This document claims priorities to Japanese Patent Application No. 2016-029817 filed Feb. 19, 2016 and Japanese Patent Application No. 2016-249782 filed Dec. 22, 2016, the entire contents of which are hereby incorporated by reference.
In recent years, devices, such as memory circuits, logic circuits, image sensors (e.g., CMOS sensors), or the like have been more and more highly integrated. During processes of producing these devices, foreign matter such as minute particles, dust, etc. may be deposited on the devices. Foreign matter deposited on the devices is likely to cause circuit defect and short circuit between interconnects. In order to increase device reliability, it is therefore necessary to clean wafers on which devices are formed to remove foreign matter from the wafers. Foreign matter such as minute particles, dust, etc., referred to above, may also be deposited on back surfaces of wafers. If the foreign matter is deposited on the back surface of the wafer, the wafer may be separated from a stage reference surface of an exposure machine, or the wafer surface may be tilted with respect to the stage reference surface, resulting in a patterning error or a focal length error.
There has recently been proposed a polishing apparatus which is capable of removing foreign matter deposited on a back surface of a wafer at a high removal rate (see Japanese laid-open patent publication No. 2014-150178). This new polishing apparatus is able to scrape off the back surface of the wafer to a small extent by moving a polishing tool along the back surface of the wafer while pressing the polishing tool against the back surface of the wafer with an air cylinder. As a consequence, the polishing apparatus can remove the foreign matter from the back surface of the wafer at a high removal rate.
The above-described polishing apparatus is configured to press the polishing tool against the wafer by supplying the air cylinder with compressed air having a certain preset pressure. However, since there exists a sliding resistance of a piston in the air cylinder, the polishing tool may actually be out of contact with the wafer even when the air cylinder is supplied with the compressed air having the preset pressure. In the event of such a contact failure, the wafer is not properly polished, leaving foreign matter unremoved on the wafer.
According to an embodiment, there are provided a polishing apparatus and a polishing method capable of detecting whether a polishing tool has been brought into contact with a substrate, such as a wafer, and further capable of detecting a position of the polishing tool.
Embodiments, which will be described below, relate to an apparatus and a method for polishing a substrate, such as a wafer, and more particularly to an apparatus and a method for polishing a substrate by moving a polishing tool, such as a polishing tape, while pressing the polishing tool against a surface of the substrate.
In one embodiment, there is provided a polishing apparatus comprising: a substrate holder configured to hold a substrate; a pressing member configured to press a polishing tool against a surface of the substrate; an actuator configured to apply a pressing force to the pressing member; a motor-drive moving device configured to move the pressing member along the surface of the substrate; and a monitoring device configured to emit an alarm if a motor current supplied to the motor-drive moving device is smaller than a threshold value.
In one embodiment, the monitoring device is configured to calculate an average of the motor current measured within a predetermined period of time and to emit the alarm if the average of the motor current is smaller than the threshold value.
In one embodiment, the predetermined period of time is a period of time including at least a part of a period of time during which the motor-drive moving device is moving the pressing member along the surface of the wafer.
In one embodiment, the polishing apparatus further includes a load measuring device disposed between the pressing member and the actuator, wherein the monitoring device is configured to emit the alarm if a load measured by the load measuring device is smaller than a set value.
In one embodiment, there is provided a polishing apparatus comprising: a substrate holder configured to hold a substrate; a pressing member configured to press a polishing tool against a surface of the substrate; an actuator configured to apply a pressing force to the pressing member; a motor-drive moving device configured to move the pressing member along the surface of the substrate; a distance measuring device configured to measure a movement distance of the pressing member that has been moved toward the surface of the substrate by the actuator; and a monitoring device configured to emit an alarm if the movement distance is smaller than a threshold value.
In one embodiment, the monitoring device is configured to emit the alarm and instruct the actuator to move the pressing member back to a retreated position and then to move the pressing member toward the surface of the substrate again, if the movement distance is smaller than the threshold value.
