Embodiments disclosed herein relate in general to digital cameras and in particular to correction of images obtained with folded digital cameras.
Compact digital cameras having folded optics, also referred to as “folded cameras” or “folded camera modules” are known, see e.g. co-owned international patent application PCT/IB2016/057366.
Camera 100 is designed to rotate OPFE 104 around axis 110 (the Z axis) relative to the image sensor, a rotation indicated by an arrow 112. That is, camera 100 is a “scanning” Tele camera (“STC”). OPFE 104 can rotate in an angle range as required by optical requirements (see below), in some cases by up to 180 degrees and in other cases by up to 360 degrees. Camera 100 can scan a scene with its “native” Tele field of view (“N-FOVT”), so that it effectively covers a FOV of a scene which is larger than N-FOVT and which we call scanning Tele FOV (“S-FOVT”). S-FOVT is the FOV that includes all scene segments that can be captured with the STC in a plurality of STC images. For scanning a scene in 2 dimensions, OPFE 104 must be rotated around two rotation axes. For example, N-FOVT=10-20 deg and S-FOVT=30-80 deg.
Images are acquired from a certain point of view (POV) of the camera. The POV is the direction defined by the unit vector of the vector that has the location of the camera aperture as starting point and an object point at the center of N-FOVT as end point. As an example, in spherical coordinates (r, θ, φ) defined according to ISO convention, the POV for a camera at r=0 is defined by (1, θ, φ), with the polar angle θ and azimuthal angle φ defining the location of the object point at C-N-FOVT. In
There is a need for and it would be advantageous to have a STC image without POV aberrations regardless of the POV.
Considering the OPFE position, a method suggested herein uses a digital algorithm to correct the POV aberration to obtain an image without POV aberrations. After acquiring (capturing) an image and correcting it, it is suggested herein to crop a rectangular area from the corrected image, to display a cropped rectangular image on the screen or save the cropped rectangular image to a file. For each OPFE position, a pre-calculated geometric transformation (i.e. homography transform) is applied on the acquired image, resulting in a POV aberration-corrected image.
Depending on the OPFE position after correcting the POV aberration, the original (uncorrected) image center will not coincide with the corrected image center. There may be for example five different cropping options (A, B, C, D, E), see
The outcome of the cropping is a rectangular image with the same aspect ratio AR (i.e. height/width=3/4) as the zero position, but with a smaller image area than for the zero-position image area. The size of the image area depends on the OPFE position. The corrected and cropped image is scaled to fit the display size or the saved image size.
All images may be further cropped to have the same crop size (image area) for all OPFE positions. The maximal crop size that fits all OPFE positions can be calculated as the minimal size from the set of maximum sizes for every OPFE position.
In various embodiments there are provided methods, comprising: providing a Tele folded camera that includes an OPFE and an image sensor; tilting the OPFE in one or more directions to direct the Tele folded camera towards a POV; capturing a Tele image or a stream of Tele images from the POV, the Tele image having a POV aberration; and digitally correcting the POV aberration.
Is some embodiments, the POV may have a plurality of aberrations and the above and below apply to the correction of one, some, or all of the plurality of aberrations.
In some embodiments, the correcting the POV aberration includes applying a geometric transformation to the captured Tele image to obtain a respective aberration-corrected image. In some exemplary embodiments, the geometric transformation uses calibration information captured during a camera calibration process.
In some embodiments, a method further comprises cropping the aberration-corrected image to obtain an aberration-corrected cropped (ACC) image that has an ACC image center, an ACC image size and an ACC image width/height ratio.
In some embodiments, a method further comprises scaling the ACC image to obtain an aberration-corrected cropped and scaled output image that has an output image center (OIC), an output image size and an output image width/height ratio. In some embodiments, the tilting of the OPFE and the capturing of a Tele image from the POV are repeated to obtain a plurality of Tele images captured at a plurality of POVs, and the OIC is selected such that a plurality of Tele images captured for all possible POVs cover a maximum rectangular area within a scene. In some embodiments, the tilting of the OPFE and the capturing of a Tele image from the POV are repeated to obtain a plurality of Tele images captured at a plurality of POVs, and the OIC is selected such that a plurality of Tele images captured for a particular plurality of POVs cover a maximum rectangular area within a scene.
