This invention relates generally to the field of optics, and in particular to diffractive optical structures, lenses, waveplates, devices, systems, methods, and processes which have the same effect on light regardless of the polarization state of the light.
Diffractive optical structures are used in many ways in optics. Common uses are as dispersive elements in spectrometers and in lens systems. In this context, an optical structure that is “dispersive” is one for which the effect on light reflecting from, or transmitting through, the optical structure is highly dependent on wavelength. For example, over a wide range of conditions, the angle through which light is diffracted by the simplest diffractive optical structures is approximately proportional to the wavelength. This is in contrast with the angle through which light is refracted by common optical refractive materials such as glass or transparent plastic. For such refractive materials, the angle through which light is refracted is nearly independent of the wavelength.
Methods have recently been developed for fabrication of a type of transmissive diffractive structure variously described in the literature by the terms diffractive waveplate, polarization grating, Pancharatnam phase device, Pancharatnam-Berry optical element, or geometric phase grating. Diffractive optical structures described by these terms have the property that diffraction of light results from the spatial modulation of the optical anisotropy axis (director) in an anisotropic dielectric material. For our purposes, we will refer to such diffractive optical structures as diffractive waveplates.
An exceptional feature of diffractive waveplates, compared with other types of diffractive structures, is that the diffraction efficiency can be very high over a range of wavelengths, and essentially all of the light incident on the diffractive waveplate over a range of wavelengths is diffracted.
Another exceptional feature of diffractive waveplates, compared with many other types of diffractive structures, is that optical properties of some diffractive waveplates can be electrically switched. This ability to switch the optical properties of some diffractive waveplates is due to the fact that the optically-active part of some diffractive waveplates is a liquid crystal layer, and the physical configuration of liquid crystals can be readily manipulated by application of an electric field.
One of the properties of the most well-known types of transmissive diffractive waveplate is that their effect on the light that is transmitted through them depends strongly on the circular polarization handedness of the incident light. If the diffractive waveplate has spatial properties such that it acts as a lens, then its focal length will be positive for one circular polarization, and negative for the opposite handedness of circular polarization. If the diffractive waveplate has the property that an incident plane wave results in an output plane wave propagating in a different direction from the incident beam, then an incident plane wave of one circular polarization will be deflected in one direction, and an incident plane wave of the other circular polarization will be deflected in the opposite direction. For example, if an incident plane wave of one circular polarization is deflected up, then an incident plane wave of the other circular polarization will be deflected down. If an incident plane wave of one circular polarization is deflected to the right, then an incident plane wave of the other circular polarization will be deflected to the left.
In some applications, this differential action by diffractive waveplates on the propagation of light is beneficial. However, in other applications, it would be desirable for the diffractive waveplate to have the same effect on light of any polarization. Many applications for diffractive waveplates would become possible if systems employing diffractive waveplates could be devised such that these systems have the same effect on light of either circular polarization.
Thus, there is a need for types of diffractive waveplates and arrangements of diffractive waveplates that have the same effect on light regardless of the polarization of the light.
The primary objective of the present invention is to provide diffractive optical structures, lenses, waveplates, devices, systems, and methods which have the same effect on propagation of light regardless of the polarization state of the light.
The second objective of the present invention is to provide specific types of diffractive waveplates that have the same effect on incident light regardless of the polarization of the light. These specific types of diffractive waveplates include, for example, lenses, beam steering systems and components, and axicons.
Many of the exemplary applications have been described herein with terms such as “light” being used to describe electromagnetic radiation that is acted upon by the disclosed diffractive waveplate structures. The term “light” in this context should not be taken to restrict the scope of the disclosed embodiments to only those in which the electromagnetic radiation acted upon or manipulated by the diffractive waveplate structures is in the visible region of the spectrum. As will be evident to those skilled in the art, the exemplary embodiments disclosed here, in addition to being applicable in the visible region of the spectrum, are equally applicable to the microwave, infrared, ultraviolet, and X-ray regions of the spectrum.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
In the Summary of the Invention above and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification does not include all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
In this section, some embodiments of the invention will be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention can, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will convey the scope of the invention to those skilled in the art.
Other technical advantages may become readily apparent to one of ordinary skill in the art after review of the following figures and description.
It should be understood at the outset that, although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described below.
A listing of components will now be described:
Diffractive waveplates of various types are known and have found many uses in optical systems. Diffractive waveplates are shown and described in U.S. Pat. No. 10,423,045 to Roberts et al., which is assigned to the same assignee as the subject patent application, and which is incorporated by reference in its entirety.
Switchable diffractive waveplate lenses are shown and described in U.S. Pat. Nos. 10,274,650, 10,120,112, 10,191,191, 10,557,977, and 10,114,239 to Tabirian et al., which are all assigned to the same assignee as the subject patent application, and which are all incorporated by reference in their entirety.
Methods of fabrication of diffractive waveplate lenses and mirrors are described in U.S. Pat. No. 10,197,715 to Tabirian et al., which is assigned to the same assignee as the subject patent application, and which is incorporated by reference in its entirety.
