The present invention relates to polarization controllers and, in particular, to polarization controllers based on variable retardance retarders.
The telecommunications industry has been working with polarization adjusters, controllers, and scramblers for many years. Typical uses include: optimizing optical power transmission through polarization dependent components; detecting polarization dependence of a component (by monitoring optical power at the output of the device while methodically scanning all the polarization states at the input of the component); and curtailing polarization dependence of components and detectors (by scanning substantially all possible states of polarization and illuminating the components and the detector at a rate faster than the signal sampling rate). Polarization controllers having endless control capabilities, which allow for reset free operation, are also in use in polarization mode dispersion compensators. Heismann teaches such an endless polarization controller in U.S. Pat. No. 5,212,743 issued May 18, 1993.
Various polarization control mechanisms employed by polarization controllers include rotatable fiber coils, fiber squeezers, variable orientation retarders, electro-optical waveguides and bulk devices with controllable retardance and optical axis orientation, and variable retardance retarders such as liquid crystal cells (LCC's). Polarization controllers based on LCC's are taught by Clark et al. in U.S. Pat. No. 5,005,952 issued Apr. 9, 1991, which discloses a stack of multiple liquid crystal cells. Rumbaugh et al. also teach a polarization controller in U.S. Pat. No. 4,979,235 issued Dec. 18, 1990, based on a stack of three liquid crystal cells.
LCC-based controllers are often used in feedback loops, in which they change the state of polarization in response to a signal. LCC-based controllers are designed to be able to transform any input state of polarization into any output state of polarization.
In the fields of test instrumentation and laboratory equipment, waveplate-based polarization controllers comprise a linear polarizer, a quarter waveplate and a half waveplate. A commercially available version of this polarization controller is manufactured by the JDS Uniphase Corporation under the PR2000™ product name. Rotatable fiber coils, taught by LeFevre in U.S. Pat. No. 4,389,090 issued Jun. 21, 1983, are also often used, but are cumbersome and do not always provide adequate repeatability. Furthermore, the slow response time and wavelength dependency of these polarization controllers require the user to schedule long duration tests and to make wavelength corrective approximations. Solid state opto-electrical waveguide devices are faster but are prone to drift problems. Fiber squeezers do not provide very reproducible results.
There is also a need in the field of test instrumentation for rapidly and reproducibly generating a fixed number of polarization states. This is a relatively easy task when the required states of polarization are linear. In this case a polarizer or a polarization prism can be mounted in a precise, motor-controlled goniometer. A specific application that could use a rapid and reproducible way to generate a fixed number of polarization states is the Mueller method for polarization dependent loss (PDL) measurement as described in the IEC document number CEI/IEC 61300-3-12:1997 incorporated herein by reference. This method requires the generation of four states of polarization with no more than three of the four states lying in a common plane in the Poincaré sphere representation. A common method of generating in a time sequence the four required states is to have a light source illuminate a circular polarizer providing circularly polarized light, and then to have three linear polarizers (0°, 45°, and 90°) sequentially disposed in the path of the circularly polarized light. One can also use the same polarizer mounted in a motor-controlled goniometer. Thus, one state of circularly polarized light and three states of linearly polarized light can be generated, and the PDL of a component measured. This mechanical toggling of the states of polarization is time consuming. A commercially available instrument based on the Mueller method for measuring PDL is manufactured by the JDS Uniphase Corporation under the PS3™ product name and requires approximately two seconds to complete one measurement.
Thus, there is a need for a polarization-controlling device that allows a relatively quick variation of the state of polarization of a light beam in a predictable and reproducible manner. Furthermore, for polarization controllers destined for the laboratory or the test bench, it may not be necessary to be able to transform an arbitrary input state of polarization into an arbitrary output state of polarization.
Accordingly, the present invention relates to a polarization controller comprising means for generating substantially linearly polarized light, and at least one variable retardance retarder.
Another feature of the present relates to a polarization controller comprising means for providing substantially linearly polarized light polarized along a polarization direction; a first variable retarder disposed for receiving light from the polarizer, said first variable retardance retarder having a first fast axis defining a first angle with said polarization axis; and, a second variable retarder disposed for receiving light from the first variable retardance retarder, said second variable retardance retarder having a second fast axis defining a second angle with said polarization axis.