In various embodiments there are provided systems, comprising: a Wide camera with a Wide field of view FOVW; a Tele folded camera with a Tele field of view FOVT<FOVW and which includes an OPFE and an image sensor, the Tele camera having a scanning capability enabled by OPFE tilt in one or more directions to direct the Tele folded camera towards a POV of a scene and used to capture a Tele image or a stream of Tele images from the POV, the Tele image or stream of Tele images having a POV aberration; and a processor configured to digitally correct the POV aberration.
In some embodiments, the POV aberration may be corrected using calibration data.
In some embodiments, the calibration data may be stored in a non-volatile memory.
In some embodiments, the calibration data include data on calibration between tilt positions of the OPFE in one or two directions and corresponding POVs.
In some embodiments, the calibration data may include data on calibration between a Tele image and a Wide image.
In some embodiments, the calibration data may include data on calibration between tilt positions of the OPFE in one or two directions and the position of FOVT within FOVW.
In some embodiments, the processor configuration to digitally correct the POV aberration may include applying a configuration to apply a geometric transformation to the captured Tele image or stream of Tele images to obtain an aberration-corrected image.
In some embodiments, the geometric transformation may be a homography transformation.
In some embodiments, the geometric transformation may include a homography motion-based calculation using a stream of frames from the Wide camera.
In some embodiments, the homography motion-based calculation may further use inertial measurement unit information.
In some embodiments, the geometric transformation may be a non-affine transformation.
In some embodiments, the image sensor has an image sensor center, an active sensor width and an active sensor height, and the OIC coincides with the image sensor center.
In some embodiments, the OIC may be selected such that a largest possible rectangular crop image size for a particular output image width/height ratio is achieved.
In some embodiments, the OIC may be located less than a distance of 10×pixel size away from an ideal OIC.
In some embodiments, the OIC may be located less than a distance of 10% of the active sensor width away from an ideal OIC.
In some embodiments, the OIC may be located less than a distance of 10% of the active sensor height away from an ideal OIC.
In some embodiments, the OIC may be selected such that an object-image magnification M of an object across different POVs does vary from a constant value by less than 10%
In some embodiments, the OIC may be selected such that the output image covers a maximum area within a scene.
In some embodiments, the OIC may be selected such that a plurality of Tele images captured for all possible POVs cover a maximum rectangular area within the scene.
In some embodiments, the OIC may be selected such that a plurality of Tele images captured for a particular plurality of POVs cover a maximum rectangular area within the scene.
In some embodiments, the OIC may be selected such that the output image shows a region of interest or object of interest in a visually appealing fashion.
In various embodiments there are provided methods, comprising: providing a Tele folded camera that includes an OPFE and an image sensor; tilting the OPFE in one or more directions to direct the Tele folded camera towards a POVs of a calibration chart, each POV associated with a respective OPFE position; capturing a respective Tele image of the calibration chart at each POV, each Tele image having a respective POV aberration; analyzing the Tele image data for deriving calibration data between each POV with its respective POV aberration and the respective OPFE position; and using the calibration data to digitally correct the POV aberration.
In some embodiments, the calibration chart may include location identifiers that allow to determine the POV for the given OPFE position from the respective Tele image.
In some embodiments, the calibration chart may include angular identifiers that allow to determine the POV aberration for the given OPFE position from each Tele image.
In some embodiments, the calibration chart may be a checkerboard chart.
In some embodiments, the calibration data chart may represented by a bi-directional function that translates any OPFE position to a Tele POV and/or its respective POV aberrations and vice versa.
In some embodiments, the bi-directional function chart may a polynomial.
In some embodiments, the calibration data chart may represented by a bi-directional Look-Up-Table that translates any OPFE position to a Tele POV and/or its respective POV aberrations and vice versa.
In some embodiments, the calibration data chart may represented by a Look-Up-Table comprising a plurality of OPFE positions with associated values for Tele POVs and/or its respective POV aberrations.
In some embodiments, the plurality of OPFE positions may include more than five OPFE positions, more than 50 OPFE positions, or even more than 250 OPFE positions.
In some embodiments, a method may further comprise providing a Wide camera with a field of view FOVW larger than a field of view FOVT of the Tele folded camera.