Switchable cycloidal diffractive waveplates are shown and described in U.S. Pat. No. 9,658,512 to Tabirian et al., which is assigned to the same assignee as the subject patent application, which is also incorporated by reference in its entirety.
Polarization-independent switchable lens systems are shown and described in U.S. Pat. No. 10,274,805 to Tabirian et al., which is assigned to the same assignee as the subject patent application, which is also incorporated by reference in its entirety.
The simplest type of diffractive waveplate, called a cycloidal diffractive waveplate (CDW), is illustrated in
The CDW has the same effect on a monochromatic plane wave of light as a refractive prism: it turns the beam through an angle. Refractive material such as glass can be used to make lenses, which have the effect of focusing a plane wave. Similarly, as disclosed in previously cited U.S. patents, changing the pattern of the anisotropy axis in a thin layer of birefringent material results in a diffractive waveplate lens, as illustrated in
The CDW of
One way to cause a single CDW to deflect both the LHCP and RHCP components of a plane wave in the same direction, or to cause a single diffractive waveplate lens to focus both the LHCP and RHCP components of a plane wave to the same point, is to convert one of the circular polarization components into the other, such that all of the input beam has the same circular polarization. There are prior art methods of converting one circular polarization component of an input optical plane wave into the other circular polarization, such that all of the input light has the same circular polarization. One such prior art method is described in the published article by N. Tabiryan et al., “Transparent thin film polarizing and optical control systems,” in Nelson V. Tabiryan, Sarik R. Nersisyan, Timothy J. White, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball, Transparent thin film polarizing and optical control systems, AIP ADVANCES 1, 022153 (1-11), 2011.
The prior art method described in this publication is illustrated in
As shown in
The CDW 515 in
A preferred embodiment of the polarization-independent diffractive waveplate system 600 shown in
As a specific example, it was assumed in calculating the diffraction angles in
Since the functions of the first CDW 615 and the third CDW 665 in
Since the function of the first phase retarder 630 and the second phase retarder 660 in
Since the second CDW 645 performs the desired beam deflection function, and all the other components shown in
The polarization-independent diffractive waveplate system shown in
Since the functions of the first diffractive waveplate axicon 820 and the second diffractive waveplate axicon 840 in
Since the function of the first phase retarder 825 and the second phase retarder 835 in
The employment of diffractive waveplate axicons 820 and 840 as polarization discriminator diffractive waveplate optics is shown in
Since the diffractive waveplate lens 830 performs the desired focusing function, and all the other components shown in
The significant advantage of the polarization-independent diffractive waveplate system 800 shown in
The functional diffractive waveplate optics 745 in
There will be a limitation on the range of angles of incidence over which the desired polarization-independent beam deflection occurs when using a system such as 600 shown in
From the previous U.S. patent application Ser. No. 16/293,122 and Ser. No. 62/638,651, there are four distinct types of PVGs, distinguished by the chirality of the twist angles of the anisotropy axis within the PVGs, and the sign of the dependence of birefringence axis orientation on a Cartesian coordinate parallel to the surface of the PVG. We will describe these types of PVG here in order to facilitate an explanation of the improvements to be herein disclosed.
Polarization volume gratings (PVGs) are characterized by a two-dimensional periodic distribution of anisotropy axis orientation:
In Eqn. (I), n(x,z) is a vector pointing along the local direction of the anisotropy axis in a Cartesian coordinate system (x,y,z) within a diffractive waveplate device. No dependence on the y-axis coordinate is shown in this equation because it is assumed that the direction of the anisotropy axis is independent of the y coordinate.
In Eqn. (II), Λx and Λz are periods along x- and z-axes while H=±1 and V=±1 define the anisotropy axis rotation directions along the two axes. There are four possible combinations of horizontal and vertical rotations of the anisotropy axis defined by the signs of H and Vin Eqn. (II).
For simulations reported here, the diffraction efficiency is maximized by setting the thickness L of each PVG such that it satisfies the half-wave phase retardation condition LΔn=λ/2 at a particular wavelength of operation, where Δn is the birefringence of the material, and λ is the wavelength in vacuum. The simulations reported here assume that the material comprising the PVGs is a current state-of-the-art liquid crystal polymer (LCP) with Δn=approximately 0.13, and with extraordinary and ordinary refractive indices ne=approximately 1.65, no=approximately 1.52, at the specific wavelength λ=approximately 550 nm. By definition, Δn=(ne−no). These parameters, together with the half-wave retardation condition, imply a grating thickness L=approximately 2.08 μm.
To minimize effects of Fresnel reflections in our modeling and simulation, we assume that each PVG and each stack of PVGs is immersed into a dielectric matching medium with spatially uniform, isotropic refractive index equal to the root mean square index nrms of the birefringent medium comprising the PVG:
For the values of indices ne and no given above, Eqn. (III) results in Arms being approximately equal to 1.56, a value that will be used throughout this disclosure as an example.