The present invention also shows a method for imparting a light beam with a desired state of polarization, said method comprising the steps of:
a) passing a light beam through polarizing means to provide linearly polarized light polarized along a polarization axis, which is perpendicular to a propagation direction of the light;
b) passing the light beam through a first variable retardance retarder for modifying the state of polarization of the light beam received from the polarizer, said first variable retardance retarder having a first fast axis defining a first angle θ with said polarization axis; and
c) passing the light beam through a second variable retardance retarder for modifying the state of polarization of the light beam received from the first variable retardance retarder to impart the desired state of polarization, said second variable retardance retarder having a second fast axis defining a second angle φ with said polarization axis.
a is a graph of retardance versus voltage, which illustrates how a given liquid crystal cell can have its retardance profile displaced by the addition of a fixe retardance retarder in the optical path;
b is a graph of retardance versus voltage, which illustrates how a given liquid crystal cell will have a different retardance profile for different wavelengths;
The Mueller matrix representation of a quarter waveplate disposed with its fast axis oriented at an angle α is
and the mueller matrix representation of a half waveplate disposed with its fast axis oriented at an angle β is
(A summary of Mueller matrix formalism can be found in Polarized light in optics and spectroscopy by Kliger et al., Boston, Academic Press, 1990.)
The output state of polarization of the polarization controller can thus be expressed as the normalized Stokes vector:
Explicitly, the components of the normalized Stokes vector can be written as
s1=Cos(4β)Cos2(2α)+Cos(2α)Sin(4β)Sin(2α)
s2=Cos2(2α)Sin(4β)−Cos(4β)Cos(2α)Sin(2α)
and
s3=−Sin(2α).
In
And for a variable retarder of retardance γ with its fast axis oriented at 45° we have
If we position the input polarizer with its polarization axis oriented at 45°, the Stokes vector at the output of the polarizer will be
The output state of polarization, i.e. the output Stokes vector, of the preferred embodiment variable retarder polarization controller can thus be expressed as
Here, the components of the normalized Stokes vector can be written as
s1=Sin(γ)Sin(δ)
s2=Cos(δ)
s3=−Cos(γ)Sin(δ).
Furthermore, it will be understood by one having ordinary skill in the art that the relative orientation between the polarizer and the LCC's is the important feature of the present invention.
LCC's can sometimes have an offset retardance that cannot be removed by applying a voltage. It may be necessary to remove that offset retardance and this can be achieved by disposing a fixed retardance retarder next to the LCC. The fast axes of the LCC and of the fixed retardance retarder are disposed at 90° to each other while the retardance of the fixed retardance retarder is chosen to compensate the LCC's offset retardance. Similarly, one may wish to operate a variable retarder polarization controller by applying voltages lying in a specific voltage range. The LCC can be rendered compatible with the desired voltage range by introducing a fixed retardance retarder in the optical path.
a shows two plots of retardance versus voltage. Plot 14 is for an LCC having a retardance r1 at a voltage Vc and plot 15 is for the same LCC to which a fixed retardance retarder has been adjoined thereby reducing the retardance to a value r0 at the voltage Vc.
The above description of the variable retardance polarization controller was for a given wavelength. If that wavelength is varied, one need only vary the voltage applied to the LCC's in order to compensate for that wavelength variation, provided, of course, that the above-mentioned retardance ranges are still possible at the new wavelength.
The preferred embodiment described above with the linear polarizer 11 disposed with its polarization axis oriented at 45°, the first LCC 12 disposed with its fast axis oriented at 0° and the second LCC 13 disposed with its fast axis oriented at 45°, can be used to generate four states of polarization for the measurement of PDL by the Mueller method. A set of four states adequate for the Mueller method of measuring PDL could be: (a) linearly polarized light at 0°, (b) linearly polarized light at 45°, (c) linearly polarized light at 90° and (d) left circularly polarized light. These four states can be generated by adjusting the retardances RLCC12 and RLCC13 of LCC 12 and LCC 13 respectively to the values: RLCC12=90° and RLCC13=90° for state (a), RLCC12=0° and RLCC13=0° for state (b), RLCC12=270° and RLCC13=90° for state (c) and RLCC12=90° and RLCC13=0° for state (d).
Another embodiment of the present invention is shown in FIG. 10. Here, an LCC 18 having its fast axis at an angle of 0° with the polarization axis of the polarizer 11 and an LCC 19 having its fast axis at an angle of 45° with the polarization axis of the polarizer 11 are added to the preferred embodiment shown in FIG. 4. Although voltage sources are required to control the retardance of the LCC's, they are not shown in FIG. 10. The reason for placing LCC's 18 and 19 at the input side of the polarizer 11 is to be able to control the intensity of light at the output. For example, if the state of polarization of the light at the input side of
It would be possible to replace the LCC's of
Number | Name | Date | Kind |
---|---|---|---|
4389090 | LeFevre | Jun 1983 | A |
4416514 | Plummer | Nov 1983 | A |
4979235 | Rumbaugh et al. | Dec 1990 | A |
5005952 | Clark et al. | Apr 1991 | A |
5212743 | Heismann | May 1993 | A |
5788632 | Pezzaniti et al. | Aug 1998 | A |
6501548 | Oldenbourg | Dec 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040109233 A1 | Jun 2004 | US |