In some embodiments, between the analyzing of the Tele image and the using of the calibration data, a method may further comprise: in a first additional step, with a Tele image POV positioned within a respective Wide image FOV at a respective OPFE position associated with the Tele image POV, capturing an additional Tele image of the calibration chart along with capturing a Wide image of the calibration chart, and in a second additional step, using the Tele and Wide image data for deriving calibration data between the respective OPFE position, the Tele POV within the respective Wide FOV and the Tele image's POV aberration with respect to the Wide image. In some such embodiments, the first and second additional steps may be performed simultaneously. In some such embodiments, all the steps may be performed by a same operator. In some such embodiments, the first four steps may be performed by a first operator, and the first and second additional steps may be performed by a second operator. In some such embodiments, the first four steps may be performed in a time frame of less than 10 s, and the first and second additional steps are performed in a time frame of less than 10 s. In some such embodiments, the first four steps may performed in a time frame of less than 5 s and the first and second additional steps are performed in a time frame of less than 5 s. In some such embodiments, the first additional step does not include any additional image capture, and the analysis and the deriving of the calibration data may include receiving external calibration data between the Tele folded camera and the Wide camera.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. Like elements in different drawings may be indicated like numerals.
In
Box 200 represents the smallest rectangular FOV that includes S-FOVT, i.e. all the image data from all POVs that can be reached with a STC in the object domain. The N-FOVTs for three different OPFE positions (0, 1 and 2) are represented by 202-0, 202-1 and 202-2. Each OPFE position corresponds to a different POV. The N-FOVT for an OPFE “zero position” 202-0 is defined as an N-FOVT that produces an image of an object or scene without POV aberrations, i.e. (besides a scaling factor and assuming no camera aberrations and distortions) at zero position an object in the object domain is identical to the object image in the image domain. As shown, the N-FOVT at any other position (e.g. 202-1 and 202-2) is not a horizontal rectangle (with respect to 202-0), but an arbitrary tetragon. The same rectangular object is represented by 204-0, 204-1 and 204-2 in, respectively, N-FOVTs 202-0, 202-1 and 202-2.
In an example, the OPFE is positioned at a scanning position 1 (
In
A corrected (or rectified, or aberration-corrected) image is thus obtained. Calibration data between an OPFE position and the corresponding POV may be used to select the homography transformation corresponding to the particular POV. In some embodiments, the geometric transformation may include corrections known in the art such as e.g. distortion correction and color correction. In step 258, the corrected image is cropped as depicted in
The cropping in step 258 may be done according to different crop selection criteria. Some crop selection criteria may aim for a particular size of the cropped image. Other crop selection criteria may enable a particular input image coordinate to be transferred to a particular image coordinate of the cropped image. In the following, “crop selection” criteria may be referred to simply as “crop criteria”.
Crop criteria that aim for a particular size of cropped images may be as follows: in one criterion (crop criterion 1), the image may be cropped so that a resulting image is a rectangular image. In another criterion (crop criterion 2), the resulting image may be a square. Here and in the following, the image size and shape are defined by the number and distribution of the image pixels, so that size and shape do not depend on the actual mode the image is displayed. As an example, a rectangular image has m rows (image height), wherein each row includes n values (image width). A square image has m rows with m values each. A first rectangular image having m1 rows with n1 values each is larger than a second rectangular image having m2 rows and n2 values if m1×n1>m2×n2 is satisfied.
In yet another criterion (crop criterion 3), the image is cropped so that a largest rectangular image having a particular AR for the particular POV is obtained. Examples for this criterion are the crop options “D” and “E” shown in
Crop criteria that map particular input image coordinates to particular image coordinates of the cropped image are presented next. In general, and by applying a particular crop selection criterion, any arbitrary object image point of the image captured in step 254 (the “input image”) can be defined as the image center of the image output in step 262. In a crop criterion 7, the image may be cropped rectangularly so that the image center of the cropped image contains image data identical with that of the input image center for a particular POV. An image center may be defined as the center pixel and the surrounding pixels that lie within a radius of e.g. 10 times the pixel size. In some embodiments, the image center may be defined as the center pixel plus surrounding pixels that lie within a radius of e.g. 5 or 30 times the pixel size.