In one embodiment, the monitoring device is configured to instruct the motor-drive moving device to move the pressing member along the surface of the substrate, if the movement distance is larger than the threshold value.
In one embodiment, the polishing apparatus further comprises a load measuring device disposed between the pressing member and the actuator, wherein the monitoring device is configured to emit the alarm if a load measured by the load measuring device is smaller than a set value.
In one embodiment, the distance measuring device comprises a non-contact-type distance sensor.
In one embodiment, the distance measuring device comprises one of a digital gage, a magnetic sensor, and an eddy current sensor.
In one embodiment, there is provided a polishing method comprising: holding a substrate with a substrate holder; pressing a polishing tool against a surface of the substrate with a pressing member; moving the pressing member along the surface of the substrate with a motor-drive moving device; and emitting an alarm if a motor current supplied to the motor-drive moving device is smaller than a threshold value.
In one embodiment, said emitting the alarm comprises calculating an average of the motor current measured within a predetermined period of time, and emitting the alarm if the average of the motor current is smaller than the threshold value.
In one embodiment, the predetermined period of time is a period of time including at least a part of a period of time during which the motor-drive moving device is moving the pressing member along the surface of the wafer.
In one embodiment, the polishing method further comprises: measuring a load applied to the pressing member; and emitting an alarm if the load is smaller than a set value.
In one embodiment, the surface of the substrate comprises a back surface of the wafer.
In one embodiment, there is provided a polishing method comprising: holding a substrate with a substrate holder; moving a pressing member, which supports a polishing tool, toward a surface of the substrate with an actuator; measuring a movement distance of the pressing member that has been moved by the actuator; and emitting an alarm if the movement distance is smaller than a threshold value.
In one embodiment, said emitting the alarm comprising emitting an alarm, and moving the pressing member back to a retreated position with the actuator and then moving the pressing member toward the surface of the substrate again, if the movement distance is smaller than the threshold value.
In one embodiment, the polishing method further comprises moving the pressing member along the surface of the substrate with a motor-drive moving device if the movement distance is larger than the threshold value.
In one embodiment, the polishing method further comprises: measuring a load applied from the actuator to the pressing member; and emitting an alarm if the load is smaller than a set value.
In one embodiment, the surface of the substrate comprises a back surface of the wafer.
When the polishing tool is properly placed in contact with the surface (e.g., a front surface, a back surface, or a bevel portion) of a substrate, such as a wafer, a frictional force is generated between the polishing tool and the substrate as the polishing tool moves along the surface of the substrate. Because the motor-drive moving device is configured to move the pressing member at a preset speed, the magnitude of the motor current can vary depending on the frictional force. Therefore, the monitoring device is able to determine whether the polishing tool has been properly brought into contact with the substrate on the basis of the result of the comparison between the motor current and a threshold value.
If the movement distance of the pressing member that has been moved toward the surface of the substrate is short, the polishing tool is unable to contact the substrate. Therefore, the monitoring device is able to determine whether the polishing tool has properly contacted the substrate on the basis of the result of the comparison between the movement distance (or displacement) of the pressing member and a threshold value.
Embodiments will be described below with reference to the drawings.
Embodiments, which will be described below, are directed to a polishing apparatus and a polishing method for polishing a back surface of a wafer that is an example of a substrate, while it is noted that the present invention is also applicable to a polishing apparatus and a polishing method for polishing a front surface or a bevel portion of a wafer.