As a consequence of the assumption that the PVGs are immersed in a matching medium, thereby reducing Fresnel reflections at the boundaries between the PVGs and air, the power of the reflected beams is found to be less than approximately 0.5% of the input power in all simulations described herein, therefore such reflected beams are neglected here. The light incident on the PVG is assumed to be a monochromatic plane wave of a combination of left- and right-hand circular polarization (LHCP and RHCP) with propagation vector in the x-z plane, as shown in
The value of the period Λz in the z direction that results in diffraction at the Bragg angle is
For each value of Λx1, a value of Λz is computed from Eqns. (IV) and (V), thereby defining the orientation of the anisotropy axis in the first PVG 1025 using Eqn. (II). Values of H=+1 and V=+1 (noted in the short form H+V+ in
In the ordering of the stack of PVGs assumed for
After the first two PVGs 1025 and 1030 shown in
As noted above, two of the PVGs in the stack of PVGs shown in
Equations (IV) and (V) provide the angle of diffraction and the period in the z direction to ensure that diffraction occurs at the Bragg angle for a beam normally incident on the PVG. As is evident in
In Eqn. VII, m is the order of diffraction. The angle of the Bragg planes in PVGs 1035 and 1040 can then be computed as
The period of variation of the anisotropy axis orientation along the z direction for PVGs 1035 and 1040 is given by
Diffraction by a PVG with a period of 0.960 μm, following by diffraction with a period of 0.873 μm, results in an overall first-order diffraction angle of 2.1° in the matching medium, as is demonstrated with Eq. (VII) using the previously-mentioned values of λ=550 nm, Λx1=0.960 μm, Λx2=0.873 μm, nrms=1.56, and m=1. This results in a diffraction angle of 3.3° in air.
Each of the four PVGs 1025, 1030, 1035, and 1040 shown in
In the current invention, we determined that the order in which the PVGs are placed has a significant impact on the overall diffraction efficiency. Specifically, if the PVGs are placed in the order shown in
For the example shown in
As was the case in
The importance of the difference in the order in which the light beam encounters the PVGs in
As shown in
Since each PVG in the stack of four PVGs comprising the polarization-independent high-efficiency diffractive waveplate system 1100 shown in
While the discussion herein of polarization-independent diffraction from a stack of four PVGs is for the case in which the light in normally incident on the stack of PVGs, similar performance could readily be obtained for other angles of incidence. In general, for any angle of incidence, the diffraction efficiency for one circular polarization, for example LHCP, will approach 100% for any period Λx, provided Λ2 is adjusted so that diffraction occurs at the Bragg angle. A particular value of Λx can then be identified, with corresponding value of Λz in accordance with Eqn. (IX) to assure diffraction at the Bragg angle, such that not only does the diffraction efficiency for LHCP approach 100%, but the diffraction efficiency for RHCP approaches zero. The periods Λx and Λz for the remaining three PVGs can then be identified as explained above for the case of normal incidence. As is the case for normal incidence, the thickness L of each PVG for the case of non-normal incidence must meet the condition LΔn=λ/2 at a particular wavelength of operation.
Diffractive waveplate devices can be configured to provide the ability to switch the optical effects of the devices on and off. This capability to switch could be implemented in the polarization-independent diffractive waveplate system 600 shown in
A switchable diffractive waveplate system 1500 is illustrated schematically in
When it is desired to switch the switchable diffractive waveplate 1510 to the non-diffracting state, the electronic controller 1550 applies an alternating current electric potential of approximately 10 volts peak (20 volts peak to peak) across the layer of liquid crystal 1535. The incident light 1580 is almost all diffracted into the diffracted directions 1590 when the switchable diffractive waveplate 1510 is in the diffracting state, and into the non-diffracted direction 1585 when it is in the non-diffracting state.
In order for the polarization-independent diffractive waveplate system shown in
In order for the polarization-independent diffractive waveplate system shown in
In order for the polarization-independent high-efficiency diffractive waveplate system shown in
Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages.
Modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.
To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This application is a Divisional patent application of Ser. No. 17/458,761 filed Aug. 27, 2021, now U.S. Pat. No. 11,982,906, which is a Continuation-In-Part of U.S. patent application Ser. No. 16/293,122 filed Mar. 5, 2019, now U.S. Pat. No. 11,175,441, which claims the benefit of priority to U.S. Provisional Application Ser. No. 62/638,651 filed Mar. 5, 2018. The entire disclosure of the applications listed in this paragraph is incorporated herein by specific reference thereto.
