The present invention relates in general to microwave filters and in particular to a band pass microwave waveguide filter that preserves the polarization of the input signal.
Microwave and millimeter wave continuum imaging systems are used in contraband detection, material characterization, remote sensing and astronomical applications. During the measurements, the polarization of the input signal must be preserved in order to extract the desired signatures without measurement bias. Although a conventional filter can be designed to meet the out-of-band requirements, the conventional filter does not preserve the polarization of each mode. On the other hand, conventional filters that preserve dual polarization exhibit poor out-of-band response.
In traditional system configurations used to achieve this functionality, an orthomode transducer (OMT) separates the polarization into vertical and horizontal polarization states and allows for the use of rectangular waveguide structures cascaded with waffle filters to define the frequency band of the two polarization states. However, this configuration is complex, requires two high performance filters and an OMT. In addition, the structure does not have much control in the shift of higher order modes and is not able to suppress the repetition of the fundamental mode by increasing the filter order. Therefore, there is a need for a microwave filter that preserves polarization of the input signal and has excellent out-of-band rejection achieved by suppressing spurious modes.
It is an object of some embodiments of the invention to provide a microwave filter that preserves polarization of the input signal.
It is another object of some embodiments of the invention to provide a microwave filter that is appropriate for integration into existing OMT designs or dual polarization detection mounts, depending on the application needs.
It is another object of some embodiments of the invention to provide a microwave filter that has excellent out-of-band rejection.
It is a further object of some embodiments of the invention to provide a microwave filter that suppresses fundamental mode repetition.
One aspect of the invention may be a waveguide filter comprising an input waveguide section; an output waveguide section; a plurality of resonator sections disposed between the input and output waveguide sections; and a plurality of coupling sections disposed on either side of each of the resonator sections; wherein the input waveguide section, the resonator sections, and the output waveguide section comprise at least four-fold symmetric quadruple ridge cross-sections and the coupling sections comprise at least four-fold symmetric cross-sections.
Another aspect of the invention may be a waveguide filter comprising an input waveguide section and an output waveguide section; a first at least four fold symmetric quadruple-ridge section adjacent the input waveguide section; a plurality of resonator sections disposed between the first quadruple-ridge section and the output waveguide section, a first resonator section being disposed adjacent the first quadruple-ridge section; and a plurality of coupling sections alternately disposed between the resonator sections; wherein the input waveguide section, the resonator sections, and the output waveguide section have second, at least four fold symmetric quadruple ridge cross-sections; the coupling sections have at least four fold symmetric cross-sections and the first quadruple-ridge section adjacent the input waveguide section includes ridges having lengths that are less than lengths of ridges of the second quadruple ridge cross-sections.
A further aspect of the invention may be a transformer comprising a housing with an at least four fold symmetric interior perimeter; and four ridges disposed at ninety degree intervals inside the interior perimeter, each ridge comprising a series of steps.
Further aspects of the invention may be combinations of the inventive waveguide filters and the inventive transformer.
Yet another aspect of the invention may be a waveguide structure comprising a pair of quadruple ridge waveguide sections having at least four fold symmetry; and a four fold symmetric evanescent section disposed between the pair of quadruple ridge resonator sections.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the following drawing.
For microwave applications, it may be desirable to characterize filter response with scattering parameters S expressed in dB value.
Insertion loss IL: The ratio, expressed in dB, of incident power Pin to transmitted power Pt:
Therefore, the insertion loss can be identified as the module of the scattering parameter S21 expressed in dB: 20 Log10|S21|.
Return loss RL: The ratio, expressed in dB, of incident power Pin to reflected power Pr:
Consequently, the return loss is identified in one embodiment as the module of the scattering parameter S11 expressed in dB: 20 Log10|S11|. In the case of lossless filters, return loss and insertion loss can be related by the well-known conservative energy equation:
|S11|2+|S21|2=1
Return loss ripple: The ripple of return loss within the bandwidth as
Insertion loss ripple: The ripple of insertion loss within the bandwidth as
Bandwidth BW: The bandwidth can be defined in
BW=f2−f1
where f2 and f1 are the edges of the bandwidth as indicated in
Rejection: The out-of-band behavior of the filter.
Poles: The zeros of return loss function within the bandwidth.
One skilled in the art will recognize that other definitions may fall within the scope of this invention and therefore these are given by way of example only.
In many applications, including the present invention, the Chebyscheff response can be used because it offers good performance, e.g., in terms of rejections and compactness. Moreover, the Chebyscheff response is easy to realize with different technologies such a waveguides, strip-lines, or micro-strips. Chebyscheff polynomials can approximate the ideal transfer function of a filter.
