends in an access opening of the working fluid compartment and where the working fluid compartment is fluidically separate from the waste compartment, and a septum between and connecting the working fluid compartment and the waste compartment such that the working fluid compartment and the waste compartment are stationary relative to each other.
In various embodiments, the container is configured to fit into a receptacle having a top wall, a bottom wall, side walls, and a back wall, the access opening of the waste compartment is positioned adjacent to the top wall of the receptacle, and the access opening of the working fluid compartment is positioned adjacent to the bottom wall of the receptacle.
Further details and aspects of exemplary embodiments of the present disclosure are described in more detail below with reference to the appended figures.
The present disclosure relates to point-of-care medical diagnostic systems and containers for medical diagnostic systems. As used herein, point-of-care refers to a location where care is provided to human or animal patients, and a medical diagnostic system refers to a system that can analyze a sample obtained from a patient to diagnose a medical condition of the patient. Accordingly, a medical diagnostic system includes a patient sample analyzer, such as, but not limited to, a flow cytometer.
The following description will use flow-cytometry-based systems as an example of a medical diagnostic system. An example of a flow-cytometry-based analyzer is shown and described in U.S. Pat. No. 7,324,194, which is hereby incorporated by reference herein in its entirety, and which persons skilled in the art will understand. The present disclosure, however, is intended to and should be understood to apply to other types of medical diagnostic systems as well.
Flow cytometry systems include sub-systems such as fluidics, optics, and electronics sub-systems. A fluidics sub-system arranges a sample into a stream of particles, such as a stream of cells. The optics sub-system examines each cell by directed a laser beam to each cell and detecting scattered light using photo-detectors. Light is scattered according to size, complexity, granularity, and diameter of the cells, which form a “fingerprint” of each cell type. The electronics sub-system can process the fingerprints to classify, count, and/or otherwise analyze the cells/particles in the sample stream.
The fluidics sub-system has many responsibilities. For example, the fluidics sub-system uses a working fluid in various ways, including transporting dilutions (blood or quality control materials) to a laser for cell counting and morphology and/or to a hemoglobin module for hemoglobin measurement, acting as a sheath to carry blood cells sequentially past the laser, cleaning and/or priming the diagnostic system, and/or carrying waste to a waste container. The working fluid material is typically water-based and contains salt, surfactants, buffers and antimicrobials. The fluidic system is generally filled with this fluid at all times, except when a blood sample is being processed and moved through the system.
The fluidics sub-system also accesses reagents and applies them to the patient sample to produce desired reactions. For example, as persons skilled in the art will understand, reagents can be used to dye and distinguish particular cells, lyse red blood cells, and prepare cells for particular types of assays, among other things. In various embodiments, a red reagent is used to prepare a whole blood sample for evaluation primarily of red blood cells and platelets. The material is water-based and contains salt, surfactants, antimicrobials, and a stain (for reticulocytes). The red reagent is mixed in the proper dilution concentration with whole blood to cause the red blood cells to sphere and to stain the reticulocytes. The diluted sample is then transported to the flow cell for evaluation (counting and classification). In various embodiments, a white reagent is used to prepare a whole blood sample for evaluation of white blood cells. The material is water-based and contains salt, surfactants, and antimicrobials. The white reagent is mixed in the proper dilution concentration with whole blood to cause the red blood cells to lyse. The remaining white blood cells and platelets are left in the dilution and are transported to the flow cell for evaluation (counting and classification).
Accordingly, working fluid and reagents need to be installed and provided to the medical diagnostic system. Then, when the analysis is completed, waste fluids generated by the system need to be gathered and disposed in a safe manner. The following describe a medical diagnostic system and containers that address these concerns.
Referring now to
As will be described in more detail below, the receptacles 120, 130 and the containers 122, 132 are configured so that an operator can slide a container 122, 132 horizontally into a receptacle. In accordance with one aspect of the present disclosure, the interior of the receptacles 120, 130 include fluid access needles (not shown) that are oriented horizontally. As the containers 122, 132 slide horizontally into the receptacles 120, 130, the horizontal needles engage access openings in the containers. In various embodiments, the access needles are substantially horizontal in that the needles are intended to be horizontal but may not be fully horizontal due to, for example, slight manufacturing imperfections or limitations, or slight loosening of the needles within the receptacle over time due to wear, or other material, manufacturing, or environmental imperfections.