This invention was made with government support under Contract No. FA8650-16-C-5411 awarded by the U.S. Air Force Research Laboratory. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
1970734 | Buffelen | Aug 1934 | A |
2088456 | Wood | Jul 1937 | A |
2209751 | Wulff | Jul 1940 | A |
2435616 | Vittum | Feb 1948 | A |
3721486 | Bramley | Mar 1973 | A |
3897136 | Bryngdahl | Jul 1975 | A |
4160598 | Firester et al. | Jul 1979 | A |
4301023 | Schuberth | Nov 1981 | A |
4698816 | Chun | Oct 1987 | A |
4956141 | Allen | Sep 1990 | A |
4983332 | Hahn et al. | Jan 1991 | A |
5032009 | Gibbons et al. | Jul 1991 | A |
5042950 | Salmon, Jr. | Aug 1991 | A |
5047847 | Toda et al. | Sep 1991 | A |
5100231 | Sasnett et al. | Mar 1992 | A |
5142411 | Fiala | Aug 1992 | A |
5150234 | Takahashi et al. | Sep 1992 | A |
5218610 | Dixon | Jun 1993 | A |
5321539 | Hirabayashi et al. | Jun 1994 | A |
5325218 | Willett et al. | Jun 1994 | A |
5446596 | Mostrorocco | Aug 1995 | A |
5619325 | Yoshida | Apr 1997 | A |
5621525 | Vogeler et al. | Apr 1997 | A |
5712721 | Large | Jan 1998 | A |
5895422 | Hauber | Apr 1999 | A |
5903330 | Funfschilling et al. | May 1999 | A |
5907435 | Ang | May 1999 | A |
5989758 | Komatsu et al. | Nov 1999 | A |
6091471 | Kim et al. | Jul 2000 | A |
6107617 | Love et al. | Aug 2000 | A |
6139147 | Zhang | Oct 2000 | A |
6170952 | La Haye et al. | Jan 2001 | B1 |
6191880 | Schuster | Feb 2001 | B1 |
6219185 | Hyde | Apr 2001 | B1 |
6320663 | Ershov | Nov 2001 | B1 |
6373549 | Tombling et al. | Apr 2002 | B1 |
6452145 | Graves et al. | Sep 2002 | B1 |
6551531 | Ford et al. | Apr 2003 | B1 |
6678042 | Tabirian et al. | Jan 2004 | B2 |
6728049 | Tabirian et al. | Apr 2004 | B1 |
6792028 | Cook et al. | Sep 2004 | B2 |
6810169 | Bouevitch | Oct 2004 | B2 |
6911637 | Vorontsov et al. | Jun 2005 | B1 |
7048619 | Park et al. | May 2006 | B2 |
7094304 | Nystrom et al. | Aug 2006 | B2 |
7095772 | Delfyett et al. | Aug 2006 | B1 |
7196758 | Crawford et al. | Mar 2007 | B2 |
7319566 | Prince et al. | Jan 2008 | B2 |
7324286 | Glebov et al. | Jan 2008 | B1 |
7450213 | Kim et al. | Nov 2008 | B2 |
7482188 | Moon et al. | Jan 2009 | B2 |
7764426 | Lipson et al. | Jul 2010 | B2 |
8045130 | Son | Oct 2011 | B2 |
8077388 | Gerton et al. | Dec 2011 | B2 |
8264623 | Marrucci | Sep 2012 | B2 |
8339566 | Escuti | Dec 2012 | B2 |
8520170 | Escuti et al. | Aug 2013 | B2 |
8537310 | Escuti | Sep 2013 | B2 |
8582094 | Shortt et al. | Nov 2013 | B1 |
8643822 | Tan et al. | Feb 2014 | B2 |
8937701 | Rossini | Jan 2015 | B2 |
8982313 | Escuti et al. | Mar 2015 | B2 |
9535258 | Whiteaker | Jan 2017 | B1 |
9541772 | De Sio et al. | Jan 2017 | B2 |
9557456 | Tabirian et al. | Jan 2017 | B2 |
9592116 | De Sio et al. | Mar 2017 | B2 |
9617205 | Tabirian et al. | Apr 2017 | B2 |
9658512 | Tabirian et al. | May 2017 | B2 |
9715048 | Tabirian et al. | Jul 2017 | B2 |
9753193 | Tabirian et al. | Sep 2017 | B2 |
9976911 | Tabirian et al. | May 2018 | B1 |
9983479 | Tabirian et al. | May 2018 | B2 |
10031424 | Tabirian et al. | Jul 2018 | B2 |
10036886 | Tabirian et al. | Jul 2018 | B2 |
10075625 | Tabirian et al. | Sep 2018 | B2 |
10107945 | Tabirian et al. | Oct 2018 | B2 |
10114239 | Tabirian et al. | Oct 2018 | B2 |
10120112 | Tabirian et al. | Nov 2018 | B2 |
10185182 | Tabirian | Jan 2019 | B2 |
10191191 | Tabirian et al. | Jan 2019 | B2 |
10191296 | Tabirian et al. | Jan 2019 | B1 |
10197715 | Tabirian et al. | Feb 2019 | B1 |
10274650 | Tabirian et al. | Apr 2019 | B2 |
10274805 | Tabirian et al. | Apr 2019 | B2 |
10330947 | Tabirian et al. | Jun 2019 | B2 |
10423045 | Roberts et al. | Sep 2019 | B2 |
10436957 | Tabirian | Oct 2019 | B2 |
10557977 | Tabirian | Feb 2020 | B1 |
10948801 | Lu | Mar 2021 | B1 |
11175441 | Tabirian | Nov 2021 | B1 |
11982906 | Tabirian | May 2024 | B1 |
20010030720 | Ichihashi | Feb 2001 | A1 |
20010002895 | Kawano et al. | Jun 2001 | A1 |
20010018612 | Carson et al. | Aug 2001 | A1 |
20020027624 | Seiberle | Mar 2002 | A1 |
20020097361 | Ham | Mar 2002 | A1 |
20020167639 | Coates et al. | Nov 2002 | A1 |
20030021526 | Bouevitch | Jan 2003 | A1 |
20030072896 | Kwok et al. | Apr 2003 | A1 |
20030086156 | McGuire | May 2003 | A1 |
20030137620 | Wang et al. | Jul 2003 | A1 |