In a crop criterion 8, the image may be cropped rectangularly so that the cropped image center contains image data identical with that of an input image center, with the cropped image additionally fulfilling the condition that any two images that are captured at arbitrary first and second POVs are cropped so that the resulting images have the same AR and size. In yet other examples, crop criterion 8 may additionally fulfill the condition that the cropped images are of maximal size (crop criterion 9). In yet other examples, an image may be cropped so that a ROI or an object of interest (OOI) is displayed on the image output in step 264 in a visually appealing fashion (crop criterion 10). This criterion may support aesthetic image cropping, e.g. as described by Wang et al in the article “A deep network solution for attention and aesthetics aware photo cropping”, May 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence. Applications of aesthetic image cropping are also described in the co-owned PCT Patent Application No. PCT/IB2020-061330. In yet other examples, an image may be cropped according to the needs of further processing steps, e.g. the image may be cropped so that only a particular segment of the FOV in the object domain is included (crop criterion 11). A possible further processing may e.g. be the generation of a super image, i.e. of an output image that is composed of the image data of a plurality of input images. The generation of a super-image is described in co-owned PCT Patent Application No. PCT/IB2021-054070. Another possible further processing may be the generation of a panorama image as known in the art.
The scaling in step 260 may be performed according to different scaling selection criteria. In some embodiments, scaling may be performed so that images captured under different POVs in step 254 and output in step 262 (the “output image”) have identical size and AR (scale criterion 1). In other examples, scaling may be performed so that the pixel density per object image area in the output image is identical with the pixel density per area in the object domain present in the image captured in step 254 (scale criterion 2). In yet other examples, scaling may be performed so that the image size fits the requirements of a program that performs further processing on the image data (scale criterion 3).
Steps 252-262 outlined above may be performed sequentially, i.e. one after the other.
In some STC image rectification embodiments, step 256 may be performed as follows: let (xini, yinj) be the values of some arbitrary image coordinates (i, j) of an input image (captured in step 254) and let (xoutm, youtn) be the values of some arbitrary image coordinates (m, n) of an output image (of step 256). In the geometrical transformation sub-step, a homography transformation may be (xout, yout)=fH(xin, yin) with H being a 3×3 homography transformation matrix known in the art. The homography transformation can be inversed by using fH−1=fH-1. A crop transformation (xout, yout)=Crop(xin, yin) may be (xoutm, youtn)=(xini−crop-start_xi, yinj−crop-start_yj) for assigning each coordinate of the input image a coordinate in the output image wherein only coordinates with values>0 are used for the output image. Vector (crop-start_xi, crop-start_yj) defines size and shape of the cropped image. An inverse crop transformation Crop−1 is defined by (xinm, yinn)=(xouti+crop-start_xi, youtj−crop-start_yj). A scale transformation (xout, yout)=Scale(xin, yin) may be (xout, yout)=(sx·xin, sy·yin) with scaling factors sx and sy in x and y direction respectively. An inverse scale transformation Scale−1 is defined by (xin, yin) (sx−1·xout, sy−1·yout). A transfer function T is defined by applying homography, crop and scale sequentially, i.e. T is defined by (xout, yout)=Scale(Crop(fH(xin, yin))) and (xout, yout)=T(xin, yin).
In the interpolation sub-step, one may sequentially interpolate all values of output image (xout, yout) directly from the input image via transfer function T. For example, one may start with calculating values (xoutm, youtn) at an arbitrary starting point having coordinates (m, n) of the output image. For this, one calculates coordinates (m′, n′) of input image (xin, yin) that are to be included for calculating values (xoutm, youtn) at the particular coordinates (m, n) of the output image. Coordinates (m′, n′) in the input image may be obtained by applying an inverse transfer function T−1 to all output coordinates (m, n), i.e. T−1(xoutm, youtn) or fH−1(crop−1(scale−1(xoutm, youtn))) for all (m, n). In general, T−1 may not map each coordinate (m, n) on one coordinate (m′, n′), but map each coordinate on a segment of neighboring coordinates (m′, n′). For calculating the values (xoutm, youtn), the entire segment or parts of the segment of neighboring coordinates (m′, n′) may be taken into account. For obtaining values (xoutm, youtn) of the output image at coordinates (m, n), in a first step a re-sampling function R as known in the art may be evaluated for all neighboring coordinates (m′, n′) according to T(xout′m, yout′n)=Resample (Tin, xinm′, yinn′). The re-sampling may be performed by methods known in the art such as nearest neighbor, bi-linear, or bi-cubic.
