1. Field of the Invention
This invention relates to a pickup or transducer for musical instruments. In particular, the invention relates to a pickup for a guitar comprising one or more piezo-electric crystals mounted within a framework for detecting sound from the guitar and transmitting it via a cable to an amplifier.
2. The Prior Art
It is often desired to amplify the sounds made by an acoustic guitar, without altering the quality of sound made by the guitar. A common way to do this is to attach a transducer, or pickup, to the guitar. The pickup detects the sounds of the guitar and transmits the sounds to an amplifier via a cable. The pickup is typically made with piezoelectric crystals, such as that described in U.S. Pat. No. 3,624,264 to Lazarus, the disclosure of which is herein incorporated by reference.
The drawback to this standard pickup is that the pickup must be mounted in a very precise manner on the guitar. Any deviation from a perfect mounting position will cause the vibrations detected by the crystals to cancel each other out and the sound will be distorted. The precise mounting position is determined by the guitar's “sweet-spot” and typically resides on the right side of the guitar under the bridge (or on the left side for left-handed guitars). This spot is very small and difficult to detect in a precise manner. In addition, variations in the position of the piezo crystals during manufacturing further increases the difficulties in locating the optimum position for the pickup, resulting in very poor repeatability from guitar to guitar, and from pickup to pickup. This constitutes the major disadvantage that has prevented its application on a high volume or OEM basis. Consequently, many pickups are mounted incorrectly and do not transmit the sound properly.
U.S. Pat. No. 6,448,488 to Elhaus refers to a very complicated method of achieving a similar output signal using three crystals mounted at different points around the bridge of the guitar, each crystal being representative of a different axis. These are combined and then electronically processed to obtain a potentially dephased signal. U.S. Pat. No. 5,206,449 to McClish uses two transducers to provide a dephased signal.
Transducers that employ large sensing areas, continuous sensors or multiple sensors that are not isolated are especially susceptible to severe time, phase and frequency errors. These transducers are ubiquitous in the marketplace. However, they carry intrinsic fundamental phase and time delay problems that “smear” the sound of the pickup and cannot be overcome or compensated for with additional electronics or in combination with additional sensors or sensor types.
The common major defects of the current transducers are as follows:
2. Unstable tonal response: different playing styles yield widely different tonal qualities. This is the result of the interaction between the time and frequency components in the signal. One fundamental characteristic of this defect is that a particular combination of instrument and a particular transducer may sound acceptable for one playing style, i.e., finger style, but would sound completely unacceptable for another style, i.e., strumming. The common solutions being offered on the market are “blender” systems combining multiple transducers or microphones as an attempt to compensate for the unstable tonal response of the primary pickup. Although quite popular, these systems rarely achieve completely acceptable tonal qualities for all situations.
3. Insufficient frequency flatness and bandwidth: this is most evident given the increase in usage of more frequency equalization. Some models offer graphic equalizers on the side of guitars in an attempt to compensate for poor frequency response of the transducer. One fundamental characteristic of such a system defect is the very poor sound quality when the controls are set flat.
It is therefore an object of the invention to provide a guitar pickup that is simple to mount correctly and which will transmit clear and accurate sounds from the guitar to the amplifier.
It is another object of the invention to provide a pickup that is small, and simple and inexpensive to manufacture.
These and other objects are accomplished by a guitar pickup comprising a cubic or other shaped weight, and one or more sensors which are preferably piezo-electric crystals. Other types of sensors could also be used, i.e., piezoelectric film, magnetic sensors, strain gauge sensors, electret sensors, resistive sensors, and capacitive sensors. In a three-crystal version, each crystal is mounted on a different axis of the weight, so that the vector sum of the three crystals accurately reproduces the vibrations of the x, y and z-axes.
On top of the weight and crystals, there is an insulating material such as a gel, or an air gap. The pickup is enclosed by a conductive shell and is used to shield the detector from external electrical interference. The device according to the invention produces a superior, relatively undistorted, sound as the resulting signal is a composite wave form whose several contributing components are produced independent of each other and whose output signals equally determine the frequencies and their amplitudes produced along three orthogonal axes. The composite waveform is the result of monitoring and combining frequency variations produced in each of three dimensions by the instrument to which the device is attached.
The pickup according to the invention works as an accelerometer, detecting acceleration in all three axes. In other words, the device functions by combining the electrical signals from each of three independent vibrating sources whose principal axes are orthogonal to each other along each of three Cartesian axis by detecting continuous variations in acceleration, velocity and/or spatial measurements along their respective axes. These variations are produced when the instrument is being played. The electrical signal produced by each of the three vibrating sources is connected by a separate conductor. The three signals are oscillations produced along a single axis independent of each other. The three signals are combined to produce a composite signal. Each component of the composite signal is a waveform produced independently of the other two signal sources and independently of forces which generate a signal in the other two vibrating sources. The combining means is the connection of a conductor from each of the three vibrating sources to a point from which the composite signal is communicated by a fourth conductor to a preamplifier. Each of the vibrating sources together with the electrical signal produced by each, act as an accelerometer. Since the input to each vibrating source originates at the same contact point on the instrument or equidistant from it and since the orientation of each vibrating source detects variations only in one axis, the signal produced by each is unaffected by any variations produced perpendicular to that axis. The vibrating sources are typically flat crystals whose orientation relative to each other, when mounted, is orthogonal.
In use, vibrations in the musical instrument are transmitted from the musical instrument to the sensor or sensors, which generate a signal between the conductor connected to the conductive layer and the conductor connected to the sensor in proportion so the vibrations create a signal that is amplified by a signal processing device.