In at least one embodiment of the invention, a microwave waveguide filter exhibits the following RF specifications: In-band fractional bandwidth of approximately 30%; Highest transmitted frequency approximately 60 GHz; In-band Return Loss ≧20 dB; In-band insertion loss <1 dB; Out-of-band insertion loss ≧60 dB between 63 and 200 GHz; Preservation of both polarization states; and at least −50 dB isolation between the two polarizations. These RF requirements applied to Return and Insertion Losses can be visualised with an S-parameter goal function (mask) as in
To preserve the polarization states and guarantee the extreme rejection requirements, a single filter structure with four-fold (or higher rotational) symmetry may be used. Four-fold symmetry may mean that, for a transverse cross-section of the structure, the cross-section is symmetric about both the vertical and horizontal axes (i.e., the structure is symmetric under rotation of 90 degrees about its axis). Standard examples of waveguides that exhibit four-fold symmetry are square, quadridge and circular waveguides. However, conventional filters realized with circular and square waveguides offer poor out-of-band rejections because of the intrinsic topology of the structures. In fact, many modes propagate in the frequency range between 40 and 200 GHz, making the attainment of acceptable rejection impossible. The high number of propagating modes translates into the total impossibility of having acceptable rejection in the band of interest through the use of square or circular waveguides.
Quadruple ridge waveguides are known in the literature (Yu Rong, and Kawthar A. Zaki., “Characteristic of Generalized Rectangular and Circular Ridge Waveguides”, IEEE Transactions and Microwave Theory and Techniques, Vol. 48, No. 2, February 2000). However, the inventors are not aware of any practical filter design that has been realized with the quadruple ridge waveguides.
The quadruple ridge cross section 10 can be used to shift the appearance of second order modes to higher frequencies. The introduction of the ridges 14 within the waveguide may result in the shifting of fundamental modes down in frequency, while shifting second order modes higher in frequency. Due to the symmetry, this can happen simultaneously and independently for both polarizations. Thus, the appropriate cross-section design can fix the propagating modes in the structure. As already mentioned, the rejection may preferably be less than 60 dB between 60 and 200 GHz. This may translate in designing the cross-section to have the second propagating mode at 200 GHz.
The four-fold symmetry can preserve the dual polarization states of the electromagnetic field. For example, if the cross section is excited with a linearly polarized field (vertical in both directions, the electric field lines may occur in the quadruple waveguide structure as is shown in
Using the quadruple-ridge cross-section 100 shown in
Waveguide filter 20 may include an input waveguide section 22; an output waveguide section 24; a plurality of resonator sections 26, 28 disposed between the input and output waveguide sections 22, 24; and a plurality of coupling sections 21, 23, 25 disposed on either side of each of the resonator sections 26, 28. The input waveguide section 22, the resonator sections 26, 28, and the output waveguide section 24 may have generally square, quadruple ridge cross-sections 100 (
Using the quadruple-ridge cross-section 100 shown in
Waveguide filter 30 may include an input waveguide section 32; an output waveguide section 34; a plurality of resonator sections 36, 38, 40, 42, 44, 46 disposed between the input and output waveguide sections 32, 34; and a plurality of coupling sections 31, 33, 35, 37, 39, 41, 43 disposed on either side of each of the resonator sections 36, 38, 40, 42, 44, 46. The input waveguide section 32, the resonator sections 36, 38, 40, 42, 44, 46 and the output waveguide section 34 may have quadruple ridge cross-sections 100 (
Using the quadruple-ridge cross-section 100 shown in
Waveguide filter 70 may include an input waveguide section 72; an output waveguide section 74; a plurality of resonator sections 76, 78, 80, 82, 84, 86, 88 disposed between the input and output waveguide sections 72, 74; and a plurality of coupling sections 71, 73, 75, 77, 79, 81, 83, 85 disposed on either side of each of the resonator sections 76, 78, 80, 82, 84, 86, 88. The input waveguide section 72, the resonator sections 76, 78, 80, 82, 84, 86, 88 and the output waveguide section 74 may have quadruple ridge cross-sections 100 (
In each illustrated embodiment 20, 30, 70 of the inventive filter, the lengths of the coupling sections are shown to decrease from the midpoint of the filter towards both ends. However, there may be embodiments wherein the coupling sections and input and output waveguides have differing cross sections and the lengths do not always decrease from the midpoint of the filter towards both ends. Also, in the filters 20, 30, 70, the lengths of the resonator sections increase from the midpoint of the filter towards both ends. However, there may be embodiments wherein the resonator sections have differing cross sections and the lengths do not always increase from the midpoint of the filter towards both ends.