20030152712 | Motomura et al. | Aug 2003 | A1 |
20030206288 | Tabirian et al. | Nov 2003 | A1 |
20030214700 | Sidorin et al. | Nov 2003 | A1 |
20030218801 | Korniski et al. | Nov 2003 | A1 |
20040051846 | Blum et al. | Mar 2004 | A1 |
20040081392 | Li et al. | Apr 2004 | A1 |
20040105059 | Ohyama et al. | Jun 2004 | A1 |
20040165126 | Ooi et al. | Aug 2004 | A1 |
20040226752 | Keskiniva et al. | Nov 2004 | A1 |
20050030457 | Kuan et al. | Feb 2005 | A1 |
20050110942 | Ide | May 2005 | A1 |
20050219696 | Albert et al. | Oct 2005 | A1 |
20050271325 | Anderson et al. | Dec 2005 | A1 |
20050276537 | Frisken | Dec 2005 | A1 |
20050280717 | Sugimoto | Dec 2005 | A1 |
20060008649 | Shinichiro | Jan 2006 | A1 |
20060055883 | Morris et al. | Mar 2006 | A1 |
20060109532 | Savas et al. | May 2006 | A1 |
20060221449 | Glebov et al. | Oct 2006 | A1 |
20060222783 | Hayashi et al. | Oct 2006 | A1 |
20070019179 | Fiolka et al. | Jan 2007 | A1 |
20070032866 | Portney | Feb 2007 | A1 |
20070040469 | Yacoubian | Feb 2007 | A1 |
20070115551 | Spilman et al. | May 2007 | A1 |
20070122573 | Yasuike et al. | May 2007 | A1 |
20070132930 | Ryu et al. | Jun 2007 | A1 |
20070247586 | Tabirian et al. | Oct 2007 | A1 |
20070256677 | Yim et al. | Nov 2007 | A1 |
20080024705 | Hasegawa et al. | Jan 2008 | A1 |
20080130555 | Kalhan | Jun 2008 | A1 |
20080130559 | Pi | Jun 2008 | A1 |
20080226844 | Shemo et al. | Sep 2008 | A1 |
20080278675 | Escuti et al. | Nov 2008 | A1 |
20090002588 | Lee et al. | Jan 2009 | A1 |
20090052838 | McDowall et al. | Feb 2009 | A1 |
20090073331 | Shi et al. | Mar 2009 | A1 |
20090122402 | Shemo et al. | May 2009 | A1 |
20090135462 | Kumar et al. | May 2009 | A1 |
20090141216 | Marrucci | Jun 2009 | A1 |
20090201572 | Yonak | Aug 2009 | A1 |
20090256977 | Haddock et al. | Oct 2009 | A1 |
20090257106 | Tan et al. | Oct 2009 | A1 |
20090264707 | Hendriks et al. | Oct 2009 | A1 |
20100003605 | Gil et al. | Jan 2010 | A1 |
20100066929 | Shemo et al. | Mar 2010 | A1 |
20100245954 | Ahling | Sep 2010 | A1 |
20110069377 | Wu et al. | Mar 2011 | A1 |
20110075073 | Oiwa et al. | Mar 2011 | A1 |
20110085117 | Moon et al. | Apr 2011 | A1 |
20110097557 | May | Apr 2011 | A1 |
20110109874 | Piers et al. | May 2011 | A1 |
20110135850 | Saha et al. | Jun 2011 | A1 |
20110188120 | Tabirian | Aug 2011 | A1 |
20110234944 | Powers et al. | Sep 2011 | A1 |
20110262844 | Tabirian et al. | Oct 2011 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120092735 | Futterer | Apr 2012 | A1 |
20120140167 | Blum | Jun 2012 | A1 |
20120162433 | Gonzalez | Jun 2012 | A1 |
20120188467 | Escuti et al. | Jul 2012 | A1 |
20130057814 | Prushinskiy et al. | Mar 2013 | A1 |
20130202246 | Meade et al. | Aug 2013 | A1 |
20140055740 | Spaulding et al. | Feb 2014 | A1 |
20140211145 | Tabirian et al. | Jul 2014 | A1 |
20140252666 | Tabirian et al. | Sep 2014 | A1 |
20150049487 | Connor | Feb 2015 | A1 |
20150081016 | De Sio et al. | Mar 2015 | A1 |
20150276997 | Tabirian et al. | Oct 2015 | A1 |
20160011564 | Tanabe et al. | Jan 2016 | A1 |
20160023993 | Tabirian et al. | Jan 2016 | A1 |
20160047955 | Tabirian et al. | Feb 2016 | A1 |
20160047956 | Tabirian et al. | Feb 2016 | A1 |
20160209560 | Tabirian et al. | Jul 2016 | A1 |
20160231592 | Beaton et al. | Aug 2016 | A9 |
20160270656 | Samec et al. | Sep 2016 | A1 |
20160282639 | von und zu Liechtenstein | Sep 2016 | A1 |
20160363484 | Barak et al. | Dec 2016 | A1 |
20160363738 | Ito | Dec 2016 | A1 |
20170010397 | Tabirian et al. | Jan 2017 | A1 |
20170307892 | Freeman et al. | Oct 2017 | A1 |
20170373459 | Weng | Dec 2017 | A1 |
20190113377 | Johnston et al. | Apr 2019 | A1 |
20200089078 | Serati | Mar 2020 | A1 |
20230204964 | Jamali | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
1970734 | Sep 2008 | EP |
2088456 | Aug 2009 | EP |
2209751 | May 1989 | GB |
2001142033 | May 2001 | JP |
2004226752 | Aug 2004 | JP |
2007122573 | Nov 2007 | WO |
2008130555 | Oct 2008 | WO |
2008130559 | Oct 2008 | WO |
Entry |
---|
Tabiryan, et al., The Promise of Diffractive Waveplates, OPN Optics and Photonics News, Mar. 2010, 6 pages. |
Tabiryan, et al., Fabricating Vector Vortex Waveplates for Coronagraphy; Aerospace Conference, 2012, EEE; publicly available Apr. 19, 2012, 12 pages. |