The wafer W, with its back surface facing downwardly, is placed on the substrate stage 37. The substrate stage 37 has a groove 37a formed in its upper surface, and this groove 37a is in fluid communication with a vacuum line 40. The vacuum line 40 is coupled to a vacuum source (e.g., a vacuum pump), which is not shown in the drawings. When a vacuum is developed in the groove 37a of the vacuum stage 37 through the vacuum line 40, the wafer W is held on the substrate stage 37 by the vacuum suction. Then, the stage motor 39 rotates the substrate stage 37, thereby rotating the wafer W about its own axis. A diameter of the substrate stage 37 is smaller than a diameter of the wafer W, and a center-side area of the back surface of the wafer W is held by the substrate stage 37. The back surface of the wafer W has a circumferential-side area which is projecting outwardly from the substrate stage 37.
The polishing head 34 is disposed adjacent to the substrate stage 37. More specifically, the polishing head 34 is disposed so as to face the exposed circumferential-side area of the wafer W. The polishing head 34 includes a plurality of rollers 43 supporting a polishing tape 42 that serves as a polishing tool, a pressing member (e.g., a pressing pad) 44 for pressing the polishing tape 42 against the back surface of the wafer W, and an air cylinder 45 serving as an actuator for applying a pressing force to the pressing member 44. The air cylinder 45 exerts the pressing force on the pressing member 44, which in turn presses the polishing tape 42 against the back surface of the wafer W. The polishing tool may be a fixed abrasive, instead of the polishing tape.
The load-pressure line 11 and the back-pressure line 12 are coupled to a pressurized-gas supply source (e.g., a pressurized-air supply source), which is not shown in the drawings. A first pressure sensor 18 and a second pressure sensor 19 are coupled to the load-pressure line 11 and the back-pressure line 12, respectively. The pressures of the gas in the load-pressure line 11 and the back-pressure line 12 at upstream sides of the first pressure regulator 14 and the second pressure regulator 15 are measured by the first pressure sensor 18 and the second pressure sensor 19, respectively. The pressurized gas is supplied through the load-pressure line 11 and the first pressure regulator 14 into the first chamber 48 of the air cylinder 45. Similarly, the pressurized gas is supplied through the back-pressure line 12 and the second pressure regulator 15 into the second chamber 49 of the air cylinder 45.
When the pressurized gas is supplied into the first chamber 48 of the air cylinder 45, the pressurized gas in the first chamber 48 presses the piston 46, thereby moving the piston rod 47 and the pressing member 44 toward the wafer W. When the pressurized gas is supplied into the second chamber 49 of the air cylinder 45, the pressurized gas in the second chamber 49 presses the piston 46 in the opposite direction, thereby moving the piston rod 47 and the pressing member 44 in a direction away from the wafer W.
The first pressure regulator 14 and the second pressure regulator 15 are coupled to a monitoring device 65, which is configured to control operations of the first pressure regulator 14 and the second pressure regulator 15. The force with which the pressing member 44 presses the polishing tape 42 against the back surface of the wafer W is regulated by the first pressure regulator 14. Specifically, when the pressure of the pressurized gas supplied to the first chamber 48 of the air cylinder 45 is increased, the pressing force of the pressing member 44 increases. The monitoring device 65 sends target pressure command values to the first pressure regulator 14 and the second pressure regulator 15, respectively, and the first pressure regulator 14 and the second pressure regulator 15 operate so as to keep the pressures in the first chamber 18 and the second chambers 19 at the respective target pressure command values.
Referring back to
The polishing-head moving device 55 is a motor-drive moving device including a combination of a ball screw 60 and a servomotor 61. The polishing-head moving device 55 is configured to move the polishing tape 42 and the polishing head 34 at a preset speed along the back surface of the wafer W. The servomotor 61 is coupled to an electric power line 63 and is supplied with an electric current through the electric power line 63. The electric current supplied to the servomotor 61 will hereinafter be referred to as “motor current”. An ammeter 64 for measuring the motor current is coupled to the electric power line 63. The ammeter 64 is coupled to the monitoring device 65, which monitors the motor current supplied to the servomotor 61.