Referring now to
As shown in
The particular shapes and relative sizes of the compartments are exemplary, and other variations and configurations are contemplated. For example, in the embodiment of
In the illustrated embodiment, the bottom wall 216 of the top compartment 210 and the top wall 224 of the bottom compartment 220 are parallel or substantially parallel. They may be substantially parallel even when they are intended to be entirely parallel because of, for example, manufacturing imperfections. In various other embodiments, the bottom wall 216 of the top compartment 210 and the top wall 224 of the bottom compartment 220 can be intentionally non-parallel. Additionally, in the illustrated embodiment, a portion of the top wall 224 of the bottom compartment 220 is higher than a portion of the bottom wall 216 of the top compartment 210 because of the downward slope in those walls. In various other embodiments, there may be no downward slope in those walls, such as in the example of
In the illustrated embodiment, the septum 230 adjacent to the access openings 212,222 is located about halfway between the top wall 214 of the top compartment 210 and the bottom wall 226 of the bottom compartment 220. Thus, the access opening 212 of the top compartment 210 is located adjacent to and above this center line. The reagent access needles 124, 126 are located in corresponding positions. The smaller receptacle 120 of the diagnostic system includes a top wall, a bottom wall, a back wall, and side walls (not shown). One reagent access needle 126 is positioned on the back wall adjacent to the bottom wall of the smaller receptacle 120, and the other reagent access needle 124 is positioned on the back wall adjacent to and above the center line between the top and bottom walls of the smaller receptacle 120 (not shown). Thus, the reagent access needles 124, 126 can access the compartments 210, 220 only when the reagent container 200 is inserted into the smaller receptacle 120 in a particular orientation. In various other embodiments, the locations of the access openings 212, 222 and the reagent access needles 124, 126 can be in other positions, as shown for example, in
Described above herein are aspects of the medical diagnostic system and the reagent container. The following will describe aspects of the working fluid and waste container. As shown in
Referring to
With continuing reference to
With reference to the medical diagnostic system of
Referring again to
The working fluid and waste container of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
Accordingly, describe above are a medical diagnostic system and containers for the medical diagnostic system.
The following describes a feature of present disclosure with reference to
In various embodiments, the larger receptacle 130 uses the camera (not shown) for imaging a data-matrix code on the working fluid and waste container 132, and the smaller receptacle 120 uses the same camera (not shown) for imaging a data-matrix code the reagent container 122. In various embodiments, the data-matrix codes are positioned on the containers 122, 132 such that the data-matrix codes can be read by the camera only when the containers 122, 132 are inserted into the medical diagnostic system 100 in a particular orientation.
The embodiments disclosed herein are examples of the disclosure and may be embodied in various forms. For instance, although certain embodiments herein are described as separate embodiments, each of the embodiments herein may be combined with one or more of the other embodiments herein. Specific structural and functional details disclosed herein are not to be interpreted as limiting, but as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals may refer to similar or identical elements throughout the description of the figures.
The phrases “in an embodiment,” “in embodiments,” “in various embodiments,” “in some embodiments,” “in various embodiments,” or “in other embodiments” may each refer to one or more of the same or different embodiments in accordance with the present disclosure. A phrase in the form “A or B” means “(A), (B), or (A and B).” A phrase in the form “at least one of A, B, or C” means “(A); (B); (C); (A and B); (A and C); (B and C); or (A, B, and C).”
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods, and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
The systems described herein may also utilize one or more controllers to receive various information and transform the received information to generate an output. The controller may include any type of computing device, computational circuit, or any type of processor or processing circuit capable of executing a series of instructions that are stored in a memory. The controller may include multiple processors and/or multicore central processing units (CPUs) and may include any type of processor, such as a microprocessor, digital signal processor, microcontroller, programmable logic device (PLD), field programmable gate array (FPGA), or the like. The controller may be located within a device or system at an end-user location, may be located within a device or system at a manufacturer or servicer location, or may be a cloud computing processor located at a cloud computing provider. The controller may also include a memory to store data and/or instructions that, when executed by the one or more processors, causes the one or more processors to perform one or more methods and/or algorithms.