After values (xoutm, youtn) are determined, one may perform the steps above for calculating the values (xouto, youtp) at additional coordinates (o, p), etc. This is repeated until all values (xout, yout) of the output image are obtained. In various embodiments, the calculation as described above is performed for a plurality of output coordinates or even for all output coordinates in parallel. In some STC image rectification embodiments, the calculations described here may be performed by a CPU (Central Processing Unit). In other STC image rectification embodiments and for faster image processing, the calculations described here may be performed by a GPU (Graphics Processing Unit). The STC image rectification may be performed in different color domains, e.g. RGB, YUV, YUV420 and further color domains known in the art.
In yet other examples (not shown), a cropping option may be selected so that that the criterion “the largest rectangular image for all possible POVs is achieved” is fulfilled. In yet other examples (not shown), a cropping option may be selected so that that the criterion “the largest rectangular image for a particular plurality of POVs is achieved” is fulfilled. The particular plurality of POVs may cover all possible POVs or a subset thereof.
Calibration data may be stored in a first memory 424, e.g. in an EEPROM (electrically erasable programmable read only memory), in a second memory 438, or in a third memory 450, e.g. in a NVM (non-volatile memory). Calibration data may include STC calibration data and DC calibration data. Electronic device 400 further comprises a Wide (“W”) (or Ultra-Wide, “UW”) camera module 430 with a FOVW, FOVUW>N-FOVT that includes a second lens module 434 that forms an image recorded by a second image sensor 432. A second lens actuator 436 may move lens module 434 for focusing and/or OIS.
In use, a processing unit such as AP 440 may receive respective first and second image data from camera modules 410 and 430 and supply camera control signals to camera modules 410 and 430. FOV scanner 442 may receive commands from a human user or a program for directing the N-FOVT to particular POVs in a scene. In some embodiments, the commands may include a single request for directing N-FOVT to one particular POV. In other examples, the commands may include a series of requests e.g. for serially directing N-FOVT to a plurality of particular POVs. FOV scanner 442 may be configured to calculate a scanning order given the requested particular POVs. FOV scanner 442 may be configured to supply control signals to OPFE actuator 414, which may, in response to the control signals, rotate OPFE 412 for scanning N-FOVT. In some embodiments, FOV scanner 442 may additionally supply control signals to OPFE actuator 414 for actuating OPFE 412 for OIS.
Electronic device 400 further comprises an inertial measurement unit (IMU, or “Gyro”) 460 that may supply information on the motion of 400. Motion estimator 444 may use data from IMU 460, e.g. for estimating hand motion caused by a human user. In some embodiments, motion estimator 444 may use additional data. For example, image data from camera 410 and/or from camera 430 may be used to estimate an “optical flow” from a plurality of images as known in the art. Motion estimator 444 may use data from IMU 460 and may use as well optical flow data for estimating motion of 400 with higher accuracy. The information on motion of 400 may be used for OIS or for the homography transformation described above. In other embodiments, only optical flow data estimated from image data of camera 410 and/or camera 430 may be used for estimating motion of 400. Image generator 446 may be configured to generate images and image streams respectively as e.g. described in
In a first example (calibration example 1 or “CE1”), the calibration process refers to a STC that scans in 2 dimensions by rotating an OPFE along two axes, wherein the amplitude of the rotation is measured by two or more position sensors (e.g. Hall sensors), a first and a second position sensor P1 and P2 respectively. The STC's POV is measured by the value pair p1 and p2 of P1 and P2 respectively. In a first step 502, a calibration chart (“CC”) is provided. A suitable CC includes location identifiers (such as location identifiers 602 and 604, see
In CE1, a list of N specific value pairs (p1, p2) may be defined for a specific STC design. In some embodiments, the list may include N=10 value pairs (p1, p2)1, . . . , (p1, p2)10. In other embodiments, the list may include N=10-20 or even more value pairs. According to a first criterion for value pair selection, the value pairs may be selected so that the STC must capture a minimum number of different POVs in the calibration process (or, in other words, a minimum number of repetitions of steps 504 and 506 is desired).
For a second example (“CE2”) for DC calibration, in step 502 another CC may be required, wherein the CC may or may not be a checkerboard. The STC of CE2 fulfills the same attributes as for CE1. Also in CE2, a list of N specific position sensor value pairs (p1, p2), each value pair associated with a specific OPFE position, may be defined for a specific STC design. In some embodiments, the list may include N=200 value pairs (p1, p2)1, . . . , (p1, p2)200. In other embodiments, the list may include N=100-300 or even more value pairs.