Tabirian, et al., PCT Application No. PCT/US15/26186 filed Apr. 16, 2015, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority mailed Jul. 14, 2015, 17 pages. |
Nersisyan, et al., Study of azo dye surface command photoalignment material for photonics applications, Applied Optics, vol. 49, No. 10, Apr. 1, 2010, 8 pages. |
Nersisyan, et al., Characterization of optically imprinted polarization gratings, Applied Optics, vol. 48, No. 21, Jul. 20, 2009, 6 pages. |
Nersisyan, et al., Fabrication of Liquid Crystal Polymer Axial Waveplates for UV-IR Wavelengths, Optics Express, vol. 17, No. 14, Jul. 2009, 9 pages. |
Nersisyan, et al., Optical Axis Gratings in Liquid Crystals and Their Use for Polarization Insensitive Optical Switching, Journal of Nonlinear Optical Physics & Materials, vol. 18, No. 1, 2009, 47 pages. |
Nersisyan, et al., Polarization insensitive imaging through polarization gratings, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages. |
Sarkissian, et al., Longitudinally modulated nematic bandgap structure, Optical Society of America, vol. 23, No. 8, Aug. 2008, 6 pages. |
Sarkissian, et al., Polarization-universal bandgap in periodically twisted nematics, Optics Letters, vol. 31, No. 11, Jun. 1, 2006, abstract, 4 pages. |
Sarkissian, et al., Periodically Aligned Liquid Crystal: Potential Application for Projection Displays, Mol. Cryst. Liq. Cryst., vol. 451, 2006, 19 pages. |
Sarkissian, et al., Potential application of Periodically Aligned Liquid Crystal cell for projection displays, JThE12, 2005, 3 pages. |
Sarkissian, et al., Polarization-Controlled Switching Between Diffraction Orders in Transverse-Periodically Aligned Nematic Liquid Crystals, Optics Letters, Aug. 2006, abstract, 4 pages. |
Schadt, et al., Photo-Induced Alignment and Patterning of Hybrid Liquid Crystalline Polymer Films on Single Substrates, Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6B, Jun. 15, 1995, 4 pages. |
Schadt, et al., Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys., vol. 34, Part 1, No. 6A, Jun. 1995, 10 pages. |
Schadt, et al., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature, vol. 381, May 16, 1996, 4 pages. |
Escuti, et al., A Polarization-Independent Liquid Crystal Saptial-Light-Modulator, Liquid Crystals X, Proc. of SPIE, vol. 6332, 2006, 9 pages. |
Escuti, et al., Polarization-Independent LC Microdisplays Using Liquid Crystal Polarization Gratings: A Viable Solution (?), Dept of Electrical & Computer Engineering @ ILCC, Jul. 1, 2008, 30 pages. |
Escuti, et al., Simplified Spectropolarimetry Using Reactive Mesogen Polarization Gratings, Imaging Spectrometry XI, Proc. of SPIE, vol. 6302, 2006, 11 pages. |
Gibbons, et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature, vol. 351, May 2, 1991, 1 page. |
Gibbons, et al., Optically Controlled Alignment of Liquid Crystals: Devices and Applications, Molecular Crystals and Liquid Crystals, vol. 251, 1994, 19 pages. |
Gibbons, et al., Optically generated liquid crystal gratings, Appl. Phys. Lett., 65, Nov. 14, 1994, 3 pages. |
University of Central Florida, School of Optics CREOL PPCE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, 9 pages. |
Ichimura, et al., Surface assisted photoalignment control of lyotropic liquid crystals, Part 1, Characterization and photoalignment of aqueous solutions of a water-soluble dyes as lyotropic liquid crystals, J. Materials. Chem., vol. 12, 2002, abstract, 2 pages. |
Ichimura, et al., Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by “Command Surfaces” Modified with an Azobenzene Monolayer, American Chemical Society, Langmuir, vol. 4, No. 5, 1988, 3 pages. |
Zel'Dovich, et al., Devices for displaying visual information, Disclosure, School of Optics/CREOL, University of Central Florida, Jul. 2000, 10 pages. |
Provenzano, et al., Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces, Applied Physics Letter 89, 2006, 4 pages. |
Titus, et al., Efficient polarization-independent, reflective liquid crystal phase grating, Applied Physics Letter 71, Oct. 20, 1997, 3 pages. |
Chen, et al. An Electrooptically Controlled Liquid-Crystal Diffraction Grating, Applied Physics Letter 67, Oct. 30, 1995, 4 pages. |