From the fullwave simulations on the three filters 20, 30, 70, the following results were noted. These results are shown by way of example only at 50 GHz, the resonant mode TE101 creates the filter response. Around 110 GHz, one “spike” appears for each resonator and the repetition of the fundamental mode TE102 (
As shown in the simulations, the repetition of the fundamental mode (mode TE102) may be suppressed by increasing the number of poles in the filter. It should be noted that this result of “killing” the repetition of the fundamental mode by increasing the filter order may be a property of the invention and does not appear to occur in standard waveguide structures. The seven-pole filter 70 may comply with the rejection requirements, adequately suppressing the repetition of the fundamental mode occurring at 110 GHz, as shown in
The filter embodiments 20, 30, 70 of the invention can be obtained by properly adjusting the length of each section (quadruple-ridge and evanescent section). In particular, the input coupling section (71 in
To understand the phenomena of higher order mode suppression, it may be necessary to study the elementary contribution of each evanescent section. Each evanescent section can introduce a zero of transmission in the frequency-range of interest. By fullwave simulating a structure 200 (
The transmission zero can be generated because the coupling section 206 (with a width of approximately λg/4) may behave as a stab for the electromagnetic field. This result appears to be consistent with what is observed in the filter design. For each evanescent section, a zero of transmission can be created. Therefore, these zeros can be the basic mechanism for the higher order mode suppression; the higher the filter order, the higher the number of zeros, which translates into stronger suppression. Thus, the zeros of transmission, due to the evanescent sections, can be the cause of the suppression of the higher order mode.
The results illustrated in
In yet another embodiment of the invention, the first input coupling section 71 of
The section 210 may have a cut-off frequency of the fundamental mode at 69.2 GHz. Because the field is concentrated in the vicinity of the ridges 212, the introduction of the quadruple-ridge section 210 can make a stronger coupling and “relaxes” the coupling length. Thus, it may be possible to achieve a 25 dB return loss with a minimum width of about 0.2 mm (double the 0.1 mm width of coupling section 71) using this method.
On the other hand, by substituting the quadruple-ridge section 210 for the first evanescent section 71, two important zero of transmissions may be lost. Therefore, the rejection in the frequency range of interest can slightly deteriorate.
The 7-pole filter 70 may meet the RF requirements and handle both polarization states of the electromagnetic field. However, the frequency response of the filter can be tested using standard waveguides. The standard waveguide WR 19 (4.775×2.388 mm) has an operative frequency between 40 GHz and 60 GHz, which coincides with the specifications of the proposed filter. However, to preserve the minimum four-fold symmetry, a WR 19 with dimensions of 4.775×4.775 mm may serve as a standard for testing the inventive quadruple ridge waveguide filter.
A transformer between the inventive filter and the WR 19 may be necessary to allow measurements of frequency response that can be tested against a standard. The transformer should maintain the same minimum four-fold symmetry employed in both the WR 19 (4.775×4.775 mm) and the filter. The summary requirements of the transformer may be: Bandwidth: 40-60 GHz; Return loss: >20 dB within bandwidth; and Transform filter cross-section into: 4.775×4.775 mm.
One way to achieve the required bandwidth may be to connect the filter directly to the 4.775×4.775 mm housing. Network theory states that connecting two ports with different impedance ratios should be progressive and not abrupt. In this case, the tested impedance ratio between the filter and the WR 19 is about 7 (as confirmed through simulations with a commercial software tool). This impedance ratio is extremely high. Therefore, one method to preserve the bandwidth while matching the impedance (achieve the required return loss) may be by introducing tapered ridges within the transformer. The tapering may progressively match the impedances between the WR 19 and the inventive filter. In addition, there is still the requirement of maintaining at least four-fold symmetry.
A transformer 300 may be directly connected to each end of the filter. To improve the return loss, additional tapered ridges 304 may be used within the transformer 300.
The present invention may preserve the dual polarization state of the electromagnetic field, guarantee wide bandwidth and at the same time exhibit a very wide stop-band frequency range. The invention may represent the state of the art in terms of a polarization preserving waveguide filter that offers an extremely wide stop-band frequency range. The inventive filter may exhibit the properties of a ridge waveguide filter, but can preserve the two polarization states of the electromagnetic field. The invention may be used in systems where coherent signal processing is an issue and, therefore, preserving the field polarization is a need.
Many variations of the invention are possible. For example, the invention may also be used for filtering only one polarization. In that case, the filter may be fed with a single polarization and an electric wall, such as a metal plate, may be used to longitudinally bisect the filter along the section shown in
While the invention has been described with reference to certain preferred embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
This application claims the benefit of priority from U.S. provisional patent application Ser. No. 60/811,148 filed May 15, 2006, which is hereby incorporated by reference.
The invention described herein was made by employees of the United States Government, and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
3852748 | Stark | Dec 1974 | A |
4568894 | Gannon et al. | Feb 1986 | A |
4881051 | Tang et al. | Nov 1989 | A |
5382931 | Piloto et al. | Jan 1995 | A |
6097264 | Vezmar | Aug 2000 | A |
6282341 | Digonnet et al. | Aug 2001 | B1 |
6522215 | Enokuma | Feb 2003 | B2 |
6577207 | Volman | Jun 2003 | B2 |
6879226 | Vigneron et al. | Apr 2005 | B2 |
7321277 | Broad et al. | Jan 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20070262835 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60811148 | May 2006 | US |