It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods, and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3909136 | Thomas | Sep 1975 | A |
4387164 | Hevey et al. | Jun 1983 | A |
5074658 | Tavlarides et al. | Dec 1991 | A |
5171538 | Tremmel | Dec 1992 | A |
5262329 | Carver, Jr. | Nov 1993 | A |
5316725 | Carver, Jr. et al. | May 1994 | A |
5316951 | Carver, Jr. et al. | May 1994 | A |
5380491 | Carver, Jr. et al. | Jan 1995 | A |
5413732 | Buhl et al. | May 1995 | A |
5463228 | Krause | Oct 1995 | A |
5486477 | Carver, Jr. | Jan 1996 | A |
5728351 | Carver, Jr. | Mar 1998 | A |
5840254 | Carver, Jr. et al. | Nov 1998 | A |
6391263 | Mishima et al. | May 2002 | B1 |
6812032 | Carver, Jr. et al. | Nov 2004 | B1 |
6857530 | Yourist | Feb 2005 | B2 |
6887429 | Marshall et al. | May 2005 | B1 |
6979569 | Carver, Jr. et al. | Dec 2005 | B1 |
7294307 | Carver, Jr. | Nov 2007 | B2 |
7324194 | Roche et al. | Jan 2008 | B2 |
7499581 | Tribble et al. | Mar 2009 | B2 |
7873483 | Miyamoto et al. | Jan 2011 | B2 |
7982201 | Bryant et al. | Jul 2011 | B2 |
8086411 | Yoshida et al. | Dec 2011 | B2 |
8088593 | Burd et al. | Jan 2012 | B2 |
8161810 | Cadieux et al. | Apr 2012 | B2 |
8381581 | Walsh et al. | Feb 2013 | B2 |
8460528 | Pollack et al. | Jun 2013 | B2 |
8668869 | Hirayama | Mar 2014 | B2 |
8679425 | Ueda et al. | Mar 2014 | B2 |
9213043 | Cook et al. | Dec 2015 | B2 |
9222821 | Walsh et al. | Dec 2015 | B2 |
9233371 | Nakamura et al. | Jan 2016 | B2 |
9322834 | Hirayama et al. | Apr 2016 | B2 |
20050074361 | Tanoshima et al. | Apr 2005 | A1 |
20060105359 | Favuzzi | May 2006 | A1 |
20110014095 | Ueda | Jan 2011 | A1 |
20110207621 | Montagu et al. | Aug 2011 | A1 |
20120309636 | Gibbons et al. | Dec 2012 | A1 |
20140267695 | Scordato et al. | Sep 2014 | A1 |
20150074361 | Hughes et al. | Mar 2015 | A1 |
20150316529 | Choi et al. | Nov 2015 | A1 |
20160263576 | Sattler | Sep 2016 | A1 |
20160266155 | Brennan | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
0284024 | Sep 1988 | EP |
2194385 | Jun 2010 | EP |
S6242334 | Feb 1987 | JP |
H03176664 | Jul 1991 | JP |
2008203277 | Sep 2008 | JP |
2011039028 | Feb 2011 | JP |
2016540221 | Dec 2016 | JP |
2013173524 | Nov 2013 | WO |
Entry |
---|
Partial International Search Report dated May 21, 2019 by the European Patent Office acting as the International Searching Authority in corresponding International Application No. PCT/US2019/026405. |
International Search Report and Written Opinion issued by the European Patent Office acting as International Searching Authority in corresponding International Application No. PCT/US2019/026405 dated Jul. 18, 2019. |
Australian Examination Report No. 1 issued in corresponding Appl. No. AU 2019245325 dated Nov. 16, 2020 (6 pages). |
Office Action issued in corresponding JP Application No. 2020-552896, dated Nov. 30, 2021, pp. 1-8, together with English-language translation. |
Office Action issued in corresponding CA Application No. 3,095,051 dated Jun. 2, 2022, pp. 1-5. |
Office Action issued in corresponding CN Application No. 201980017943.6 dated Jul. 1, 2022, pp. 1-17. |
Number | Date | Country | |
---|---|---|---|
20190299213 A1 | Oct 2019 | US |