Kim, et al., Unusual Characteristics of Diffraction Gratings in a Liquid Crystal Cell, Advanced Materials, vol. 14, No. 13-14, Jul. 4, 2002, 7 pages. |
Pan, et al., Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns, Chinese Journal of Physics, vol. 41, No. 2, Apr. 2003, 8 pages. |
Fuh, et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films, Optics Letter, vol. 26, No. 22, Nov. 15, 2001, 3 pages. |
Yu, et al., Polarization Grating of Photoaligned Liquid Crystals with Oppositely Twisted Domain Structures, Molecular Crystals Liquid Crystals, vol. 433, 2005, 7 pages. |
Crawford, et al., Liquid-crystal diffraction gratings using polarization holography alignment techniques, Journal of Applied Physics 98, 2005, 10 pages. |
Seiberle, et al., 38.1 Invited Paper: Photo-Aligned Anisotropic Optical Thin Films, SID 03 Digest, 2003, 4 pages. |
Wen, et al., Nematic liquid-crystal polarization gratings by modification of surface alignment, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, 5 pages. |
Anagnostis, et al., Replication produces holographic optics in volume, Laser Focus World, vol. 36, Issue 3, Mar. 1, 2000, 6 pages. |
Gale, Replicated Diffractive Optics and Micro-Optics, Optics and Photonics News, Aug. 2003, 6 pages. |
McEldowney, et al., Creating vortex retarders using photoaligned LC polymers, Optics Letter, vol. 33, No. 2, Jan. 15, 2008, 3 pages. |
Stalder, et al., Lineraly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters vol. 21, No., 1996, 3 pages. |
Kakichashvili, et al., Method for phase polarization recording of holograms, Sov. J. Quantum. Electron, vol. 4, No. 6, Dec. 1974, 5 pages. |
Todorov, et al., High-Sensitivity Material With Reversible Photo-Induced Anisotropy, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 4 pages. |
Attia, et al., Anisoptropic Gratings Recorded From Two Circularly Polarized Coherent Waves, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 6 pages. |
Cipparrone, et al., Permanent Polarization Gratings in Photosensitive Langmuir-Blodgett Films, Applied Physics Letter, vol. 77, No. 14, Oct. 2, 2000, 4 pages. |
Nikolova, et al., Diffraction Efficiency and Selectivity of Polarization Holographic Recording, Optica Acta: International Journal of Optics, vol. 31, No. 5, 1984, 11 pages. |
Lee et al., “Generation of pretilt angles of liquid crystals on cinnamate-based photoalignment . . . ”, Opt., Expr., vol. 17 (26) (Dec. 2009), abstract, 4 pages. |
Yaroshchuk et al. “Azodyes as photoalignment agents for polymerizable liquid crystals”, IDW'06 Digest vol. 1-3, 2006, 4 pages. |
Chigrinov et al. “Anchoring properties of photoaligned azo-dye materials” Phys. Rev., E vol. 68, (Dec. 2003), 5 pages. |
Pagliusi et al. Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain, Opt. Expr. vol. 16, Oct. 2008, 9 pages. |
M. Honma, T. Nose, Polarization-independent liquid crystal grating fabricated by microrubbing process, Jpn. J. Appl. Phys., Part 1, vol. 42, 2003, 3 pages. |
Anderson, G., et al., Broadband Antihole Photon Sieve Telescope, Applied Optics, vol. 16, No. 18., Jun. 2007, 3 pages. |
Early, J. et al., Twenty Meter Space Telescope Based on Diffractive Fresnel Lens, SPIE, U.S. Department of Energy, Lawrence Livermore National Laboratory, Jun. 2003, 11 pages. |
Martinez-Cuenca, et al., Reconfigurable Shack-Hartmann Sensor Without Moving Elements, Optical Society of America, vol. 35, No. 9, May 2010, 3 pages. |
Serak, S., et al., High-efficiency 1.5 mm Thick Optical Axis Grating and its Use for Laser Beam Combining, Optical Society of America, vol. 32, No., Jan. 2007, 4 pages. |
Ono et al., Effects of phase shift between two photoalignment substances on diffration properties in liquid crystalline grating cells, Appl. Opt. vol. 48, Jan. 2009, 7 pgs. |
Naydenova et al., “Diffraction form polarization holographic gratings with surface relief in side chain azobenzene polyesters” J. Opt. Soc. Am. B, vol. 15, (1998), 14 pages. |
Oh et al., Achromatic polarization gratings as highly efficent thin-film polarizing beamsplitters for broadband light Proc. SPIE vol. 6682, (2007), 4 pages. |
Nersisyan, S., et al., Polarization insensitive imaging through polarization gratins, Optics Express, vol. 17, No. 3, Feb. 2, 2009, 14 pages. |