By tilting the OPFE to a specific OPFE position, in CE1 and CE2 e.g. defined by (p1, p2)1, in step 504 the STC is directed to a (yet unknown) POV on the CC.
In step 506, one or more STC images are captured. For DC calibration and for CE2, a second sub-step of step 506 is required, where STC images are captured along W images captured by the Wide camera. Capturing STC images along W images means here that the images are captured at a same dual-camera position and orientation. In general, the capture may be simultaneous, but this is not mandatory.
In some embodiments, the capturing of the STC images along the Wide images may be performed together and in one single step, e.g. by a same operator.
In other examples, the two steps may be performed separately and e.g. by different operators. For example and for calibrating a STC with respect to a first CC, a first operator may capture one or more STC images at a specific OPFE position. The STC which is calibrated with respect to the first CC may be included by a second operator into a dual-camera which is used for capturing a second CC (which may be or may be not identical to the first CC) with the STC at a specific OPFE position along with one or more W images for calibrating the STC with respect to the W camera of the dual-camera. Steps 504 and 506 are performed repeatedly according to the number N of value pairs, so that one or more STC images are captured at each of the N OPFE positions (or value pairs). The repetition of steps 502 and 504 for the plurality of OPFE positions may be performed for example in a predetermined timeframe. The predetermined timeframe may e.g. be 10 s or 5 s. For example, the first operator may be a camera module manufacturer that manufactures the STC and the second operator may be a phone manufacturer that includes the STC into a dual-camera and the dual-camera into a mobile device. In some embodiments, the second sub-step of step 506 does not include capturing additional STC and W images, but includes receiving external calibration data between the STC and the Wide camera.
In step 508, the STC images are analyzed. Aim is to assign a POV and a respective POV aberration to the specific OPFE (or value pairs) position of step 504. The analysis includes to use the CC's location identifiers that appear in a STC image to determine the POV from which it was captured, as well as to use the CC's angular identifiers along with GT images to determine the POV aberrations.
For CE1, the analysis includes to use the CC's location identifiers that appear in a STC image to determine the POV from which it was captured, as well as to use the CC's angular identifiers along with ground truth images to determine the POV aberrations.
In a first sub-step of CE1, a specific POVi is assigned to the value pair (p1, p2)i.
In a second sub-step of CE1, the STC image is compared to a ground truth image of the CC at the respective POV. In this comparison it is determined which image transformation parameters transform the STC image into the CC's ground truth image. In some embodiments, three image transformation parameters may be used. For DC and CE2, POVs and respective POV aberrations are determined by comparing the STC images and the Wide images captured in step 506.
In step 508 of CE1, the first and the second sub-step are performed for all value pairs (p1, p2)1, . . . , (p1, p2)N, so that to each value pair (p1, p2)i a specific POVi and image transformation parameters are assigned.
In step 510, from the analysis in step 508, calibration data is derived. In some embodiments, the calibration data is represented by a bi-directional data polynomial. In other examples, the calibration data is represented by a bi-directional Look-Up-Table (LUT) polynomial. In all examples, STC calibration data includes a function that can be used to translate any OPFE position to a STC image's POV aberrations with respect to a checkerboard and/or STC's POV. DC calibration data can be used to translate any OPFE position to a STC image's POV aberrations with respect to the W camera and/or STC's POV within FOVW. Vice versa, any POV aberration of an STC image with respect to a W camera's image can be translated into a STC POV within FOVW and/or to an OPFE position (thus “bi-directional”). In yet other examples, STC calibration data is represented by a LUT which comprises a multitude of OPFE positions with associated values for STC images' POV aberrations with respect to the CC and/or STC's POVs. DC calibration data is represented by a LUT which comprises a multitude of OPFE positions with associated values for STC images' rotation angles with respect to the Wide camera's images and/or Tele POVs within FOVW. For CE1, a function is determined which approximates the relation between all the value pairs (p1, p2)1, . . . , (p1, p2)N and their assigned specific POVs, POV1, . . . , POVN, as well as their assigned image transformation parameters. This function is generalized, meaning that it is used for bi-directionally translating between all possible OPFE position value pairs, their POVs and image transformation parameters for image rectification. According to a second criterion for value pair selection, the value pairs may be selected so that the generalization of the function leads to a minimum aggregated error (“AE”). “AE”, which is to be minimized, refers here to an error function that depends on the deviation of the STC images that underwent the POV correction from their respective ground truth images for all possible POVs (or a number of POVs that is sufficiently large to approximate statistically all possible POVs). In some embodiments, some compromise between fulfilling the first or the second criterion for value pair selection is made.
