The structure of the polarized total reflection illumination optical system by rotary annulus light of the present invention is explained below with reference to the attached drawings.
In the figures, 21 denotes a laser light source, 22 a reflective mirror, 23 a quarter wavelength plate, 24 a first convex lens, 25 a spatial filter, 26 a second convex lens, 27A a small 45-degree incident mirror,(see
Magnification for the emergent beam 28 and the expanded beam 29 are pre-determined for the respective laser light source 21 to be used. The expanded beam 29 should be such that the diameter of the beam after passing thought the beam expander is preferably one half or less of the average diameter of the annulus light.
The small 45-degree incident mirror 27A is fixed by adhesive or other means onto the mounting fixture which has a diameter one half or less of the average diameter of the annulus light and which is inclined by 45 degrees exactly. The mounting fixture is attached to the surface of the collector lens 36 as shown in
The rotary polarizer and mirror unit, as shown as the enlarged view of the mirror unit in
When the rotary mirror 32 is inclined by −α, the expanded reflected beam 34A has an inclination of −2α as shown in
The relative position of the polarizer and surface mirror as described above is realized by designing the direction of inclination of the surface mirror 11 and the direction of vibration 13 of the polarizer 12 to be perpendicular to each other. Alternatively, the direction of vibration of the polarizer 12 is designed to be rotatable and, after the surface mirror 11 is inclined by the required angle, the direction of vibration 13 of the polarizer 12 and direction of inclination (angle of inclination) of the surface mirror 11 are adjusted to be perpendicular to each other.
In
If the direction of vibration 13 of the polarizer 12 is adjusted to be parallel to the direction of inclination (i.e., the angle of inclination) of the surface mirror 11, the p-polarized light parallel with the direction of radiation from the center of the optical axis are used for illumination.
A field diaphragm 35 by means of an appropriate mechanism is provided near the rotary mirror 32 to eliminate unnecessary rays from emanating around the visual field. The expanded beam 34A and 34B (see
When the variable-speed motor 31 starts, an annulus light in the shape of a true circle is forcued onto the back focal plane of the objective lens 38, then the light passes the oil 39 and reflects totally on the interface between the cover glass 40 and aqueous solution 41, and forms an evanescent field of approximately 150 nm distance from the interface. Any background rays are considerably reduced and a high-contrast image of single fluorescent molecule is obtained using the evanescent field for fluorescent illumination.
When the variable-speed motor 31 is rotated at a low speed, the maximum intensity of the fluorescence is obtained when the absorption transition moment of fluorescent dyes coincides with the direction of polarization of the evanescent field. The direction of the vibration of the polarized light, which are not usually visualized, can be easily detected because a portion of the visual field of the microscope is covered by the index pin 30. By applying the detection of polarization direction with index pin, one can, for example, measure the rotational speed of a single protein molecule with a covalently bound fluorescent molecule from the speed control system of the variable-speed motor 31.
The above constitutes the primary description of the intent of the present invention. The present invention may be implemented in various other forms of embodiment without deviating from the spirit of its main features. The above-mentioned embodiments are therefore only a few examples and should not be construed as limiting.
The present invention is used in the polarized total internal reflection illumination optical system by rotary annulus light to intentionally generate an evanescent field of a high level of polarization (i.e., without any polarized beams in the Z-axis direction) by introducing s-polarized light perpendicular to the radial direction from the center of the optical axis of the objective lens.
Rotary-polarized illumination systems can detect the direction of highly efficient excitation of fluorescent dyes, that is the absorption transition moment, using information on the direction of the maximal fluorescence intensity.
When a single fluorescent dye molecule is firmly coupled by covalent bond to single molecule of a sample, such as a protein or DNA, dynamic changes in the internal structure and orientation of the sample can be determined. Noise is eliminated by a spatial filter installed in the beam expander, and this makes it unnecessary to provide a conjugate plane with the back focal plane of the objective lens and to install an annulus diaphragm in the illumination optics. The illumination system of the present invention can be shorter because no additional relay lens system for providing the conjugate plane is necessary.
It is possible to detect the direction of the polarization of light because the period of rotation of the rotary laser beams can be detected within the visual field of the microscope.
It is possible to read the rotational speed of a sample coupled with a fluorescent molecule by covalent b from the speed control system of the variable-speed motor (31).
Number | Date | Country | Kind |
---|---|---|---|
2002-370455 | Dec 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/11885 | 9/18/2003 | WO | 00 | 6/20/2005 |