Oise, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Optical Society of America, Orlando, FL., Nov. 12-13, 2003, 9 pages. |
Dierking, Polymer Network-Stabilized Liquid Crystals, Advanced Materials, vol. 12, No. 3, 2000, 15 pages. |
Tabiryan, et al., Broadband waveplate lenses, Optics Express 7091, vol. 24, No. 7, Mar. 24, 2016, 12 pages. |
Tabiryan, et al. Thin waveplate lenses of switchable focal length—new generation in optics, Optics Express 25783, vol. 23, No. 20, Sep. 19, 2015, 12 pages. |
Tabiryan, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes, Newsroom, 2016, 2 pages. |
Nersisyan, et al., The principles of laser beam control with polarization gratings introduced as diffractive waveplates, Proc. of SPIE, vol. 7775, 2010, 10 pages. |
Heller, A Giant Leap for Space Telescopes, Foldable Optics, S&TR, Mar. 2003, 7 pages. |
Beam Engineering For Advanced Measurements Co., PCT Application No. PCT/US2015026186, The Extended European Search Report, filed on Mar. 8, 2017, 13 pages. |
Blinov, et al., Electrooptic Effects in Liquid Crystal Materials, Springer-Verlag New York, 1994, 17 pages. |
Crawford, et al., Liquid Crystals in Complex Geometries; Formed by Polymer and Porous Networks, Taylor and Francis, 1996, 4 pages. |
Honma, et al., Liquid-Crystal Fresnel Zone Plate Fabricated by Microorubbing, Japanese Journal of Applied Physics, vol. 44, No. 1A, 2005, 4 pages. |
Tabirian, N., et al., U.S. Appl. No. 61/757,259, filed Jan. 28, 2013, 29 pages. |
Beam Engineering for Advaced Measurements Co., et al., PCT Application No. PCT/US2016/038666 filed Jun. 22, 2016, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration mailed Oct. 10, 2016, 16 pages. |
Marrucci, et al., Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain, Appl. Phys. Lett. 88, 2006, 3 pages. |
Sobolewska et al., “On the inscription of period and half period surface relief gratings in azobenzene-functionalized polymers”, J. Phys. Chem., vol. 112 (15) Jan. 3, 2008, 10 pages. |
Barrett et al., Model of laser driven mass transport in thin films of dye-functionalized polymers, J. Chem. Phys., vol. 109 (4), Jul. 22, 1998, 13 pages. |
Vernon, J., et al, Recording Polarization Gratings with a Standing Spiral Wave, Applied Physics Letters, Oct. 2013, vol. 103, 4 pages. |
Gerchberg, et al, practical algorithm for the determination of the phase from image and diffraction plane pictures, 1972, Optik, vol. 35, Issue 2, pp. 237-246, 10 pages. |
Serak, et al. Diffractive Waveplate Arrays [Invited], Journal of the Optical Society of America B, May 2017, pp. B56-B63, vol. 34, No. 5, 8 pages. |
Emoto, Optical and Physical Applications of Photocontrollable Materials: Azobenzene-Containing and Liquid Crystalline Polymers, Polymers, Jan. 2012, 150-186, vol. 4, 38 pgs. |
Pepper, M. et al, Nonlinear Optical Phase Conjugation, IEEE, Sep. 1991, pp. 21-34, 14 pages. |
De Sio, L., et al., “Digital Polarization Holography Advancing Geometrical Phase Optics,” 2016, Optics Express, vol. 24, Issue 16, pp. 18297-18306, 10 pages. |
Borek, G. and D. Brown, “High-performance diffractive optics for beam shaping,” 1999, Proceeding of SPIE, vol. 3633, pp. 51-60, 10 pages. |
Roberts, D. et al., “Polarization-Independent Diffractive Waveplate Optics,” Mar. 2018, IEEE Aerospace Conference, 11 pages. |
Weng, Y., et al., “Polarization Volume Grating With High Efficiency and Large Diffraction Angle”, Optics Express, Aug. 8, 2016, 17746-17759, vol. 24, No. 16, 14 Pages. |
Tabiryan, Nelson V., et al., Transparent thin film polarizing and optical control systems, AIP Advances 1, 022153 (1-11), 2011, 11 pages. |
Serak, S. V., et al., High-contrast, low-voltage variable reflector for unpolarized light, Molecular Crystals and Liquid Crystals, vol. 657 (1), 156-166, 2017, 12 pages. |
Li, J., et al., “Refractive Indices of Liquid Crystals for Display Applications”, IEEE/OSA Journal of Display Technology, Sep. 2005, 51-61, vol. 1, No. 1, 11 Pages. |
Number | Date | Country | |
---|---|---|---|
20240295775 A1 | Sep 2024 | US |
Number | Date | Country | |
---|---|---|---|
62638651 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17458761 | Aug 2021 | US |
Child | 18660828 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16293122 | Mar 2019 | US |
Child | 17458761 | US |