Liquid supply nozzles 57, 58 for supplying a polishing liquid onto the wafer W are disposed respectively above and below the wafer W that is held on the substrate stage 37. The polishing liquid may preferably be pure water. This is because if a liquid chemical containing a chemical component having an etching capability is used as the polishing liquid, recesses formed in the back surface of the wafer W would be enlarged.
The back surface of the wafer W is polished as follows. The wafer W, held on the substrate stage 37, is rotated about the axis of the wafer W by the stage motor 39, and the liquid supply nozzles 57, 58 supply the polishing liquid to the front and back surfaces of the wafer W which is being rotated. The polishing head 34 then presses the polishing tape 42 against the back surface of the wafer W. The polishing tape 42 is placed in sliding contact with the back surface of the wafer W, thus polishing the back surface of the wafer W.
While the polishing head 34 is pressing the polishing tape 42 against the back surface of the wafer W, the polishing-head moving device 55 moves the polishing head 34 and the polishing tape 42 at a preset speed along the back surface of the wafer W outwardly in the radial direction of the wafer W, as indicated by arrow shown in
When the polishing tape 42 is properly placed in contact with the wafer W, a frictional force is generated between the polishing tape 42 and the wafer W when the polishing tape 42 moves along the surface of the wafer W. Since the motor-drive polishing-head moving device 55 moves the polishing head 34 that supports the polishing tape 42 at a preset speed, the magnitude of the motor current can vary in accordance with the frictional force. In other words, when the polishing tape 42 is properly placed in contact with the wafer W, a large frictional force is generated, resulting in an increased motor current. In contrast, when the polishing tape 42 is not in contact with the wafer W, the motor current is small because no frictional force is generated. The monitoring device 65 is configured to compare the motor current with a threshold value and to determine whether the polishing tape 42 is properly placed in contact with the wafer W, based on the result of the comparison.
The monitoring device 65 monitors the motor current based on measured values thereof that are sent from the ammeter 64, and compares the measured values of the motor current with the threshold value. The threshold value is stored in advance in the monitoring device 65. The fact that the motor current is lower than the threshold value when the polishing-head moving device 55 is moving the polishing tape 42 and the polishing head 34 means that the polishing tape 42 is separated from the wafer W or is not properly placed in contact with the wafer W. The monitoring device 65 is thus configured to emit an alarm if the motor current is smaller than the threshold value. The alarm may be an electric signal (e.g., an ON or OFF contact signal) for activating an external alarm device, an electric signal (e.g., an analog output such as a voltage) for transmitting information to an external device, or a recognizable signal such as a color, a sound, or the like.
As shown in
Thus, in order to more accurately determine whether the polishing tape 42 is in contact with the back surface of the wafer W, in one embodiment, the monitoring device 65 is configured to calculate an average of the motor current measured within a predetermined period of time, and to emit an alarm if the calculated average of the motor current is smaller than a threshold value. The predetermined period of time referred to above is, for example, a period of time including at least a part of the period of time during which the polishing-head moving device 55 is moving the pressing member 44 together with the polishing tape 42 along the back surface of the wafer W from the polishing start position to the polishing end position. The predetermined period of time may be an entirety or a part of the period of time during which the polishing-head moving device 55 is moving the pressing member 44 together with the polishing tape 42 along the back surface of the wafer W from the polishing start position to the polishing end position. In this manner, the monitoring device 65 determines whether the polishing tape 42 is properly in contact with the back surface of the wafer W, on the basis of the magnitude of the motor current that is measured when the pressing member 44 is moving along the back surface of the wafer W.
When the polishing tape 42 is in contact with the back surface of the wafer W, the load is transmitted from the air cylinder 45 to the pressing member 44. On the other hand, when the polishing tape 42 is not placed in contact with the back surface of the wafer W, almost no load is transmitted from the air cylinder 45 to the pressing member 44. In other words, when the polishing tape 42 is in contact with the back surface of the wafer W, the load measured by the load cell 70 is large, and when the polishing tape 42 is not in contact with the back surface of the wafer W, the load measured by the load cell 70 is small.