In a preferred embodiment, the invention provides for a single point contact that further minimizes mechanical phase interference at the pickup contact point. The symmetrical weight is preferably mounted to the guitar via the point source contact to allow the pickup to be mounted to a guitar or other instrument in a precise manner. Preferably, the weight is mounted so that one principal diagonal of the cube is perpendicular to a surface of the instrument. A contact is mounted on each of the three faces of the cube nearest the surface of the instrument. The crystal structures preferably used to detect the variations are preferably flat shaped and are attached to the faces of the cube equidistant from the contact point of the cube to the instrument. The conductors affixed to each of the three crystals are attached at equal distance from the contact point. This arrangement conducts the vibrations from the point source contact at each of the three elements simultaneously and without additional phase or time delay error.
While it is important that the mechanical features of the device be as symmetrical as possible, this does not imply a strict cubic approach. For example, the point source contact or “pin” could also be attached to one of the transducer faces. The pin is embedded in the desired mounting place on the guitar to guarantee optimum sound transmission. The “pin” can be a small raised arc of any height.
Alternatively, the transducer could be directly mounted to the guitar or other instrument via adhesive on one of its faces. The device according to the invention works equally well with any type of attachment device, i.e., fasteners such as screws, adhesives, either permanent or temporary, wax, putty, a press-fit, clamps (spring, clip, snap, sandwich), or it can be embedded or encapsulated in the instrument.
A coaxial cable is soldered onto the device to connect the device to an amplifier. The center conductor of the cable is soldered to the weight and the ground shield of the cable is soldered to the outer shell. This connection now acts as the ground reference point for the transducer system. The other end of the cable is connected to a preamplifier or can be connected directly to an instrument amplifier.
The device is generally mounted directly to the bridge or bridge plate of the instrument, at its acceptable operating area, or “sweet spot”. The sweet spot is the area on the instrument in which the transducer picks up the most balanced sound from the instrument. This invention creates more usable sweet spots than with other pickups, so the pickup of the invention is easier to mount. In use, the crystal or crystals detect the sounds created by the instrument and transmit the sounds to the amplifier through the cable.
In an alternative embodiment of the device, the pickup can be mounted on the underside of the guitar surface via a mounting bracket that attaches to the underside of the guitar.
In another alternative embodiment, the contact pin can be replaced with a contact plate, with the plate mounted symmetrically to each of the piezoelectric crystals. The mounting plate attaches to the inside or outside surfaces of a guitar or instrument.
In another alternative embodiment of the device, there is only a single crystal, which works along a single axis. To implement this transducer, all that is needed is a small contact area, such as a pin, clip, or raised surface, adhesive and a sensor element that is located symmetrically to the axis of the contact point. The sensor element is located directly on top of the contact point along with a symmetrical substrate, cube and shield. With this embodiment, there is no radial directionality to the transducer. Small adjustments to the placement yields small changes in the frequency balance but without evidence of phase or time induced cancellations.
In yet another alternative embodiment, the transducer comprises three separate weights or cubes, each cube having a single sensor. Each cube is mounted on an essentially Y-shaped plate, with each cube mounted radially symmetric from the other. Each arm of the “Y” is folded upwards at an angle of approximately 45° from the horizontal. This version of the transducer simplifies and reduces the manufacturing cost of the transducer because it is more accepting to manufacturing tolerances, reduces the assembly steps and is easier to make.
A variation of this embodiment consists of a flat substrate on which 3 separate angled arms are attached. The weights are then attached to the arms, and the contact is mounted to the substrate.
The invention also comprises a method for creating a point source contact transducer for detecting surface vibrations and transmitting the vibrations from a musical instrument to one or more sensors to generate a final output signal that has natural tonal qualities of the instrument. The method comprises the following steps:
In a preferred variation of the method, there are at least two sensors that are mounted on the substrate such that the sensors are placed radially symmetric to the single point contact area. The sensors are also connected electrically in parallel so that the outputs are proportionally summed and converted to a sum signal to obtain a true representative of natural tonal qualities of the instrument.
While a guitar is a commonly employed instrument with respect to the use of pickups, the device according to the invention will work with any musical instrument that has vibrating surfaces, including violins, violas, cellos, mandolins, dulcimers, pianos, harps and wind instruments.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring now in detail to the drawings,
A cable 20 is soldered to device 10. Cable 20 is a small, low capacitance, thin cable. The center conductor 17 of cable 20 is soldered to cube 11, while the ground shield of cable 20 is soldered to substrate 14.
To mount device 10, pin 16 is placed in a hole in a musical instrument 19. The proper placement of device 10 is essential to optimize the quality of sound transmitted. However, the configuration of device 10 is much more forgiving than previous devices, so more “sweet spots” exist on instrument 19 for placement of device 10.
If device 10 is not mounted directly to the face of the guitar via the pin or an adhesive, it can be mounted to the underside of the guitar face via a mounting bracket 30, shown in
Accordingly, while only a few embodiments of the present invention have been shown and described, it is obvious to those skilled in the art that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.
This application is based on Provisional Application No. 60/424,296, filed on Nov. 6, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3624264 | Lazarus | Nov 1971 | A |
4030396 | Mariner | Jun 1977 | A |
4218951 | Tressel | Aug 1980 | A |
4310730 | Aaroe | Jan 1982 | A |
4701658 | Ringermacher et al. | Oct 1987 | A |
5206449 | McClish | Apr 1993 | A |
6448488 | Ekhaus et al. | Sep 2002 | B1 |
20040184631 | Hosler | Sep 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
60424296 | Nov 2002 | US |