The present invention relates to a process for point superabrasive machining of nickel alloys and to a tool used in the process.
Machining of complex shapes in nickel materials is typically performed using point milling. This technology uses a rotary multi-tooth cutter to remove material. Other more restrictive methods, such as electrochemical machining and flank milling, allow fast machining times but restrict the geometries that can be designed. Because of these restrictions, point milling is often used. This gives the designer maximum flexibility in component design. Point milling however is a relatively slow process when machining high hardness materials such as nickel alloys.
Accordingly, it is an object of the present invention to provide a process for point superabrasive machining of nickel based materials.
It is a further object of the present invention to provide a tool for use in such a process.
The foregoing objects are met by the process and the tool of the present invention.
In accordance with the present invention, a process for point superabrasive machining of a nickel based material, such as nickel-based alloys, broadly comprises the steps of providing a tool having a grinding surface coated with a superabrasive material, orienting the tool relative to a surface of the nickel based material to be machined so that there is point contact between the surface to be machined and the grinding surface of the tool, and forming a part by removing material at the point contact by rotating the tool.
Further, in accordance with the present invention, a tool for use in point superabrasive machining broadly comprises an enlarged portion, a tip portion, and a first shaft portion extending from the enlarged portion to the tip portion, the first shaft portion and the tip portion being coated with a superabrasive material, and the first shaft portion having a constant diameter.
Other details of the point superabrasive machining of nickel based materials, as well as other objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawing, wherein like reference numerals depict like elements.
The present invention relates to point superabrasive machining. In this technique, a grinding tool coated with superabrasive grit is rotated at high RPMs to grind off the material.
Referring now to
The tool 10, and in particular the first shaft portion 16, the second shaft portion 20, the enlarged portion 12, and the tip portion 14 may be formed from any suitable tool material known in the art, preferably a steel material. As can be seen from
In a preferred embodiment of the present invention, the first shaft portion 16 has a constant diameter along its length and is non-tapered. Unlike tapered tools where, in certain applications, it is not possible to have point contact between the tool and the surface of the material being machined, the non-tapered shaft portion 16 allows for very desirable point contact between the tool 10 and the surface of the material being milled.
As can be seen from
The machining center may comprise any suitable computer operated multi-axis grinding or milling machine known in the art.
In operation, a process for point superabrasive milling of a nickel based material broadly comprises the steps of providing the tool 10 and orienting the tool relative to a surface 40 of a nickel based material workpiece 42 so that there is point contact between the surface 40 and the point 44 on the superabrasive coating or grinding surface 28. The tool 10 is then rotated by the machine at a desired speed, preferably in the range of 40,000 to 90,000 revolutions per minute (rpm), to remove material at the point of contact between the point 44 on the tool 10 and the surface 40 so as to form a desired shape in the surface 40. Any suitable coolant and/or lubricant may be applied to the surface 40 and the tool 10 while the material is being removed.
The tool 10 may be moved by the pre-programmed, computer operated machine center to provide an airfoil type curvature to the surface 40 and thus form an airfoil member on an integrally bladed rotor or blisk (bladed disk), or the curved elements of an impeller (not shown). The workpiece 42 may have a base component 46 and the tool 10 may be used, as shown in
As shown in
If desired, the tool 10 of the present invention may be used to rough machine the workpiece 42 into the shape of a desired part, such as an integrally bladed rotor, blisk, or impeller, prior to using the tool 10 to form part components with a surface 40 with a complex shape. Rough machining may be carried out using the roughing surface 29 on the tool 10.
The tool 10 of the present invention allows material to be removed at much greater speeds and lower loads which avoid causing damage to airfoil members being machined. The tool 10 also allows heat to be dissipated very quickly, which helps avoid the formation of bent grains or white layer in the microstructure. Still further, the tool 10 provides better surface finishes and has an increased tool life. A point superabrasive machining process using the tool 10 of the present invention is faster than a flank milling operation and thus economically beneficial. This is due to the much faster metal removal rates resulting from use of the tool of the present invention. Still another advantage of the tool 10 of the present invention is that it may be used to form engine case shapes from a nickel alloy substrate. In the past, it has been very expensive to machine these shapes due to long machining time required with conventional milling.
It is apparent that there has been provided in accordance with the present invention a process for performing point superabrasive machining of nickel alloys has been provided which fully satisfies the objects, means, and advantages set forth hereinbefore. While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations which fall within the broad scope of the appended claims.
The Government may have rights in this invention, pursuant to Contract No. N00019-02-C-3003, awarded by the United States Navy.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2978846 | Barron | Apr 1961 | A |
| 4760672 | Darcangelo et al. | Aug 1988 | A |
| 4827675 | Andrews | May 1989 | A |
| 5044125 | Lambert et al. | Sep 1991 | A |
| 5525096 | Mayahara et al. | Jun 1996 | A |
| 5704787 | Hickok et al. | Jan 1998 | A |
| 5794725 | Trujillo et al. | Aug 1998 | A |
| 5906537 | Elcock et al. | May 1999 | A |
| 5957223 | Doster et al. | Sep 1999 | A |
| 6099605 | Cook et al. | Aug 2000 | A |
| 6209420 | Butcher et al. | Apr 2001 | B1 |
| 6331217 | Burke et al. | Dec 2001 | B1 |
| 20040087256 | Schwartz et al. | May 2004 | A1 |
| Number | Date | Country |
|---|---|---|
| 944 283 | Dec 1963 | GB |
| 2 038 214 | Jul 1980 | GB |
| 2 312 386 | Oct 1997 | GB |
| Number | Date | Country | |
|---|---|---|---|
| 20040198197 A1 | Oct 2004 | US |