The present invention relates generally to poly-axial bone screws and, more particularly, to poly-axial bone screws having improved gripping action between a screw head and a coupling element seat of the bone screw.
Bone securing systems may be provided to couple a bone stabilization rod or element to a bone securing member. In some systems a coupling member may be provided between the bone stabilization rod an bone securing member. The coupling member or element may include an interface between a portion of the bone securing member and the rod.
A neck portion 20 may be located between the screw head 16 and the threaded shaft 14. In one embodiment, the width of the neck portion 20 is narrower than the width of the threaded shaft 14, to enable increased poly-axial motion of the coupling element 22 when engaged with the bone securing member head 16. The coupling element 22 includes an opening 24 at a bottom surface configured to permit the bone securing tip 18 and the threaded shaft 14 to pass through. In an embodiment, the bone securing member head 16 may have a curved underside. The head 16 curved underside may engage a coupling member 22 seat 30 (
The bone securing system 10 may further include a mating cap 28 including a snap cap with set screw, interlocking cap, or a lock cap with set screw positioned therein. In an embodiment the mating cap 28 may lock a rod 11 within the coupling element 22 groove 26 by transferring a downward force from the rod 11, saddle member 29, securing member 12 head 16, and coupling element 22 seat 30. In an embodiment the saddle 29 may rest within the channel 26 on top of the bone securing member 12 head 16 and assist with holding the system 10 together after installation. The saddle 29 may have a bottom surface configured to rest on securing member 12 head 16 top surface and a top surface inwardly curved to matingly receive a cylindrical rod 11.
In an embodiment, the saddle 29 may act as an intermediate structure to facilitate an even distribution of load forces onto the bone securing member 12 head 16 top surface, the load forces created by the mating cap 28 being tightened onto a rod 11. The coupling head 22 includes a seat 30 to provide gripping and holding power between the coupling member 22 and the bone securing member 12 head 16 to limit any post-installation shifting of the bone securing member 12 with respect to the coupling element 22.
The rod 11 and coupling element 22 may be adjusted into a desired relationship to the bone securing member 12 until the mating cap 28 is locked against the rod 11.
The coupling element 22 may also include a lip 36 for engaging a flange or protruding portion of the mating cap 28 to fixably couple the rod 11, coupling element 22, and bone securing member 12 together. As shown in
The seat 30 may provide increased gripping forces between the bone securing member 12 head 16 and the coupling element 22 by providing a discrete number of contact points. In an embodiment when a bone securing member 12 head 16 is pressed into a seat 30, the primary contacts between the head 16 and the seat 30 are focused at or near the points 34. The multi-faceted 31 seat 30 may provide improved gripping action between the coupling element 22 and the bone securing member 12 head 16 due to the discrete number of contacts 34, reaction load, and head 16 deformation at the seat interface 30. The seat interface 30 may deform at each contact point 34 when a mating cap 38 is located into place due to pressure or stress at points 34. In an embodiment the seat 30 discrete contact points 34 may significantly increase the force per area between the coupling element 22 and securing member 12.
The coupling element 40 may also provide increased flexibility and the ability to dynamically distribute loads across the seating surface due to the discrete number of prongs 46. The coupling element 40 may withstand and handle external forces reliably and not shift relative to the bone securing member 12 in the presence of external forces. In addition to prongs 46 may provide flexibility between the coupling element 40 and bone securing member 12 head 16 so loads may be distributed more evenly across the prongs 46.
The system 50 may include a mating cap 68 (such as a snap cap) configured to be received and locked within a correspondingly shaped chamber 66 of the coupling element 62. The chamber 66 may include a ledge 70 configured to lock the mating cap 68 within the chamber 66. As shown in
The accompanying drawings that form a part hereof show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted to require more features than are expressly recited in each claim. Rather, inventive subject matter may be found in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This Application is a Non-Provisional of Provisional (35 USC 119(e)) application 60/784,220 filed on Mar. 20, 2006, the entireties of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
20020032443 | Sherman et al. | Mar 2002 | A1 |
20050080415 | Keyer et al. | Apr 2005 | A1 |
20050187548 | Butler et al. | Aug 2005 | A1 |
20050203516 | Biedermann et al. | Sep 2005 | A1 |
20050277927 | Guenther et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070233080 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60784220 | Mar 2006 | US |