The monitoring device 65 is configured to compare the load, which is applied to the pressing member 4 and measured by the load cell 70, with a set value, and to emit an alarm if the load is smaller than the set value. The set value is stored in advance in the monitoring device 65. The alarm may be an electric signal (e.g., an ON or OFF contact signal) for activating an external alarm device, an electric signal (e.g., an analog output such as a voltage) for transmitting information to an external device, or a recognizable signal such as a color, a sound, or the like. According to the present embodiment, the alarm based on the result of the comparison between the load and the set value is emitted, in addition to the alarm that is emitted based on the result of the comparison between the motor current and the threshold value.
The monitoring device 65 is configured to monitor, instead of the motor current, the movement distance of the pressing member 44 that has been moved by the air cylinder 45 and to emit an alarm if the movement distance measured by the distance measuring device 73 is smaller than a threshold value. In one embodiment, the monitoring device 65 may be configured to compare both the motor current and the movement distance of the pressing member 44 with corresponding threshold values and to emit an alarm if one or both of the motor current and the movement distance of the pressing member 44 are smaller than the corresponding threshold values.
The monitoring device 65 is configured to determine whether the polishing tape 42 has contacted the back surface of the wafer W, on the basis of the movement distance measured by the distance measuring device 73, i.e., on the basis of the movement distance of the pressing member 44 that supports the polishing tape 42. More specifically, the monitoring device 65 is configured to emit an alarm if the movement distance, measured by the distance measuring device 73, is smaller than a threshold value. The threshold value is stored in advance in the monitoring device 65. The alarm may be an electric signal (e.g., an ON or OFF contact signal) for activating an external alarm device, an electric signal (e.g., an analog output such as a voltage) for transmitting information to an external device, or a recognizable signal such as a color, a sound, or the like. If the movement distance measured by the distance measuring device 73 is smaller than the threshold value, then the monitoring device 65 emits an alarm, and may instruct the air cylinder 45 to move the pressing member 44 back to a retreated position and then move the pressing member 44 again toward the back surface of the wafer W.
The threshold value is a value that has been obtained in advance by subtracting an offset value from the movement distance of the pressing member 44 that has been moved until the polishing tape 42 is actually brought into contact with the back surface of the wafer W. The offset value is determined on the basis of vibration factors of the polishing tape 42, such as a wafer surface vibration when the wafer is rotating, a vibration due to the friction between the polishing tape 42 and the wafer W, and the like. The offset value is set arbitrarily so long as the threshold value falls within an effective measuring range of the distance measuring device 73. Since the offset value is set in the monitoring device 65, the threshold value can easily be adjusted without changing the position of the distance measuring device 73 even after the pressing member 44 is replaced with a new one.
If the movement distance measured by the distance measuring device 73 is smaller than the threshold value, then the monitoring device 65 emits the alarm and the polishing apparatus may preferably not perform polishing of the wafer W. If the movement distance measured by the distance measuring device 73 is larger than the threshold value, then the monitoring device 65 may preferably instruct the polishing-head moving device 55 to move the pressing member 44 together with the polishing tape 42 along the back surface of the wafer W to thereby perform the polishing of the wafer W. If the movement distance measured by the distance measuring device 73 is larger than a preset upper limit value, then it is assumed that the wafer W is warped more than expected or the wafer W is detached from the substrate stage 37. Therefore, if the measured movement distance is larger than the upper limit value, then the monitoring device 65 emit an alarm and the polishing apparatus may preferably not perform polishing of the wafer W.
