Polarizable Force Field for Proteins and Lipids

Information

  • Research Project
  • 10298612
  • ApplicationId
    10298612
  • Core Project Number
    R01GM072558
  • Full Project Number
    2R01GM072558-14
  • Serial Number
    072558
  • FOA Number
    PA-20-185
  • Sub Project Id
  • Project Start Date
    2/1/2005 - 19 years ago
  • Project End Date
    8/31/2025 - a year from now
  • Program Officer Name
    LYSTER, PETER
  • Budget Start Date
    9/1/2021 - 2 years ago
  • Budget End Date
    8/31/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    14
  • Suffix
  • Award Notice Date
    8/30/2021 - 2 years ago

Polarizable Force Field for Proteins and Lipids

PROJECT SUMMARY Molecular dynamics (MD) simulations based on atomistic models play an increasingly important role in understanding the fundamental physical forces driving the structure and dynamics of biological membranes. However, to have meaningful simulations, accurate and empirical force fields (FFs) are necessary. Although nonpolarizable additive FFs are useful approximations, polarizable models of biological membranes are needed to account for their complex molecular nature. The present efforts to develop and optimize a polarizable FF for lipids will allow fundamental simulation studies of a broad range of processes associated with biological membranes. During the last funding period we made significant progress with the development of a polarizable FF based on the classical Drude oscillator model. The Drude FF has been implemented in CHARMM, NAMD, ChemShell QM/MM, GROMACS and the OpenMM GPU suite, allowing for unbiased simulations on the microsecond time scale as well as simulations exploiting a range of enhanced sampling technologies. We can already model water, ions, proteins, nucleic acids, carbohydrates, and a few neutral phospholipids. At this point there is a critical need to expand the type of phospholipids covered by the Drude FF to enable the modeling of a wider range of biological membrane systems, as over one third of all MD simulations of biological systems involve bilayer membranes. Polarizable models of biological membranes are necessary to account for their complex molecular nature, where a variety of strong electrostatic factors compete with one another over microscopic length-scales. The plan is to perform a global optimization and validation of the Drude FF for lipids using structural, dynamical, and mechanical information as physical target membrane data for the optimization, and improve the treatment of nonbonded interactions via a lattice sum of the long-range van der Waals dispersion (LJ-PME), and simultaneously extend the Drude FF to cover charged lipids with a special attention to the strong interactions of ions with the polar headgroup (Aim 1). We will then use the refined Drude FF to study fundamental aspects biomembrane electrostatics and elucidate the contribution of electronic polarization on the fundamental electrostatics features of biological membranes (Aim 2) with a study of the classical concept of ?-potential and the properties of membrane-bound voltage-sensitive dyes with polarizable models for the ground and excited state. Lastly, we will develop accurate polarizable models of phosphatidylinositol-4,5-bisphosphate (PIP2), with a special attention to the interactions with monovalent and divalent cations to study ion-induced domain formation and lateral clustering of PIP2 (Aim 3).

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    2
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    147712
  • Total Cost
    397712
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIGMS:397712\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    MSFD
  • Study Section Name
    Macromolecular Structure and Function D Study Section
  • Organization Name
    UNIVERSITY OF CHICAGO
  • Organization Department
    BIOCHEMISTRY
  • Organization DUNS
    005421136
  • Organization City
    CHICAGO
  • Organization State
    IL
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    606372612
  • Organization District
    UNITED STATES