For CE2, the calibration data derived is included in a LUT. The LUT includes the N OPFE positions (value pairs), the POV associated with each value pair as well as its respective POV aberration. This implies that not for all possible OPFE positions there is explicit calibration data. So for rectifying a STC image with CE2 at an OPFE position which is not included in the LUT, one may approximate a POV and its POV aberrations. In some embodiments for approximation, one may use the calibration values which are associated with one OPFE position which is, from all the N OPFE positions, located closest to the current OPFE position. Closest may be defined here by a distance metrics known in the art, e.g. a quadratic distance of the respective value pairs (sqrt((p1−p1c)2+(p2−p2c)2)) may be smallest, where p1, p2 is the current OPFE position, and p1c, p2c are values included in the LUT. In other examples for approximation, one may use a weighted average of a plurality of calibration values which are associated with a plurality of OPFE positions which are, from all the N OPFE positions, located closest to the current OPFE position.
In step 512, the calibration data are applied to the STC images for correcting POV aberrations.
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.
It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.
All references mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual reference was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
This is a continuation of U.S. patent application Ser. No. 17/633,204 filed Feb. 6, 2022, which was a 371 application from international application PCT/IB2021/056311 filed Jul. 13, 2021, and is related to and claims priority from U.S. Provisional Patent Application No. 63/051,993 filed Jul. 15, 2020, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3085354 | Rasmussen et al. | Apr 1963 | A |
3584513 | Gates | Jun 1971 | A |
3941001 | LaSarge | Mar 1976 | A |
4199785 | McCullough et al. | Apr 1980 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5502537 | Utagawa | Mar 1996 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5892855 | Kakinami et al. | Apr 1999 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6201533 | Rosenberg et al. | Mar 2001 | B1 |
6208765 | Bergen | Mar 2001 | B1 |
6211668 | Duesler et al. | Apr 2001 | B1 |
6215299 | Reynolds et al. | Apr 2001 | B1 |
6222359 | Duesler et al. | Apr 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7619683 | Davis | Nov 2009 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8752969 | Kane et al. | Jun 2014 | B1 |
8803990 | Smith | Aug 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay et al. | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
10832418 | Karasev | Nov 2020 | B1 |
11314147 | Sharma | Apr 2022 | B1 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020054214 | Yoshikawa | May 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020071604 | Orpaz | Jun 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20020180759 | Park | Dec 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030156751 | Lee et al. | Aug 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040239313 | Godkin | Dec 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050134697 | Mikkonen et al. | Jun 2005 | A1 |
20050141390 | Lee et al. | Jun 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20050248667 | Schweng et al. | Nov 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060126737 | Boice et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060181619 | Liow et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070127040 | Davidovici | Jun 2007 | A1 |
20070159344 | Kisacanin | Jul 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080088942 | Seo | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090102948 | Scherling | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090168135 | Yu et al. | Jul 2009 | A1 |
20090200451 | Conners | Aug 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090234542 | Orlewski | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100134621 | Namkoong et al. | Jun 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100202068 | Ito | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100246024 | Aoki et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100265331 | Tanaka | Oct 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110121666 | Park et al. | May 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110221599 | Högasten | Sep 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110285714 | Swic et al. | Nov 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120014682 | David et al. | Jan 2012 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130148215 | Mori et al. | Jun 2013 | A1 |
20130148854 | Wang et al. | Jun 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130163085 | Lim et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130229544 | Bando | Sep 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-LaCroix | Oct 2013 | A1 |