In order to more accurately determine whether the polishing tape 42 is in contact with the back surface of the wafer W, in one embodiment, the monitoring device 65 may be configured to calculate an average of the movement distance of the pressing member 44 measured by the distance measuring device 73 within a predetermined period of time, and to emit an alarm if the average of the movement distance is smaller than a threshold value. If the average of the movement distance measured by the distance measuring device 73 is smaller than the threshold value, then the monitoring device 65 may emit an alarm and may instruct the air cylinder 45 to move the pressing member 44 back to a retreated position and then move the pressing member 44 again toward the back surface of the wafer W. If the average of the movement distance is smaller than the threshold value, then the monitoring device 65 generates the alarm and the polishing apparatus may preferably not perform polishing of the wafer W. If the average of the movement distance is larger than the threshold value, the monitoring device 65 may preferably instruct the polishing-head moving device 55 to move the pressing member 44 together with the polishing tape 42 along the back surface of the wafer W to thereby perform the polishing of the wafer W. Furthermore, if the average of the movement distance measured by the distance measuring device 73 is larger than the preset upper limit value, then the monitoring device 65 emits an alarm and the polishing apparatus may preferably not perform polishing of the wafer W.
The polishing head 34 includes a linear-motion guide 81 coupled to the pressing member 44 through a coupling base 79. This linear-motion guide 81 has a linear-motion rail 82 extending perpendicularly to the back surface of the wafer W, and a linear-motion block 83 movable on the linear-motion rail 82 in its longitudinal direction. The sensor target 75 is fixed to the linear-motion block 83, so that the sensor target 75 is movable together with the linear-motion block 83 in the longitudinal directions of the linear-motion rail 82. The linear-motion block 83 is coupled to the pressing member 44 through the coupling base 79. Therefore, the movement of the pressing member 44 that is actuated by the air cylinder 45 is restricted to a linear movement.
The proximity sensor 76 is located near the sensor target 75. A relative position of the proximity sensor 76 and the polishing head 34 is fixed. A distance between the sensor target 75 and the proximity sensor 76 varies in accordance with the displacement of the pressing member 44, i.e., the movement distance (displacement) of the polishing tape 42 on the pressing member 44. Therefore, the distance measuring device 73, which includes the combination of the sensor target 75 and the proximity sensor 76, is able to measure the movement distance of the pressing member 44 that has been moved toward the wafer W by the air cylinder 45. The proximity sensor 76 is coupled to the monitoring device 65. The proximity sensor 76 is configured to measure the movement distance of the pressing member 44 that has been moved toward the wafer W and to send a measured value of the movement distance to the monitoring device 65.
If the movement distance of the pressing member 44, which is measured by the proximity sensor 76, is smaller than the above threshold value, then the monitoring device 65 may instruct the first pressure regulator 14 to increase the pressure in the first chamber 48 (see
The monitoring device 65 stores, in advance, the following calculating formula therein:
Corrective pressing force=(target movement distance/measured movement distance)×set value for the pressing force
In the above formula, the target movement distance is a theoretical movement distance of the pressing member 44 which allows the pressing member 44 to press the polishing tape 42 properly against the back surface of the wafer W. The measured movement distance is an actual movement distance of the pressing member 44 which is measured by the proximity sensor 76. The set value for the pressing force is a present set value for the pressing force that is applied from the air cylinder 45 to the pressing member 44.
The monitoring device 65 inputs the preset target movement distance, the movement distance of the pressing member 44 which is measured by the proximity sensor 76, and the set value for the pressing force into the above calculating formula to calculate a corrective pressing force, and instructs the air cylinder 45 to generate the corrective pressing force. More specifically, the monitoring device 65 determines a target pressure command value for the air cylinder 45 to generate the corrective pressing force, and sends the target pressure command value to the first pressure regulator 14. The monitoring device 65 stores, in advance, a relational expression or database representing the relationship between target pressure command value and pressing force, and is configured to determine a target pressure command value corresponding to the corrective pressing force using the relational expression or database. With the above operation of correcting the pressing force, the pressing member 44 is able to press the polishing tape 42 properly against the back surface of the wafer W.
The monitoring device 65 is configured to compare the load measured by the load cell 70 with a set value and to emit an alarm if the load is smaller than the set value. The set value is stored in advance in the monitoring device 65. The alarm may be an electric signal (e.g., an ON or OFF contact signal) for activating an external alarm device, an electric signal (e.g., an analog output such as a voltage) for transmitting information to an external device, or a recognizable signal such as a color, a sound, or the like. According to the present embodiment, the alarm based on the result of the comparison between the load and the set value is emitted, in addition to the alarm that is emitted based on the result of the comparison between the movement distance of the pressing member 44 and the threshold value as described above.
In this embodiment also, the polishing head 34 may include, as shown in
As long as the monitoring device 65 continues to receive the incomplete polishing signal, the monitoring device 65 instructs the substrate holder 32, the polishing head 43, and the polishing-head moving device (motor-drive moving device) 55 to perform polishing of the wafer W again. Specifically, while the polishing head 34 is pressing the polishing tape 42 against the back surface of the wafer W, the polishing-head moving device 55 moves the polishing head 34 and the polishing tape 42 at a preset speed along the back surface of the wafer W outwardly in the radial direction of the wafer W. This polishing process is repeated as long as the monitoring device 65 keeps receiving the incomplete polishing signal. Polishing conditions including the pressing force produced by the air cylinder 45, the rotational speed of the wafer W, the speed at which the polishing head 34 and the polishing tape 42 are moved outwardly in the radial direction of the wafer W, etc. may be changed before the polishing process is repeated, or may remain the same while the polishing process is repeated. The monitoring device 65 terminates the polishing of the wafer W if the monitoring device 65 has not received the incomplete polishing signal during a certain set period of time.
The embodiment shown in
Each of the embodiments described above is directed to a polishing apparatus and a polishing method for polishing the back surface of a wafer. However, the present invention is also applicable to a polishing apparatus and a polishing method for polishing a front surface or a bevel portion of a wafer. For example, the present invention is applicable to a polishing apparatus that moves the polishing tape 42 and the pressing member 44 along the bevel portion of the wafer W, as shown in
The previous description of embodiments is provided to enable a person skilled in the art to make and use the present invention. Moreover, various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles and specific examples defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the embodiments described herein but is to be accorded the widest scope as defined by limitation of the claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-029817 | Feb 2016 | JP | national |
JP2016-249782 | Dec 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4788482 | Tachibana | Nov 1988 | A |
5796927 | Hegg | Aug 1998 | A |
6431953 | Carter et al. | Aug 2002 | B1 |
20020037681 | Gitis | Mar 2002 | A1 |
20050260922 | Gan | Nov 2005 | A1 |
20060019417 | Shigeta et al. | Jan 2006 | A1 |
20080287043 | Saito | Nov 2008 | A1 |
20090117828 | Hongo et al. | May 2009 | A1 |
20090227189 | Maeda | Sep 2009 | A1 |
20090233525 | Ueda | Sep 2009 | A1 |
20110136411 | Nakanishi | Jun 2011 | A1 |
20140087627 | Togawa | Mar 2014 | A1 |
20140134924 | Shinozaki | May 2014 | A1 |
20140213154 | Seki | Jul 2014 | A1 |
20140220866 | Ishii | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1314096 | May 2007 | CN |
H03-142159 | Jun 1991 | JP |
H05-018395 | Mar 1993 | JP |
H10-015458 | Jan 1998 | JP |
H11-291156 | Oct 1999 | JP |
2011-224680 | Nov 2011 | JP |
2013-188839 | Sep 2013 | JP |
2014-061580 | Apr 2014 | JP |
2014-150131 | Aug 2014 | JP |
2014-150178 | Aug 2014 | JP |
200613092 | May 2006 | TW |
201008704 | Mar 2010 | TW |
201429626 | Aug 2014 | TW |
Number | Date | Country | |
---|---|---|---|
20170239784 A1 | Aug 2017 | US |