20130258048 | Wang et al. | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130286221 | Shechtman et al. | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140160311 | Hwang et al. | Jun 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20140379103 | Ishikawa et al. | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150002684 | Kuchiki | Jan 2015 | A1 |
20150042870 | Chan et al. | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150110345 | Weichselbaum | Apr 2015 | A1 |
20150124059 | Georgiev et al. | May 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150145965 | Livyatan et al. | May 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150198464 | El Alami | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150296112 | Park et al. | Oct 2015 | A1 |
20150304527 | Chou | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160154066 | Hioka et al. | Jun 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160238834 | Erlich et al. | Aug 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160301868 | Acharya et al. | Oct 2016 | A1 |
20160342095 | Bieling et al. | Nov 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20160381289 | Kim et al. | Dec 2016 | A1 |
20170001577 | Seagraves et al. | Jan 2017 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170124987 | Kim et al. | May 2017 | A1 |
20170150061 | Shabtay et al. | May 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170219749 | Hou et al. | Aug 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170276954 | Bajorins et al. | Sep 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20170294002 | Jia | Oct 2017 | A1 |
20180005035 | Bogolea | Jan 2018 | A1 |
20180013944 | Evans, V et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg | Jan 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180109660 | Yoon et al. | Apr 2018 | A1 |
20180109710 | Lee et al. | Apr 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180184010 | Cohen et al. | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20180329281 | Ye | Nov 2018 | A1 |
20180368656 | Austin et al. | Dec 2018 | A1 |
20190100156 | Chung et al. | Apr 2019 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
20190121216 | Shabtay | Apr 2019 | A1 |
20190130822 | Jung et al. | May 2019 | A1 |
20190213712 | Ashdan et al. | Jul 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190222758 | Goldenberg et al. | Jul 2019 | A1 |
20190228562 | Song | Jul 2019 | A1 |
20190243112 | Yao | Aug 2019 | A1 |
20190297238 | Klosterman | Sep 2019 | A1 |
20190394396 | Fridman | Dec 2019 | A1 |
20200014912 | Kytsun et al. | Jan 2020 | A1 |
20200103726 | Shabtay et al. | Apr 2020 | A1 |
20200104034 | Lee et al. | Apr 2020 | A1 |
20200134848 | El-Khamy et al. | Apr 2020 | A1 |
20200154014 | Gu | May 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200264403 | Bachar et al. | Aug 2020 | A1 |
20200389580 | Kodama et al. | Dec 2020 | A1 |
20210026117 | Yao | Jan 2021 | A1 |
20210180989 | Fukumura et al. | Jun 2021 | A1 |
20210333521 | Yedid et al. | Oct 2021 | A9 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102215373 | Oct 2011 | CN |
102739949 | Oct 2012 | CN |
102982518 | Mar 2013 | CN |
103024272 | Apr 2013 | CN |
203406908 | Jan 2014 | CN |
103841404 | Jun 2014 | CN |
205301703 | Jun 2016 | CN |
105827903 | Aug 2016 | CN |
105847662 | Aug 2016 | CN |
107608052 | Jan 2018 | CN |
107682489 | Feb 2018 | CN |
109729266 | May 2019 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S59191146 | Oct 1984 | JP |
04211230 | Aug 1992 | JP |
H07318864 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2003304024 | Oct 2003 | JP |
2004056779 | Feb 2004 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2005099265 | Apr 2005 | JP |
2005122084 | May 2005 | JP |
2005321592 | Nov 2005 | JP |
2006237914 | Sep 2006 | JP |
2006238325 | Sep 2006 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2008271026 | Nov 2008 | JP |
2010204341 | Sep 2010 | JP |
2011055246 | Mar 2011 | JP |
2011085666 | Apr 2011 | JP |
2011203283 | Oct 2011 | JP |
2012132739 | Jul 2012 | JP |
2013101213 | May 2013 | JP |
2013106289 | May 2013 | JP |
2016105577 | Jun 2016 | JP |
2017146440 | Aug 2017 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20100008936 | Jan 2010 | KR |
20110080590 | Jul 2011 | KR |
20130104764 | Sep 2013 | KR |
1020130135805 | Nov 2013 | KR |
20140014787 | Feb 2014 | KR |
101428042 | Aug 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
20170105236 | Sep 2017 | KR |
20180120894 | Nov 2018 | KR |
20130085116 | Jun 2019 | KR |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
European Search Report in related EP patent application 21843329.0, dated Nov. 15, 2022. |
Office Action in related EP patent application 21843329.0, dated Nov. 28, 2022. |
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages. |
Office Action in related KR patent application 2021-7037792, dated Jun. 20, 2023. |
Office Action in related CN patent application 202180003962.0, dated Nov. 28, 2023. |
Number | Date | Country | |
---|---|---|---|
20230108086 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
63051993 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17633204 | US | |
Child | 18064269 | US |